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 Kidney stones are highly complex matrices and 
primarily heterogeneous. Hence, exact identification and 
classification are not easy and straight forward. Multiple 
physical and chemical methods are available for the 
identification of kidney stone composition. However, 
none of the said methods is proven to be satisfactory. 
Many physical methods such as X-ray diffraction (XRD), 
X-ray excited fluorescence (XRF), Infrared spectroscopy 
(IR), Scanning electron microscopy (SEM), Raman, 
Inductively-Coupled Plasma-Mass Spectrometry (ICP-
MS), Laser-Induced Breakdown Spectroscopy (LIBS) 
and polarization microscopy have been attempted for the 
identification of kidney stones4-12. Among this, XRD and 
IR are widely used laboratory techniques for identifying 
the chemical composition of renal calculi. Even though, 
these techniques need significant quantity of samples for 
the successive identification of chemical constituents. In 
the case of XRF and ICP-MS, it is difficult to detect the 
lighter elements such as C, H, N and O. These 
deficiencies can be overcome by the use of LIBS 
technique. Nevertheless, two different techniques are 
often advisable for the successful identification of 
complex samples to remove the ambiguity. Among these 
techniques, LIBS and Raman spectroscopy are the most 
promising tools as it can identify these complex samples 
by looking at the atomic emissions and molecular 
vibrations from the same sample. LIBS and Raman are 
highly complementary spectroscopic techniques, being 
used extensively for the identification of minerals, 
pigments, in the field of archeology, environmental 
monitoring, geological analysis, space explorations etc. 
13-18. Compared to other techniques, these two techniques 
are simple, rapid and highly sensitive. Moreover, these 
techniques need a little amount of sample for the analysis 
and require no/minimal sample preparation. Since the 
sample is pristine after measurements, it can also be used 
for further studies. These advantages make LIBS-Raman 
techniques an emerging tool for identification of 
complex samples such as renal calculi. This very fact is 
of considerable contemporary interest in the context of 
this study due to the following reason. In recent past, 
Shock Wave Lithotripsy (SWL) or laser breaking 
methods are preferred for the kidney stone treatments 
and as a result minimal amount of sample is available for 
the analysis.  
 LIBS employs a high energy pulsed laser focused 
onto the sample surface, which ablate a small portion, 
resulting in the formation of a micro-plasma. In most 
cases, the irradiance is around 1 GW/cm2 to breakdown 
the molecules and excite the atoms to generate 
microplasma19. The elemental identification and their 
chemical abundance can be achieved by detecting the 
light from the micro-plasma while it’s cooling. This 
technique provides qualitative as well as quantitative 
information from many major, minor and trace 
elements20. LIBS can be considered as a micro-
destructive technique because only very little amount of 
sample (µg or ng) is consumed for atomization which 

causes little/no damage to the sample. The main 
advantages of LIBS are; simultaneous multi-elemental 
detection and the capability for depth profiling. 
 On the other hand, Raman spectroscopy mainly deals 
with the spectral analysis of inelastically scattered light 
from samples irradiated with a monochromatic light 
source, normally continuous or pulsed lasers. This yields 
chemical and structural information of materials in any 
physical phase 17, 21. It is a highly sensitive and non-
destructive technique and is generally consider as a more 
popular technique than LIBS for detecting the organic 
compounds. This is because, it can easily distinguish 
between various hydrocarbons such as benzene, 
naphthalene, methane and their various chemical isomers, 
and different kind of organic molecules such as protein, 
lipids, amino acids, complex molecules such as pigments, 
ink, etc. But compared to LIBS, trace analysis is difficult 
with Raman technique as the Raman signal is 
proportional to the number of molecules excited by the 
laser 22. Usually, low power lasers are used for the 
Raman measurements to avoid the photo/thermal 
degradation or modification of the sample. One of the 
key considerations in Raman spectroscopy for a 
particular study is the selection of excitation wavelength. 
This is because Raman signal from the sample is often 
swamped by the fluorescence emission induced by a 
wrongly chosen excitation wavelength 17. 
 Our group has done some preliminary investigations 
on the complementarity of LIBS-Raman techniques for 
the identification of two different hydrates of calcium 
oxalate stones22. The main objective of the work 
presented here is to explore the potential of these 
techniques for the routine identification of different types 
of kidney stones having complex compositions. We have 
also demonstrated the bi-directional use of LIBS-Raman 
technique. In most cases, Raman is used for identifying 
the sample composition, whereas LIBS gives the major, 
minor, and trace elemental information. However, 
Raman scattering could not be detected from every 
sample due to the weak Raman cross section or the 
interference of fluorescence emission from the sample. 
In certain such cases, LIBS provided valuable 
information and helped to identify the stone composition. 
On the other hand, LIBS alone cannot be used to 
differentiate the hydrates of the minerals; whereas 
Raman can easily detect and differentiate the hydrates by 
looking at the vibrational spectra. This shows that the 
potential limitations of both spectroscopic techniques for 
the identification of complex samples can be tackled by 
the complementary nature of these two techniques. 

2.  Materials and Methods  

2.1 Sample  
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the fact that, when the concentration of an element in the 
stone is less (as the case of Mg in S7 in this particular 
study), it may not be detected by chemical methods, 
which are basically qualitative, color forming tests. 
However, LIBS technique is very sensitive to detect 
these elements even at trace levels. Compared to micro-
Raman measurements, chemical analysis gives average 
values of components present in the sample, and thus, in 
the case of mixed stones it failed to identify minor 
components. It’s a well-known fact that kidney stone 
samples are complex in nature with varying chemical 
composition from surface to core. Chemical analysis 
provides information about the whole sample whereas 
LIBS-Raman spectrum can give spatial information at 
micron levels. This could be one of the reasons for the 
contrary results obtained from these techniques for 
certain samples. Nevertheless, efforts are on to set-up a 
hybrid LIBS-Raman system and study the surface 
morphology, depth profile and subsequent chemical 
compositions of renal calculi.  
  
Table 2 Comparison of LIBS and Raman measurements with 
chemical analysis of kidney stones 

Sample  Raman LIBS Chemical 
analysis 

S1 COD Ca, Mn, 
Sr, Fe, 
Ti, Cu 

CO3
2-, NH3, 

oxalate, Ca, 

PO4
3-, Mg 

S2 COM+COD Ca, Na, 
K, Sr, 
Fe, Si, 
Cu, Mg, 
Ti, O 

CO3
2-, NH3, 

oxalate, Ca, 

PO4
3- ,Mg 

S3 No signal Ca, P, 
Sr, K, 
Ti, Cu, 
O 

Uric acid, 
oxalate, Ca, 
PO4

3-, Mg 

S4 Uric acid Ca Uric acid 

S5 Monosodium urate + 
COM 

Na, Ca, 
Fe, C, 
N, O 

Uric acid, 
oxalte, Ca, 
PO4

3-, Mg 

S6 Cystine No 
signal 

CO3
2-, Ca 

S7 COM + Calcium 
orthophosphate+Struvite 

Ca, P, 
Sr, Mn, 
Mg, C, 
N 

NH3, 
oxalate, Ca, 

PO4
3- 

4.  Conclusion 

 The complexities involved in performing precise 
chemical analysis of renal calculi make it one of the most 
challenging problems currently in the medical fraternity. 
This problem has considerable significance owing to the 
fact that treatment methodologies are often decided by 
the nature of the stones. In view of this, the 
complementarity nature of two spectroscopic techniques, 
LIBS and Raman has been effectively utilized for 
identifying and differentiating different types of kidney 
stones. The dual analytical capability provides 
comprehensive information of the complex samples and 
help to obviate the ambiguity. Most of these stones are 
identified using either Raman or LIBS by collecting its 
molecular finger prints as well as characteristic major, 
minor and trace elements present in the sample. Raman 
spectroscopy successfully classified different crystalline 
form of calcium oxalate, which was not possible with 
LIBS. The evidences of minor elements such as Fe and 
Cu diagnosed by LIBS are found to be the promoter for 
the formation of COD stones. Large amount of intense Sr 
lines in calcium stones is due to the replacement of Ca 
by Sr during the biomineralization.  
In short, advantages of LIBS-Raman over conventional 
chemical analysis for the successful classification of 
kidney stones have been demonstrated by a comparison 
of these three techniques. LIBS-Raman technique has 
demonstrated its capability to discriminate different 
hydrates and urate samples.  The technique is thus of  
great importance, from the bio-medical point of 
applications, because the complete elemental and 
molecular information can be very useful to understand 
the mechanism behind the initiation and formation of 
kidney stones thus providing means for  more effective 
preventive, curative and recurrence-elimination therapy.  

Supporting Information  

Procedure A:  
 
1. The calculus was pulverized in a test tube using 
a glass rod. Approximately 10-20 mg of this was 
transferred to another test tube. Always some crushed 
calculus was kept in reserve. Whenever the stones were 
small, immediately carried on with the procedure B. 

2. 10-20 mg of calculus was warmed in 1 ml of 0.1 
N NaOH at 60º C for 5 minutes, by with shaking the 
tube 2-3 times in between. The tube was centrifuged 
and the supernatant was decanted into another tube and 
reserved for the tests for uric acid, cysteine and 
ammonia. The specimen in the tube was washed with 1 
ml water and centrifuged again. The supernatant was 
discarded and the washing procedure was repeated once 
more and the residue was saved for further analysis. 
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