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Abstract

In feature selection problems, the aim is to select a subset of features to characterize an output of interest.
In characterizing an output, we may want to consider multiple objectives such as maximizing classification
performance, minimizing number of selected features or cost, etc. We develop a preference-based approach
for multiobjective feature selection problems. Finding all Pareto-optimal subsets may turn out to be a compu-
tationally demanding problem and we still would need to select a solution. Therefore, we develop interactive
evolutionary approaches that aim to converge to a subset that is highly preferred by the decision maker (DM).
We test our approaches on several instances simulating DM preferences by underlying preference functions
and demonstrate that they work well.

Keywords: feature selection; subset selection; interactive approach; evolutionary algorithm

1. Introduction

In classification problems, supervised learning algorithms, such as decision trees, support vector
machines (SVMs), neural networks, etc. are used to predict the class (or output variable) of an
instance by observing its feature (or input variables) values. Supervised learning algorithms train a
prediction model over a dataset, in which different feature and class values of some past observa-
tions are provided, by understanding the relationship between the features and classes. Hence, the
prediction model can be used to classify a new instance based on its features.

The classification performance of a learning algorithm depends on its ability to detect the rela-
tionship between input and output variables accurately. However, the presence of features that are
irrelevant to the class, or the redundancy within the features, may have a negative impact on the
classification performance of the learning algorithm (Kohavi and John, 1997). Yu and Liu (2004)
classify the features based on their relevance with respect to the output as strongly relevant, weakly
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relevant, and irrelevant. A feature is strongly relevant to class if its existence affects classification
performance independently from the other features used, weakly relevant if it affects the classifi-
cation performance depending on the other features used, and irrelevant if the feature does not
affect the classification performance at all. They argue that the optimal subset of features in terms
of classification performance includes all strongly relevant and weakly relevant and nonredundant
features. Selecting a subset that comprises strongly relevant, and weakly relevant and nonredundant
features to be used in the prediction model of the learning algorithm (or classifier), instead of using
them all, is called as feature selection problem.

Feature selection aims to improve the classification performance by eliminating irrelevant and
redundant features. The decrease in the number of features to be used in the prediction model is
also useful in terms of reducing storage requirements, improving the time efficiency, and simplifying
the prediction model itself (Guyon and Elisseeff, 2003). Therefore, feature selection methods are
used in many areas, such as handwritten digit recognition (Oliveria et al., 2003), medical diagnosis
(Chyzhyk et al., 2014), gene marker recognition (Banerjee et al., 2007), etc.

Even though reduction in the number of input variables seems to be a natural outcome of the
feature selection procedure that aims at maximizing the classification performance, it is possible to
consider minimizing the cardinality of subset as another objective. That is, one may be willing to
reduce the number of variables beyond the number of variables in the subset that gives the best
classification performance to enjoy the benefits of reducing cardinality. In that case, the problem is
converted into a multiobjective problem. Depending on the scope of the problem, other objectives
can also be defined. For example, in a medical diagnosis application, minimizing the screening costs
of medical tests that provide feature values or minimizing the health-related risks involved in those
tests for the patient could be set as objectives.

The algorithms developed for solving feature selection problem can be investigated in two dimen-
sions. First, since it is not straightforward to measure the impact of using a feature on classification
performance, different strategies have been developed for subset selection; which are filter and
wrapper approaches (Kohavi and John, 1997). Second, since the number of possible subsets grows
exponentially with the number of available features, the feature selection problem is combinatorial
in nature. Therefore, many optimization techniques are used to solve the feature selection problem,
such as sequential backward selection, branch-and-bound, best-first search, and genetic algorithms
(Kohavi and John, 1997).

In the literature, feature selection problem is usually treated as a biobjective problem in which
the objectives are maximizing the classification performance and minimizing the cardinality of the
subset. Most of the studies aim to find all nondominated solutions for these two objectives, which
refers to finding the subset with best classification performance for each cardinality level. However,
in the presence of more objectives, enumeration of all nondominated solutions is not practical and
useful because of the combinatorial nature of the problem. Instead of finding all nondominated
solutions, concentrating on solutions that are of more interest to the decision maker (DM) of the
problem is more practical. Therefore, in this study, interactive evolutionary algorithms are developed
for multiobjective feature selection problems that aim to converge the most preferred solution by
guiding the search toward the regions that consists of appealing solutions for the DM.

Measuring the classification performance is an important part of feature selection problems,
and a number of supervised learning algorithms have been developed in the literature. We use an
existing supervised learning algorithm for this purpose. Our contribution is rather in developing
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a multiobjective optimization approach that is compatible with the characteristics of the feature
selection problem.

The remainder of the paper is organized as follows. In Section 2, main concepts and definitions
regarding the feature selection problem are provided and a literature review of related studies is
given. In Section 3, interactive algorithms to find a preferred solution of the DM are developed. In
Section 4, the algorithms are tested computationally on several datasets. Concluding remarks and
future research directions are presented Section 5.

2. Main concept and definitions

In this section, first basic concepts and definitions regarding the feature selection problem and
multi-objective optimization are provided. Then the relevant literature is discussed and the problem
formulation is presented.

2.1. Feature selection problem

In this study, the classification problems in which each instance is classified in only one of the
nonoverlapping classes are addressed. The classification problems with two and multiple nonover-
lapping classes are called as binary class and multiclass classification problems, respectively (Sokolova
and Lapalme, 2009).

Let the dataset consist of N instances. Assuming there exist M available features defined as a
vector X = {x1, . . . , xM} and a class variable y, the dataset consists of the value of y and the
corresponding X vector for each of the N instances. Let S be a subset of X and f (S) denote the
classification performance of using the features in S.

The feature selection problem with a single objective of maximizing the classification performance
can be formulated as follows:

max f (S)

s.t.

S ∈ X .

That is, we try to select the subset of features that maximizes the classification performance.
Although classification performance cannot be measured exactly, it can be estimated. For estimation
purposes, the dataset is divided into training and testing sets. Once the learning algorithm is trained
on the training set, it is used to determine the classes of instances in the testing set. In this paper, we
use the k-fold cross-validation procedure of Kohavi and John (1997) in order to reduce the effect of
the specific training and testing sets chosen.

The classification performance of a subset of features, namely f (S), can be measured in terms of
different indicators comparing the predicted and actual classes of the instances in the testing set.
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Several performance measures have been defined (see Sokolova and Lapalme, 2009). Of these, we
use the accuracy indicator:

Accuracy = tp + tn
tp + fp + tn + fn

,

where tp, tn, fp, and fn stand for true positive, true negative, false positive, and false negative,
respectively.

There are two main approaches developed for subset selection: wrapper and filter approaches. In
the search phase of a subset selection algorithm, the learning algorithm itself can be directly used
to evaluate a subset S and estimate f (S). This approach is called the wrapper approach (Kohavi and
John, 1997).

Using the wrapper approach can be computationally time-consuming since it employs the learn-
ing algorithm to evaluate each subset found during search. Using statistical measures (such as
correlation and information theoretic measures) instead of a learning algorithm to estimate the
classification performance during the search phase is called the filter approach (Kohavi and John,
1997). Although the filter approach is computationally more efficient, the wrapper approach pro-
vides more reliable estimation of classification performance.

2.2. Multiobjective optimization

In multiobjective optimization problems there are two or more, generally conflicting, objectives
to be optimized. Let x and X represent the decision variable vector and feasible decision space,
respectively. Let there be p objectives z1(x), . . . , zp(x) to be minimized and Z be the objective space
defined by the feasible decision vectors. The general multiobjective optimization problem can be
formulated as follows:

min
{
z1 (x) , . . . , zp (x)

}
s.t.

x ∈ X .

The quotation marks are used to emphasize that the minimization of a vector is not a well-defined
mathematical operation.

Definition 2.2.1. An objective vector z (x′) = (z1(x
′), . . . , zp(x

′)) is said to dominate z (x) =
(z1(x), . . . , zp(x)), if and only if z j(x

′) ≤ z j(x) for all j = 1, . . . , p and z j(x
′) < z j(x) for at

least one.

Definition 2.2.2. z(x) is nondominated, if and only if no z(x′) dominates it.

Definition 2.2.3. An objective vector z∗ = (z∗
1, . . . , z∗

p) forms the ideal point in Z, if and only if
z∗

j = min
x∈X

{z j(x)} for all j = 1, . . . , p.

Definition 2.2.4. An objective vector znad = (znad
1 , . . . , znad

p ) forms the nadir point in Z, if and only if
znad

j = max
x∈X

{z j(x)}, where z(x) is nondominated.
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In this study, interactive evolutionary algorithms that aim to converge the DM’s preferred so-
lutions are developed for multiobjective feature selection problems. The DM of the problem is
assumed to have an underlying monotone preference function, UDM(z), to be minimized. When the
DM is presented with two solutions z(x) and z(x′), he/she prefers z(x) if UDM(z(x)) < UDM(z(x′)).

In the feature selection problem, the number of possible subsets of features grows exponentially
with the number of available features; for M features there are 2M possible subsets. Therefore,
different searching algorithms can be used to explore the solution space, such as sequential backward
selection, branch-and-bound, best-first search, and evolutionary algorithms (Kohavi and John,
1997). For a survey of evolutionary algorithms for feature selection problem, see Xue et al. (2016). We
next discuss the literature that aims to find Pareto-optimal solutions utilizing different evolutionary
algorithms in the context of feature selection problems.

Oliveira et al. (2002) use nondominated sorting genetic algorithm (NSGA) developed by Srinivas
and Deb (1995), for feature selection in handwritten digit recognition. They approximate the non-
dominated solutions minimizing cardinality and maximizing accuracy. Among the solutions that
satisfy a minimum acceptable accuracy level, they choose the solution having minimum cardinal-
ity. Hamdani et al. (2007) also use the same two objectives and employ NSGA II, developed by
Deb et al. (2002), as the search engine. Xue et al. (2013) employ particle swarm optimization for
minimizing cardinality and maximizing accuracy and show that it works well.

Huang et al. (2010) develop a modified version of NSGA II to feature selection for customer churn
prediction, where the customers are classified as churn or nonchurn. They evaluate the classification
performance maximizing overall accuracy, sensitivity, specificity, and minimizing cardinality. Many
researchers try to approximate the Pareto-optimal set minimizing cardinality and maximizing classi-
fication performance in addressing the feature selection problem. Karakaya et al. (2016a) introduce
the term “quasi equally informative subsets” into this problem to find alternative subsets that have
similar classification performances for each cardinality level.

In recent years, cost-based feature selection methods have been developed, in which the subsets
are evaluated in terms of costs associated with the features in the subset in addition to classification
performance (see, e.g., Bolón-Canedo et al., 2014; Zhang et al., 2015).

2.3. Problem formulation

Let the DM have p objectives to be minimized in the feature selection problem. Then the general
problem can be formulated as

min
{
z1 (x) , . . . , zp (x)

}
s.t.

M∑
i=1

xi ≥ 1 (1)

xi ∈ {0, 1} ∀ i = 1, . . . , M,
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where xi represents whether feature i is selected or not, M is the number of available features,
z j(x) represents the value of the jth objective corresponding to solution x = (x1, . . . , xM ). Con-
straint (1) ensures the selected subset will include at least one feature.

2.4. Objective functions

Many studies in feature selection either consider a single objective (maximizing classification per-
formance) or two objectives (maximizing classification performance and minimizing cardinality).
There could be other relevant objectives such as minimizing cost and risk. In the remainder of this
paper, we address these four objectives. The methodology, however, is applicable to any number of
objectives. We linearly scale all four objectives between 0 and 1 in order to avoid problems that may
arise from different scales.

Accuracy
Classification performance is an important objective in the feature selection problem and a com-
monly used measure is accuracy. A common way of estimating accuracy is employing a learning
algorithm. Since we treat all objectives as minimization type, we transform accuracy by

z1 (x) = 1 − f (x) , (2)

where f (x) is the accuracy achieved for the selected features in solution x and z1(x) is an accuracy
measure to be minimized.

Cardinality
As mentioned before, decreasing the cardinality of the subset used in the prediction model is
desirable in terms of reducing storage requirements and improving the time efficiency. We assume
that at least one feature is used in a solution (see Equation (1)) in order to have a meaningful
problem.

Cost
In some classification problems, the features may be grouped such that each group has a fixed
investment cost and each feature has an additional measuring/monitoring cost. For example, it is
possible to perform a blood test (comprising a group of features) and an MRI scan (comprising
another group of features) on a patient. Both tests have fixed costs and each additional feature
measured from each test produces an additional variable cost. The total screening cost of a subset
is incurred based on the specific tests that are performed (fixed costs) and the specific features that
are measured (variable costs).

Risk
In this study, we consider risk as a feature-based attribute. While each feature equally affects
cardinality, their effects on risk could vary. For example, in a medical diagnosis problem, features
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(such as different medical tests) may have associated health-related risks for the patient. Minimizing
the risks the patient is exposed to is a relevant concern. We measure risk by summing the risk values
of the features in the selected subset. Alternatively, in a different context, each combination of the
features may provide a different level of uncertainty and a measure of risk may be defined to account
for this uncertainty.

3. Algorithms

In this section, we develop two algorithms: iTDEA-fs (interactive territory defining evolutionary
algorithm for feature selection problem) and iWREA-fs (interactive weight-reducing evolutionary
algorithm for feature selection).

3.1. Overview

Our algorithms are built upon the idea of iTDEA developed by Köksalan and Karahan (2010).
The algorithm obtains preference information and converges toward preferred regions of the DM
progressively.

In iTDEA, territories are used to direct the search toward the most preferred region. A territory is
defined for each solution within which no other solution is allowed. As such, the territories prevent
congestion and in turn facilitate diversity. Defining smaller territories in preferred regions, it is
possible to increase the relative density of solutions in those regions.

In iTDEA, two populations are maintained throughout the iterations; the regular population and
the archive. Initially, a regular population of N random solutions are generated. The nondominated
members of that population form the initial archive. Both archive and regular population are
updated throughout the algorithm. The size of the regular population, N, is kept constant, whereas
the archive size is flexible.

The number of iterations, T , and the number of interaction stages, H , are set at the beginning. The
interaction stages h = 1, . . . , H are scheduled at iterations G1, . . . , GH . At each regular iteration,
one offspring is generated from two parents. Then, the offspring may be accepted to the regular
population and/or to the archive and the corresponding sets are updated accordingly. At each
interaction stage, the DM is presented a set of solutions and is asked to select the best among
them. The preference information is updated accordingly. The algorithm stops when the maximum
number of iterations, T , is reached. In order to select a specific solution, there is a need to make a
final search within the archive.

The general framework of iTDEA is as follows.

1. Set iteration counter t = 0 and interaction counter h = 0. Schedule interaction stages at iterations G1, . . . , GH .
2. Generate the initial regular population P(0) of size N, and find the nondominated solutions in the population to

form the initial archive A(0).
3. Set t ← t + 1, h ← h + 1, P (t) = P(t − 1), and A(t) = A(t − 1).
4. Offspring generation: Select two parents, one from regular population and the other from archive; apply crossover

and mutation to create offspring.

C© 2017 The Authors.
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5. Population update: If the offspring satisfies the acceptance conditions to the regular population insert it into P(t).
Otherwise, go to step 7.

6. Archive update: If the offspring satisfies the acceptance conditions to the archive, insert it into A(t).
7. If t < Gh, go to step 3.
8. Interaction stage: Interact with the DM and update offspring acceptance conditions according to the updated

preference information.
9. If t = T , perform the final interaction and stop. Otherwise, go to step 3.

iTDEA-fs and iWREA-fs use the above framework and the offspring generation procedure of
iTDEA. In both evolutionary algorithms, the chromosome representation is constructed such that
each gene represents whether or not the corresponding feature is selected. After the two parents are
selected, offspring is generated using uniform crossover with a crossover probability of pc = 0.5,
and binary mutation on each gene with a mutation probability of pm = 1/M, where M is the
total number of features. iTDEA-fs and iWREA-fs differ in the population update, archive update,
and interaction stages. We discuss these in Sections 3.2 and 3.4 for iTDEA-fs and iWREA-fs,
respectively.

3.2. Interactive territory defining evolutionary algorithm for the feature selection problem (iTDEA-fs)

We first provide relevant definitions in iTDEA and then discuss the details of iTDEA-fs.

Some definitions of iTDEA
In the archive update and interaction stage of iTDEA-fs, additional operations are required to
calculate the objective weights that minimize the Chebychev distance of a solution from the ideal
point, that is, for calculating favorable weights. Favorable weight vector ŵi = (ŵi1, . . . , ŵip) of a
solution zi, is calculated as follows:

ŵi j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
zi j − z∗

j

( p∑
k=1

1
zik − z∗

k

)−1

if zik 	= z∗
k for all k = 1, . . . , p

1 if zi j = z∗
j

0 if zi j 	= z∗
j but ∃k

such that all zik = z∗
k

where z∗ is the ideal point and p is the number of objectives (see Steuer, 1986, p. 425). Since all
objectives are scaled between 0 and 1, the ideal point can be defined as z∗ = 0, that is, z∗

j = 0,
j = 1, . . . , p.

At each interaction stage h, the preference information obtained from the DM is used to estimate
the preferred weight region, Rh. A preferred weight region is defined by a set of Chebychev weight
ranges [l h, uh] = {[lh

1 , uh
1], . . . , [lh

p, uh
p]} , where lh

j and uh
j refer to the lower and upper bounds, respec-

tively, defined for the preference function weight of objective j (for the calculation of the bounds,
see Köksalan and Karahan, 2010). Since there is no information regarding the DM’s preferences
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until the first interaction stage, the initial preferred weight region R0 includes all feasible weight
ranges, [l0

j , u0
j ] = [0, 1] , j = 1, . . . , p.

iTDEA-fs interaction stages
At each interaction stage, h, of iTDEA-fs, P solutions are filtered from the current archive to present
to the DM, and he/she is asked to choose the most preferred, z f av, of them. The resulting preference
information is used to update the preferred weight region, Rh.

The preferred weight regions are used to direct the search by taking role in the archive update
rules. As the algorithm progresses and more preference information is gathered, it is expected to
converge to the preferred region. Therefore, the preferred weight region shrinks progressively with
the help of reduction factor r around the favorable weights of the selected solution, z f av in each
interaction stage.

Each preferred weight region Rh has a territory level τh. As h gets larger τh gets smaller, as the
algorithm is expected to converge to more preferred regions with every interaction stage. The smaller
τh is, the denser the solutions are in the corresponding regions.

The interaction stage of iTDEA-fs differs from that of iTDEA only in the filtering procedure.
iTDEA was originally implemented on problems with continuous objective space and the archive
size has been big enough to find P solutions whose favorable weights fall in the preferred weight
region. In our case, the objective space of the feature selection problem is discrete and P distinct
solutions having favorable weights in the preferred weight region may not be available. In such cases,
we keep selecting new solutions randomly among those in the archive that have not been presented
to the DM, until P solutions are obtained.

iTDEA-fs population update
Each time an offspring, zoff , is generated, it is checked for acceptance into the regular population.
The steps of the population update procedure at iteration t, are as follows:

1. If zoff ∈ P(t), do not accept it into population and go to step 4.
2. Compare zoff against each solution in the regular population, zi ∈ P(t). If zoff dominates any zi ∈ P(t), discard zi,

insert zoff into P(t) and go to step 4.
3. Replace a randomly selected solution zk ∈ P(t) with zoff .
4. Stop.

In iTDEA, an offspring that is dominated by any regular population member is not accepted into
the population. In the feature selection problem generating a nondominated solution is challenging.
Therefore, we include an offspring into the population even if it is dominated so long as it is distinct
from the population members, for the sake of diversity (see step 3 above).

iTDEA-fs archive update
iTDEA-fs slightly differs in archive update rules from iTDEA. The steps followed to decide whether
the offspring, zoff , will be accepted into the archive is given below.

C© 2017 The Authors.
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1. Compare zoff against each zi ∈ A(t). If zoff is dominated by any zi ∈ A(t), go to step 5.
2. If there exists any zi ∈ A(t) that is dominated by zoff , discard all such solutions from A(t), insert zoff into A(t), and

go to step 5.
3. Calculate the favorable weights of the zoff , ŵoff = (ŵ1, . . . , ŵp) .

i. Set q = h.
ii. If l q

j ≤ ŵ j ≤ uq
j where [l q

j , uq
j ] ∈ Rq, j = 1, . . . , p, assign the territory level τ = τq to the offspring and go to step

4. Otherwise, set q = q − 1 and repeat this step.

4. Calculate the Chebyschev distance of zi ∈ A(t) to zoff and denote it as di. Set d = min
{i:zi∈A(t)}

{di} . If d ≥ τ, insert zoff

into A(t).
5. Stop.

Unlike iTDEA, the offspring is accepted into the archive if it is nondominated and it dominates
at least one solution in the archive even if it falls into the territory of an existing solution.

A nondominated offspring that does not dominate any solution in the archive, on the other hand,
is accepted only if it does not violate the territories of existing solutions. By keeping the territory
levels in the estimated preferred regions small, the archive update procedure of this algorithm allows
increasing the chance of survival in the population for the nondominated solutions in those regions.

3.3. Improvement issues of iTDEA-fs

Feature selection problem has two characteristics originating from the nature of the problem that
requires special treatment: scaling and imbalanced solution space. In terms of scaling, it is important
that all objectives have approximately the same ranges. We achieve this by linearly transforming all
objectives such that they are scaled in the range [0,1].

In terms of the imbalance in the solution space, the feature selection problem poses difficulties
due to the discrete nature of the solution space. For a problem having 100 features, there are 100
distinct solutions with cardinality of one and a single solution with cardinality of 100. At the
cardinality value of 1, the accuracy can vary substantially depending on which single feature is
selected. Consequently, the favorable weights could be misleading for a solution having cardinality
of 1 and a poor accuracy level. On the other hand, there are solutions with the same cardinality
and better accuracy level (other objectives being the same) that would lead to different favorable
weights. Such a situation is demonstrated in the next example.

Example 1. Consider a 3-objective minimization problem in which the objectives are Z1, Z2, and so
on. Suppose that the archive is filtered during an interaction stage and the DM is presented as the five
solutions given in Table 1.

Assume that the DM has a preference function that minimizes the weighted Chebychev distance
of a solution from the ideal point with weights w1 = 0.1, w2 = 0.2, and w3 = 0.7. Assume, without
loss of generality, that the ideal point is 0 for each objective. That is, the DM minimizes

max
{
0.1Z1, 0.2Z2, 0.7Z3

}
.

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies
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Table 1
Filtered archive of Example 1

Objective value

Solution Z1 Z2 Z3 UDM

Y1 0.10 0.40 0.40 0.280
Y2 0.10 0.30 0.50 0.350
Y3 0.20 0.30 0.45 0.315
Y4 0.20 0.20 0.70 0.490
Y5 0.30 0.10 0.70 0.490

Fig. 1. Favorable weights and actual weights in the example. [Colour figure can be viewed at wileyonlinelibrary.com]

For this filtered archive and preference function, the DM would select Y1 as the most preferred
solution. Using the favorable weight calculation method of iTDEA-fs, the DM’s objective weights
would be estimated as 0.66, 0.17, and 0.17, for w1, w2, and w3, respectively, which are far from the
actual weights as shown in Fig. 1. Once the favorable weights differ from the actual weights, the
algorithm reduces the weight space in the wrong region and it may not be possible to recover in
later stages.

To avoid a poor estimation of the weights, Karakaya et al. (2016b) developed a mixed integer
mathematical model, Model (Mid∞), to evaluate the DM’s preferences. We utilize this model (given
below) in iWREA-fs. The model aims to find a weight set that has a central location in the feasible
Chebychev weight region constructed using the past preferences of the DM.

C© 2017 The Authors.
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Assuming that the ideal point is 0 for each objective, let zi j be the jth objective
value of solution zi and L be the set of past pairwise comparisons of the DM, where
L = {(zm, zl ) : zm is preferred to zl}. Forming the sets I−

zm,zl
= {t : zmt < zlt } and I+

zm,zl
=

{s : zms > zls }, and assigning a large positive value to M, the weight estimation model can be
constructed as follows:

Model (Mid∞)

max ε

s.t.

ŵtzlt ≥ ŵszms + ε − M
(
1 − yt

(
zm, zl

))
,

∀t ∈ I−
zm,zl

, ∀s ∈ I+
zm,zl

, ∀ (
zm, zl

) ∈ L, (3)

∑
t ∈I−

zm,zl

yt

(
zm, zl

) ≥ 1, ∀ (
zm, zl

) ∈ L, (4)

p∑
j=1

ŵ j = 1, (5)

ŵ j ≥ ε, ∀ j, (6)

yt

(
zm, zl

) ∈ {0, 1} , ∀t ∈ I−
zm,zl

, ∀ (
zm, zl

) ∈ L,

where ŵ j represents the estimated weight of the jth objective and yt(zm, zl ) is a binary decision vari-
able (for a detailed explanation of the model, see Karakaya et al., 2016b). It is important to note that
the constraint set of Model (Mid∞) guarantees to contain the actual weights of the DM, in contrast
with the reduced weight region obtained from the favorable weights of iTDEA-fs. Corresponding
to each new preference information obtained from the DM, a new constraint set (3) is enforced,
which restrict the feasible weight space further. As the amount of preference information increases,
the weight space reduces and the optimal solution of the model ŵ = {ŵ1, . . . , ŵp} converges toward
the actual weights of the DM.

Recall that the DM selects Y1 over Y2, Y3, Y4 , and Y5 in Example 1. Using this preference list,
Model (Mid∞) estimates the DM’s objective weights as ŵ1 = 0.19, ŵ2 = 0.19, and ŵ3 = 0.62. With
the same information, Model (Mid∞) is able to estimate the actual weights of the DM much better
than the favorable weights, as demonstrated in Fig. 2.

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies
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Fig. 2. Model (Mid∞) weights, favorable weights, and actual weights of Example 1. [Colour figure can be viewed at
wileyonlinelibrary.com]

3.4. Interactive weight-reducing evolutionary algorithm for feature selection (iWREA-fs)

In this section, we develop a new interactive evolutionary algorithm, iWREA-fs, which improves
iTDEA-fs in several aspects.

iWREA-fs interaction stages
In iWREA-fs, at each interaction stage, the DM is asked to compare the best-known solution so far
(the incumbent solution), zinc, and a selected solution, zs. Q constraints are constructed based on the
preferences of the DM to further restrict the weight space in Model (Mid∞). In the first interaction
stage, h = 1, the preference list is initialized to L = ∅. L is updated with new preference pairs
throughout the interaction stages. The estimated weights are updated with every new preference
information and are carried between interaction stages. The steps of an interaction stage, h, are as
follows:

1. Set the question counter q = 0.
2. If L = ∅, select two distinct random solutions, zi, zk ∈ A(t). Ask the DM to compare zi with zk, and set

q ← q + 1. Assume zi is preferred to zk. Let L = {(zi, zk)} and zinc = zi. If L 	= ∅, go to step 4.
3. Estimate the DM’s preference function weights, ŵDM = (ŵ1, . . . , ŵp), solving Model(Mid∞) with the current

preference list, L.
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4. Calculate the Chebychev distances of the solutions in A(t) to the ideal point, as follows:

û
(
zi

) = max
j

{
ŵ jzi j

}
where zi j represents the jth objective value of solution zi ∈ A(t) and ŵ j represents the estimated weight of the jth
objective. Rank the solutions in increasing order of û(zi), {z

(1)
, . . . , z

(|A(t)|)}, where |A(t)| represents the number of
solutions in the current archive. Initialize rank counter r = 1.

5. If (zinc, z
(r)) � L and zinc 	= z

(r), set zs = z
(r) and go to step 8. Otherwise, set r ← r + 1. If r ≤ |A(t)| repeat step 5. If

r > |A(t)| go to step 6.
6. Calculate the Chebychev distances of the solutions in P(t) to the ideal point, as follows:

û
(
zi

) = max
j

{
ŵ jzi j

}
Rank the solutions in increasing order of û(zi), {z

(1)
, . . . , z

(|P(t)|)}, where |P(t)| represents the number of solutions in
the regular population. Initialize rank counter r = 1.

7. If (zinc, z
(r)) � L and zinc 	= z

(r), set zs = z
(r) and go to step 8. Otherwise, set r ← r + 1 and repeat step 7.

8. Ask the DM to make a pairwise comparison between zinc and zS. Let zm denote the preferred solution and zl the
inferior solution of the pair. Set zinc = zm, update L = L ∪ {(zm, zl )}. Set q ← q + 1. If q = Q estimate the DM’s
preference function weights ŵDM solving Model (Mid∞) with the current preference list, L, and stop. Otherwise, go
to step 3.

In the interaction stages of iWREA-fs, we try to reduce the weight space substantially by com-
paring solutions that have close estimated preference values as measured by the estimated weighted
Chebychev function. In iTDEA-fs, in each interaction stage, the DM is required to choose the best
of P solutions and this corresponds to making P − 1 pairwise comparisons among them. In our
approach, we also require P − 1 pairwise comparisons in each interaction stage. However, we decide
on the pairs to be compared sequentially, utilizing the recent preference information.

iWREA-fs population update
iWREA-fs uses regular population updating rules to direct the search toward appealing regions
of the solution space. When an offspring zoff is generated at iteration t, the regular population is
updated using the following procedure:

1. Calculate the Chebychev distance of the offspring to the ideal point:
û(zoff ) = max

j
{ŵ jz j} where z j represents the jth objective value of zoff .

2. Calculate the Chebychev distances of the solutions in P(t) to the ideal point:
û(zi) = max

j
{ŵ jzi j} where zi j represents the jth objective value of solution zi ∈ P(t).

3. Rank the solutions in increasing order of û(zi) as {z
(1)

, . . . , z
(|P(t)|)}, where |P(t)| represents the number of solutions

in the current regular population.
4. If û(zoff ) > û(z

(|P(t)|) ) do not accept the offspring into P(t). Otherwise, discard z
(|P(t)|) and accept the offspring into

P(t).

As in iTDEA, iWREA-fs may keep dominated solutions in P(t). However, while in iTDEA the
search is directed by A(t) with the acceptance rules, in iWREA-fs the search is directed by P(t).
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Table 2
Datasets used in experiments

Dataset Number of features Number of classes Number of observations

Heart Disease 13 2 270
Vehicle 18 4 846
German 24 2 1000
Breast Cancer 32 2 569

The generated offspring replaces the worst solution in P(t) (in terms of the estimated preference
function values) if its estimated preference function value is better.

iWREA-fs archive update
After an offspring, zoff , is accepted into P(t), it is tested against each zi ∈ A(t) in order to decide
whether it will be accepted into A(t). If zoff is dominated by at least one zi ∈ A(t), it does not enter
A(t). If zoff is not dominated by any zi ∈ A(t), zoff is placed into A(t) and all solutions dominated
by zoff , if any, are eliminated from A(t).

Different from iTDEA-fs, in iWREA-fs we keep all nondominated solutions in the archive,
regardless of their proximity to existing solutions, in order to favor all nondominated solutions.

4. Computational experiments

In this section, first, the datasets used to test the performances of the algorithms are introduced.
Then, the parameter setting in the experiments is explained and lastly, computational results and
their analysis are provided.

4.1. Datasets

The algorithms are implemented on four datasets from University of California (UCI) machine
learning repository (http://archive.ics.uci.edu/ml/). The number of features, number of classes,
and the number of observations of each dataset are given in Table 2.

Heart Disease and Breast Cancer datasets are examples of classification problems in the medical
diagnosis area whose purposes are to diagnose the diseases of patients. In the Vehicle dataset, the
features extracted by processing a vehicle’s image are used to categorize the vehicle. German dataset
aims to classify the customers of a bank using past data about customers.

In addition to the available objectives of the datasets, we use two additional objectives: cost and
risk. We need to generate the values of these objectives for each data entry. It is natural to have cost
and risk objectives to be in conflict with the accuracy objective. We generate the values of cost and
risk in relation with the accuracy of a given feature. That is, when a feature has a positive impact on
the accuracy, then we generate its cost and risk values to make sure that they are on the high side.
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To demonstrate the generation of cost and risk values, we use an example dataset with five
features. The DM aims to maximize accuracy and minimize the risk and the cost of the selected
subset. Suppose that features 1 and 2 perform well, feature 3 performs moderately, and features 4
and 5 perform poorly in terms of accuracy. The features that have close performances in accuracy
are grouped together and fixed costs of the groups are generated in proportion to their accuracy
levels. That is, fixed costs of the groups comprising features 1 and 2, feature 3, and features 4 and
5 are high, moderate, and low, respectively. The variable cost of a feature in a group is generated
randomly within an interval defined by the accuracy level of the feature. We generate the individual
risk levels uniformly from in an interval that is defined by the variable costs of the features. Heart
Disease dataset in the UCI repository includes the fixed and variable cost information of the features
and these original values are used as cost parameters in our experiments.

4.2. Implementation

There are many techniques used in supervised learning algorithms such as extreme learning machines
(ELMs), decision trees, k-nearest neighbor, SVMs, and artificial neural networks (for a review of
supervised learning algorithms, see Kotsiantis, 2007). ELMs estimate the accuracy level of a subset
of features using a single hidden layer feedforward neural network (see Huang et al., 2006). We use
ELMs as the learning algorithm in our study as they have been argued to work well in the literature
(Huang et al., 2012). We use 10-fold cross-validation to determine the training and test sets, and
repeat this procedure five times in order to reduce variation in accuracy level estimation caused by
the random nature of ELMs.

To be able to observe the effect of employing the DM’s preferences, a version, No Interaction,
in which the number of interaction stages is set to 0, is also tested on each dataset in addition to
iTDEA-fs and iWREA-fs.

Recall that the DM’s preferences are assumed to be consistent with a monotone preference
function denoted as UDM(z). Specifically, in the feature selection problem addressed, we consider a
DM who would like to minimize weighted distance of a point from the ideal point in the objective
space (where the function is unknown to us). Since all objectives are scaled between 0 and 1, the ideal
point can be defined as 0 for each objective. In our experiments, we use two different underlying
preference functions: Chebychev (Equation (7)) and quadratic (Equation (8)):

UDM (z) = max
{
w1z1, w2z2, w3z3, w4z4

}
(7)

UDM (z) = (
w1z1

)2 + (
w2z2

)2 + (
w3z3

)2 + (
w4z4

)2
, (8)

where z1, z2, z3, and z4 refer to modified accuracy, cardinality, cost, and risk objectives of solution
z, respectively, and w = (w1, w2, w3, w4) represents the objective weight vector of the DM.

We use different weight vectors to simulate the preferences of the DM so that different sets of
solutions are favored by the DM for different weight sets. We refer to these weights sets as Accuracy
Favored (AF), Accuracy and Cost Tradeoff (ACT), Equal Weights (EW). In Table 3, the objective
weights in UDM(z) for each underlying preference function are given as w = (w1, w2, w3, w4),
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Table 3
Types of DM’s preference function weights tested

Test name Weight set

Accuracy Favored (AF) (0.97, 0.01, 0.01, 0.01)
Accuracy and Cost Tradeoff (ACT) (0.40, 0.10, 0.40, 0.10)
Equal Weights (EW) (0.25, 0.25, 0.25, 0.25)

Table 4
Evolutionary algorithms’ parameter settings

Heart Disease (13) Vehicle (18) German (24) Breast Cancer (32)

Parameter AF ACT EW AF ACT EW AF ACT EW AF ACT EW

Population size, N 50 50 50 200 200 200 500 500 500 1K 1K 1K
Iterations, T 600 200 200 10K 10K 10K 20K 6K 6K 20K 10K 10K
Interactions, H 6 4 4 10 10 10 10 3 3 20 10 10
Comparisons, Q 3 3 3 3 3 3 5 5 5 5 5 5

where w1, w2, w3, and w4 refer to the weights of accuracy, cardinality, cost, and risk objectives,
respectively.

4.3. Experimental setting

The algorithms are tested on each dataset for Chebychev and quadratic preference functions of the
DM. In Table 4, the evolutionary algorithms’ parameter settings are given for each experiment.

Within an experimental setting, iTDEA-fs, iWREA-fs, and No Interaction share the same pa-
rameter setting for the population size, N, and number of iterations, T . A common number of
interaction stages, H , are used for iTDEA-fs and iWREA-fs. The interactions with the DM are
scheduled in equal intervals for iTDEA-fs and iWREA-fs in each experiment. That is, G(h) = ( T

H ) · h
for h = 1, . . . , H . It is also possible to set an adaptive scheduling procedure for interactions such
that the DM is consulted whenever new solutions that are estimated to be favorable for the DM are
obtained. We do not apply an adaptive scheduling procedure to be able to make a fair comparison
between the algorithms. The number of comparisons, Q, given in Table 4 refers to the number
of questions asked to the DM in iWREA-fs at each interaction stage. The number of solutions
presented to the DM in the interactions stages of iTDEA-fs, P, is set to P = Q + 1. This setting
guarantees iTDEA-fs and iWREA-fs to employ the same number of interactions in each experi-
ment. In the AF weight set experiments of Heart Disease dataset, for example, the DM is consulted
every 100 iterations. At each interaction stage, the DM is asked to make three pairwise comparisons
with both iTDEA-fs and iWREA-fs.

We set the same population size and the number of pairwise comparisons for each algorithm
for each dataset as shown in Table 4. We determine the number of iterations and the number
of interaction stages so that the algorithms enjoy the same experimental settings. The parameter
settings of different problems are tried to be chosen to account for the difficulties caused by the
sizes of the corresponding problems.
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In practice, the number of interactions made with the DM might be a concern and assuming the
DM would be available for excessive interactions could be unrealistic. Although what is excessive
could change from DM to DM, keeping the interactions below 20, for example, could be a good
rule of thumb. Many interactive multiple criteria decision-making methods have considered keeping
low the amount of preference information asked from DM. There may also be alternative ways of
when to conduct the interactions. For example, instead of fixing the interaction schedule at the
beginning, one may want to set rules based on the progress of the search process such as interacting
when solutions close in estimated utility value are found. One may wish to terminate when the
improvement of the algorithm becomes small for a number of consecutive iterations or when
a predefined interaction limit is reached, whichever comes first. Alternatively, one may terminate
when the DM is satisfied with a solution. Many of these procedures would depend on the complexity
of the problem as well as the availability of the DM.

In addition to those parameters, iTDEA-fs requires to set initial and final territory levels, τ0 and
τH , and reduction factor, r. Based on our preliminary experiments, we used τ0 = 0.1, τH = 0.0001,
and r = (1/p)H , where p is number of objectives in the experiments.

In general, as the solution space enlarges, that is, as the number of features increases, to converge
the most preferred solution of the DM the number of iterations, number of interactions, and the
number of questions asked to the DM are increased, as we did in our experimental settings.

4.4. Results and discussion

Three algorithms are tested on each experimental setting with 10 replications. The algorithms are
compared based on a performance indicator (defined in the next section) and their computational
efficiency.

Performance indicator
The performance of algorithms on finding an appealing solution for the DM in an experiment can
be evaluated based on the best solution in the final archive U ∗(T ) = min

zi∈A(T )
{UDM(zi)}. Although

during the search process, the underlying preference function of the DM is unknown to us, we use
this simulated underlying preference function to calculate the performance indicator. Let U r

iTDEA−fs,
U r

iWREA−fs, and U r
No Interaction represent U ∗(T ) values obtained in replication r of an experimental

setting by iTDEA-fs, iWREA-fs, and No Interaction, respectively.
In the feature selection problem, it is not possible to find the nadir and ideal points without

total enumeration of possible subsets. In order to define a normalized performance indicator, for
each experimental setting, the best (UMIN) and worst (UMAX ) performance values obtained by the
algorithms in 10 replications are recorded as shown in Equations (9) and (10).

UMAX = max
r=1,...,10

{
max

{
U r

iTDEA−fs,U r
iWREA−fs,U r

No Interaction

}}
(9)

UMIN = min
r=1,...,10

{
min

{
U r

iTDEA−fs,U r
iWREA−fs,U r

No Interaction

}}
. (10)
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Özmen et al. / Intl. Trans. in Op. Res. 0 (2017) 1–26 19

Table 5
Mean and standard deviation of the percentage deviations in Chebychev preference function experiments

iTDEA-fs iWREA-fs No Interaction

Weight set Mean SD Mean SD Mean SD

Heart Disease (13) AF 0.3887 1.2051 0.0402 0.3810 0.0919 0.4437
ACT 0.2086 1.0185 0.0000 0.0000 0.1756 1.1241
EW 0.1543 1.0279 0.0241 0.2289 0.1497 0.7951

Vehicle (18) AF 0.6670 1.0437 0.1523 0.7501 0.7522 1.0092
ACT 0.5263 1.2447 0.0000 0.0000 0.5861 0.8261
EW 0.8000 1.2649 0.4000 1.5492 0.8000 1.2649

German (24) AF 0.7166 0.6888 0.2811 0.7127 0.6716 0.9189
ACT 0.1176 0.9339 0.0117 0.0740 0.0176 0.0848
EW 0.2106 1.2521 0.0409 0.3263 0.2162 1.0046

Breast Cancer (32) AF 0.4436 0.9839 0.0449 0.4258 0.6640 0.9090
ACT 0.3688 1.2026 0.0000 0.0000 0.4233 1.0990
EW 0.1996 1.0356 0.0000 0.0000 0.0195 0.0942

Using UMAX and UMIN , the performance of algorithms in a replication is evaluated as percentage
deviations, which are defined in Equations (11)–(13).

�r
iTDEA−fs = U r

iTDEA−fs − UMIN

UMAX − UMIN
(11)

�r
iWREA−fs = U r

iWREA−fs − UMIN

UMAX − UMIN
(12)

�r
No Interaction = U r

No Interaction − UMIN

UMAX − UMIN
. (13)

Results for Chebychev preference functions
The mean and standard deviation of the percentage deviations of each algorithm from the best value
on each experimental setting are given in Table 5 for Chebychev preference function experiments.
The mean of percentage deviations is 0 in some experimental settings, which indicates that the
corresponding algorithm found the best solution of the three algorithms in 10 runs, UMIN , in all
replications. It is observed that in some experiments, iWREA-fs is able to converge the best solution
found in all the replications.

Ninety-five percent confidence intervals are constructed for the paired differences of percentage
deviations (�r

iWREA−fs − �r
iTDEA−fs), (�r

iWREA−fs − �r
No Interaction), and (�r

iTDEA−fs − �r
No Interaction)

in order to identify whether there exist statistically significant differences between means (see
Table 6). The results in which the algorithms are statistically significantly different are bold-faced.
The results indicate that iWREA-fs performs better than both iTDEA-fs and No Interaction in
many cases. Based on our preliminary experiments, it is known that Vehicle and Breast Cancer
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Table 6
Ninety-five percent confidence intervals on paired differences of percentage deviations in Chebychev preference function
experiments

Weight set
iWREA-fs vs.
iTDEA-fs

iWREA-fs vs.
No Interaction

iTDEA-fs vs.
No
Interaction

Heart Disease (13) AF (−0.61, −0.09) (−0.21, 0.10) (−0.04, 0.63)
ACT (−0.45, 0.03) (−0.44, 0.09) (−0.38, 0.45)
EW (−0.33, 0.07) (−0.29, 0.04) (−0.20, 0.21)

Vehicle (18) AF (−0.88, −0.15) (−0.84, −0.36) (−0.36, 0.19)
ACT (−0.82, −0.23) (−0.78, −0.39) (−0.33, 0.21)
EW (−0.90, 0.10) (−0.77, −0.03) (−0.34, 0.34)

German (24) AF (−0.62, −0.25) (−0.73, −0.05) (−0.24, 0.33)
ACT (−0.33, 0.12) (−0.02, 0.01) (−0.13, 0.33)
EW (−0.41, 0.07) (−0.38, 0.03) (−0.13, 0.12)

Breast Cancer (32) AF (−0.64, −0.15) (−0.92, −0.32) (−0.55, 0.11)
ACT (−0.66, −0.08) (−0.69, −0.16) (−0.36, 0.25)
EW (−0.45, 0.05) (−0.04, −0.01) (−0.07, 0.43)

datasets and AF weight set are relatively more challenging in terms of convergence than other
settings since the relevance and redundancy relations between the features are more complicated.
iWREA-fs’ superiority is more apparent in those cases. On the other hand, according to Table 6,
there is no statistical difference between iTDEA-fs and No Interaction in all experimental settings,
which will be discussed later in this section in detail.

In order to evaluate the convergence of algorithms to good solutions, we observe the progress
of the best solutions in the archives of the algorithms in each replication. The progress of the best
solution in the archive through iterations, U ∗(t) = min

zi∈A(t)
{UDM(zi)}, for 10 replications of Chebychev

preference function with ACT weight set experiments of Breast Cancer dataset are shown in Figs.
3–5 for iTDEA-fs, iWREA-fs, and No Interaction, respectively. As it can be seen from those figures,
iWREA-fs converges better and faster to the best solution found by the three algorithms in 10
replications.

Although it is expected that the information gathered from the DM will be useful to find appealing
solutions for the DM, an observation that can be inferred from the confidence intervals given in
Table 6 is that there is no statistical difference between the performances of iTDEA-fs and No
Interaction. In order to explain the reason, one of the replications in which iTDEA-fs does not
perform as well as No Interaction is investigated.

In Fig. 6, the progress of the best solution for the DM in the archive through iterations, U ∗(t), is
shown for the fifth replication of the Chebychev preference function with Accuracy–Cost Tradeoff
weight set experiments of the Breast Cancer dataset. Additionally, the preference function values of
the selected solutions of iTDEA-fs and the incumbent solutions of iWREA-fs at interaction stages
are shown in the same figure.

As it can be observed from Fig. 6, the selected solution is not the same with the best solution of
the archive after the fourth interaction stage of iTDEA-fs. This is only possible if the best solution
is not included in the set of solutions presented to the DM. Recall that the filtered set in iTDEA-fs
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Fig. 3. Archive progress of iTDEA-fs on Chebychev preference function with ACT weight set experiments of Breast
Cancer dataset. [Colour figure can be viewed at wileyonlinelibrary.com]

Fig. 4. Archive progress of iWREA-fs on Chebychev preference function with ACT weight set experiments of Breast
Cancer dataset. [Colour figure can be viewed at wileyonlinelibrary.com]

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies
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Fig. 5. Archive progress of No Interaction on Chebychev preference function with ACT weight set experiments of
Breast Cancer dataset. [Colour figure can be viewed at wileyonlinelibrary.com]

includes the solutions whose favorable weights fall into the most recently estimated preferred weight
region. Even though in the first three interaction stages the best solution in the archive is presented
to the DM, the preferred weight region is not shrunk on objective weights that represent the DM’s
preference function well. Hence, in the later interaction stages, the favorable weights of the best
solution in the archive do not belong to the estimated preferred weight region and the search is not
directed toward the appealing region of the solution space for the DM.

On the other hand, the incumbent solution in iWREA-fs is the same with the best solution in
the archive in most of the interaction stages, which indicates that the DM’s objective weights are
represented well with the estimated weights throughout the algorithm. In addition to its benefit in
directing the search accurately, this property of iWREA-fs enables to identify best solution found
without additional interactions.

Results for quadratic preference functions
In order to demonstrate the performance of the algorithms for a different form of DM’s underlying
preference function, we repeated the experiments for a quadratic preference function to be mini-
mized. We analyze this case with the same structure we analyzed the Chebychev preference function
case. Table 7 shows that iWREA-fs outperforms the other algorithms, finding the best solution
in all runs of many of the cases. Table 8 shows that the difference between iWREA-fs and other
algorithms is statistically significant in many cases.
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Fig. 6. Fifth replication of Chebychev preference function with ACT weight set experiments of Breast Cancer dataset.
[Colour figure can be viewed at wileyonlinelibrary.com]

Comparison of computational efforts
As mentioned before, ELM has randomness in its nature. Therefore, in order to compare the
algorithms in terms of convergence performance precisely, accuracy level of one feature subset
found in a replication is used in other replications without calling ELM again. As a result, it
would not be fair to compare the algorithms in terms of computational effort with the original
experiments.

In order to compare the computational efforts, accuracy objective is defined as a simple function
and experiments regarding AF weight set are conducted with that modification for 10 replica-
tions. The algorithms are coded on MATLAB R2014b, and implemented on a computer with
Intel(R)Core(TM)i7-4770S CPU @ 3.10 GHz, 16 GB RAM, and Windows 7. The average CPU
times for the implementation of algorithms on each dataset are given in Table 9.

In the interaction stages of iWREA-fs after each question asked to the DM, Model (Mid∞)

is solved, which is a mixed integer program, while the favorable weight calculation procedure in
iTDEA-fs is a simple algebraic function. However, at each iteration, in order to update the regular
population, the dominance relation between the offspring and population members is checked in
iTDEA-fs and No Interaction, while in iWREA-fs after the first interaction, estimated preference
function value of the offspring is compared to the maximum of the estimated preference function
values of population members only. In Heart Disease dataset experiments for which the interaction
stages are set more frequently, iWREA-fs requires higher computational effort. However, as the
frequency of interaction stages decreases, the efficiency of population update rules in iWREA-fs
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Table 7
Mean and standard deviation of the percentage deviations in quadratic preference function experiments

iTDEA-fs iWREA-fs No Interaction

Weight set Mean SD Mean SD Mean SD

Heart Disease (13) AF 0.7784 0.3944 0.1000 0.3000 0.8568 0.2980
ACT 0.2000 0.4000 0.2000 0.4000 0.4000 0.4899
EW 0.3000 0.4583 0.0000 0.0000 0.3000 0.4583

Vehicle (18) AF 0.6736 0.3420 0.2381 0.2446 0.6733 0.3919
ACT – – – – – –
EW 0.1000 0.3000 0.0000 0.0000 0.0000 0.0000

German (24) AF 0.5648 0.3936 0.1524 0.1425 0.4659 0.3963
ACT 0.2909 0.3677 0.0000 0.0000 0.0941 0.0655
EW 0.2320 0.2804 0.0000 0.0000 0.0890 0.0971

Breast Cancer (32) AF 0.4160 0.3242 0.0361 0.1083 0.4661 0.3804
ACT 0.3124 0.3994 0.0000 0.0000 0.0496 0.1487
EW – – – – – –

“–” indicates that the best solution has been found in all replications by all algorithms.

Table 8
Ninety-five percent confidence intervals on paired differences of percentage deviations in quadratic preference function
experiments

Weight set
iWREA-fs vs.
iTDEA-fs

iWREA-fs vs.
No Interaction

iTDEA-fs vs.
No
Interaction

Heart Disease (13) AF (−1.02, −0.34) (−1.20, −0.31) (−0.49, 0.33)
ACT (−0.34, 0.34) (−0.76, 0.36) (−0.65, 0.25)
EW (−0.65, 0.05) (−0.65, 0.05) (−0.48, 0.48)

Vehicle (18) AF (−0.72, −0.15) (−0.78, −0.10) (−0.39, 0.39)
ACT – – –
EW (−0.33, 0.13) (0.00, 0.00) (−0.13, 0.33)

German (24) AF (−0.69, −0.14) (−0.62, −0.01) (−0.30, 0.50)
ACT (−0.57, −0.01) (−0.14, −0.04) (−0.06, 0.45)
EW (−0.44, −0.02) (−0.16, −0.02) (−0.09, 0.38)

Breast Cancer (32) AF (−0.67, −0.09) (−0.69, −0.17) (−0.44, 0.34)
ACT (−0.61, −0.01) (−0.16, 0.06) (0.01, 0.52)
EW – – –

“–” indicates that the best solution has been found in all replications by all algorithms.

Table 9
CPU times of algorithms (in seconds)

Algorithm

Dataset iTDEA-fs iWREA-fs No Interaction

Heart Disease 0.38 1.55 0.38
Vehicle 16.57 7.40 16.52
German 71.83 18.06 72.65
Breast Cancer 144.30 33.97 146.90
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shows its effect. Therefore, the average CPU time of iWREA-fs is smaller than those of iTDEA-fs
and No Interaction for the experiments of Vehicle, German, and Breast Cancer datasets.

5. Conclusions

Feature selection is an important problem as its results have major impacts on the performance,
storage requirements, and computational efforts of learning algorithms. In this study, we have
implemented several variations of a preference-based evolutionary algorithm, iTDEA-fs, on the
feature selection problem. Noting the special characteristics of the problem, we developed a new
preference-based evolutionary algorithm, iWREA-fs. In addition to the traditional objectives de-
fined for the feature selection problem in the literature, we define additional objectives that can be
useful within different contexts of the problem.

Feature selection is used in many applications of classification problems. The DM of the problem
can be different agencies or customers depending on the scope of the application area. For example,
in health care, association of medical doctors, governmental agencies, or patients could be the DM
of the problem whose concerns are selecting a set of tests that provides accurate diagnosis while
being cost-efficient and/or while minimizing health-related risks involved in the tests. It may also
be possible to select several meaningful subsets and then involve the patient in the final decision of
which subset to use.

The results show that the interactions with the DM provide a higher convergence speed while
finding preferred solutions of the DM with iWREA-fs. To the best of our knowledge, this is the
first study that uses an interactive approach and considers additional objectives together with the
traditional ones for the feature selection problem.

There may be many different variations in the actual implementation of our approach, especially
in the interaction schedule and termination conditions. These may depend on both problem con-
text and DM. The objectives to be used are also highly context dependent. We intend to apply
our approach in different practical problems with real DMs and try different variations in these
applications as future research.
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Karakaya, G., Köksalan, M., Ahipaşaoğlu, S.D., 2016b. Interactive algorithms for a broad underlying family of preference
functions. Technical Report, Industrial Engineering Department, METU, Vol. 16.

Kohavi, R., John, G., 1997. Wrappers for feature subset selection. Artificial Intelligence 97, 1, 273–324.
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