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Abstract 

One of the important strategies for the treatment of cancer is gene therapy which has the 
potential to exclusively eradicate malignant cells, without any damage to the normal tissues. 
Gene-directed enzyme prodrug therapy (GDEPT) is a two-step gene therapy approach, where 
a suicide gene is directed to tumor cells. The gene encodes an enzyme that expressed 
intracellularly where it is able to convert a prodrug into cytotoxic metabolites. Various 
delivery systems have been developed to achieve the appropriate levels of tumor restricted 
expression of chemotherapeutic drugs. Nowadays, mesenchymal stem cells (MSCs) have 
been drawing great attention as cellular vehicles for gene delivery systems. Inherent 
characteristics of MSCs make them particularly attractive gene therapy tools in cell therapy. 
They have been used largely for their remarkable homing property towards tumor sites and 
availability from many different adult tissues and show anti-inflammatory actions in some 
cases. They do not stimulate proliferative responses of lymphocytes, suggests that MSCs 
have low immunogenicity and could avoid immune rejection. This review summarizes the 
current state of knowledge about genetically modified MSCs that enable to co-transduce a 
variety of therapeutic agents including suicide genes (i.e. cytosine deaminase, thymidine 
kinase) in order to exert potent anti-carcinogenesis against various tumors growth. Moreover, 
we highlighted the role of exosomes released from MSCs as new therapeutic platform for 
targeting various therapeutic agents. This article is protected by copyright. All rights reserved 
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Introduction 

Based on World Health Organization (WHO), Cancer is the second leading cause of death 

globally which was responsible for 8.8 million mortality in 2015. Nearly 1 in 6 deaths is due 

to cancer and the number of new cases is expected to rise by about 70% over the next 2 

decades worldwide (Siegel et al., 2015; Torre et al., 2015). There are many types of cancer 

treatment including surgery, chemotherapy and radiotherapy (Amer, 2014). Cancerous 

patients had no survival benefits from current insufficient treatments and in most cases 

relapse and metastasis occurred (Nowakowski et al., 2016; Zhang et al., 2014). Such poor 

prognosis seems to be linked to: detrimental effects on vital noncancerous bodily tissues, 

deficient drug concentrations in tumors also problems of accessing tumor sites principally in 

metastatic cancers and  systemic toxicity  demonstrates the urgency to explore more effective 

anti-tumor therapy (Kim and Tannock, 2005; Liu et al., 2015; Pessino and Sobrero, 2006). 

Targeted therapy is emerging as a supplement or alternative to chemotherapy and/or radiation 

for various malignant diseases (Mirzaei et al., 2016c; Mirzaei et al., 2016g; Mirzaei et al., 

2016j). In the field of targeted therapy, gene therapy appears as a good substitute method for 

cancer treatment(Wu et al., 2006). There are different approaches for cancer gene therapy 

including immunotherapy, oncolytic viruses and gene transfer (Cross and Burmester, 2006; 

Lin and Nemunaitis, 2004; McCormick, 2001; Mirzaei et al., 2016c; Mirzaei et al., 2016h). 

Immunotherapy employ for immune system stimulation to destroy cancer cells (Blattman and 

Greenberg, 2004). Oncolytic viruses, that replicates within the cancer cell and cause cell 

destruction (Chiocca and Rabkin, 2014; Dwyer et al., 2010; Singh et al., 2012). Gene transfer 

serves as a new treatment approach that introduces foreign genes into cancerous cells to 

promote cell death or slow the progression of the cancer. Gene transfer represents the best 

way for cancer gene therapy. In this path, we could introduce multiple genes with completely 

different function to malignant cell such as pro-apoptotic genes, anti-angiogenesis genes and 
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suicide genes (Cao et al., 1998; Cross and Burmester, 2006; Persano et al., 2007). Failure to 

distinguish between normal and tumor cells will probably remain a limiting factor for 

chemotherapy drugs but Suicide genes form the basis of a strategy for making cancer cells 

more vulnerable and susceptible to chemotherapy (Karjoo et al., 2016b). Suicide gene 

therapy system is based on gene transfer into tumor cells, which leads to the exclusive 

expression of an enzyme able to convert a non-toxic prodrug into a lethal drug (Freeman, 

2002; Izmirli et al., 2016; Touati et al., 2014). Achieving the specified purpose requires 

vehicles that encapsulate the gene and deliver it particularly to cancer cell and cancer local 

environment of the tumor. In gene therapy and especially cancer gene therapy at first we need 

to utilize vehicle so called vector that includes a set of criteria; having tumor tropism 

(specificity for tumor microenvironments), don’t able to elicit an immune response and safety 

(Hacein-Bey-Abina et al., 2002; Rajab et al., 2013). From the first reports of gene therapy in 

1960 -1970 to present, there are three types of gene delivery systems into the target cell 

(Collins and Thrasher, 2015).  Through to their high transduction efficiency, viral vectors are 

the most frequently used gene delivery strategies. Retrovirus, lentivirus and adenovirus are 

common viral vectors. In the field of gene therapy with viral vectors there are two major 

obstacles in terms of the safety and toxicity of these vectors that limit the clinical potential of 

this approach ( i.e. insertional mutagenesis of retroviral vectors and intensive immune 

reaction of adenoviral vectors)  (Collins et al., 2008; Nayerossadat et al., 2012; Rajab et al., 

2013; Waehler et al., 2007). Molecular vectors including, naked DNA and application of 

cationic polymers such as polyethylenimine or poly-L-lysine, cationic peptides, and cationic 

liposomes. The major drawbacks of this approach are non-specific uptake of the DNA by 

cancer cells and toxicity of some cationic polymers such as lipoplexes (Dani, 1999; Miller 

and Vile, 1995; Nayerossadat et al., 2012; Simões et al., 2005; Zhang et al., 2014). Cellular 

vectors are promising vehicles to deliver various anticancer agents, including small molecule 
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drugs, proteins, suicide genes, nanoparticles, and viruses. Cellular vectors have several 

advantages such as low immunogenicity, practically unlimited genetic material packaging 

capacity, simple and low-cost construction which makes them appropriate for large-scale 

production and most likely safe for clinical gene therapy (Link et al., 2000; Ohlfest et al., 

2005).  

Cell therapy is an effective therapeutic approach for treatment of various diseases such as 

cancer (Goradel et al., 2017; Mirzaei et al., 2016h). Among of various cells which could be 

used for cell therapy, MSC are known as powerful tools for treatment of various diseases 

such as cancer. MSC can be utilized for targeted-gene delivery (Goradel et al., 2017; Mirzaei 

et al., 2016e). MSCs have a low immunogenic potential besides the capacity to home and 

integrate in to the injured and inflamed sites. MSCs have indicated preferential tropism for 

tumor, so could transferred suicide genes and their products just in tumor local and reduce 

side effects about systemic toxicity and could achieve more efficient gene delivery to the 

target (Desmoulière, 2008; Nauta and Fibbe, 2007; Uchibori et al., 2014). The aim of the 

present review is to discuss about; 1; Suicide genes, known as good killers in cancer therapy 

2; Characteristics and application of MSCs in cancer therapy, 3; investigating previous 

research studies about MSCs in role of a vehicle for suicide genes.  

 

1. Suicide Genes as a Good Killer 

The term of gene directed enzyme prodrug therapy (GDEPT) is one of the promising 

alternatives to conventional chemotherapy because it minimizes the systemic toxicities of 

conventional chemotherapy drugs and refer to expression of a suicide gene in tumor cells for 

the in situ conversion of a pro-drug into cytotoxic metabolites (Greco and Dachs, 2001; 

Springer and Niculescu-Duvaz, 2000). The first attempt to use of suicide genes against cancer 

was in 1986 by Moolten et al (Rajab et al., 2013). These points must consider in selection of 
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suicide genes; Intended gene must encodes an enzyme that didn’t exist in normal cells or 

there is no enzyme with similar function in cells; Minimal toxicity of prodrug before 

activation in body and maximum toxicity after converting to active drug in tumor location; 

high kinetic enzyme activity or high affinity to target prodrug and finally active drug must 

diffuse in whole tumor mass by Bystander effects (Both, 2009; Rajab et al., 2013; 

Zarogoulidis et al., 2013). This mentions to the demolition of tumor cells that are not directly 

expressing the suicide gene. In this effect, gap junctions play substantial role via local 

diffusion of the active drug. Previous studies revealed that this approach could abolish tumors 

even if 10% of tumor cells expressed suicide genes, this efficiency is about bystander effects 

(Freeman et al., 1993; Mesnil and Yamasaki, 2000). There are several mechanisms for 

Bystander affect; intercellular communication via gap junctions, diffuse through the cell 

membrane, endocytosis of apoptotic vesicles and stimulation of the immune system against 

tumor. The gap junctional intercellular communication (GJIC) capacity varied among cancer 

cell lines and was dependent on the connexin 43 (cx43) expressions (Duarte et al., 2012; 

Huber et al., 1994; Pierrefite-Carle et al., 1999). The overexpression of Cx43 in glioma cells 

leading to the increase in the number of gap junctions and enhanced the bystander effect of 

HSV-TK as a suicide gene, reverse situation is in esophageal cancer (Huang et al., 2010; 

Matono et al., 2003). So evaluation of degree of GJIC has predictive value for determination 

of response to suicide genes that dependent on GJIC such as HSV-TK. Also studies reported 

that radiation could induce bystander effect, so suicide cancer therapy juxtaposed with the 

irradiation could increase tumor eradiation (Azzam and Little, 2004). In the following, we 

discussed two most applicable suicide genes in cancer gene therapy. 
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1.1. Cytosine deaminase (CD) / 5-fluorocytosine (5-FC) 

Although 5-flourouracil (5-FU) has been widely used in the past decades for the treatment of 

multiple cancers especially colorectal and breast cancers, but this drug failed to treat 

efficiently due to some limits: insufficient delivery of drug to cancer mass and adverse effect 

on body. High systemic toxicity made it unpleasant choice for patients (Cheung et al., 2008; 

Longley et al., 2003). Serious side effects could be reduced by gene-directed enzyme prodrug 

therapy depending on the bacterial and/or yeast cytosine deaminase (CD) enzyme activity 

with no equivalent in mammalian cells. CD gene codes cytosine deaminase, an enzyme 

express in a variety of bacteria, fungi and yeast that convert nontoxic prodrug 5-FC to its 

toxic metabolite 5-fluorouracil (5-FU) (Kucerova et al., 2007; Kuriyama et al., 1999). 5-FU 

metabolites direct the formation of fraudulent 5FU-RNA and 5FU-DNA and inhibit RNA and 

DNA synthesis by thymidylate synthase blockage and finally apoptosis. Although there is no 

DNA synthesis in non-dividing cancer cells but high concentration of 5-FU could decrease 

mRNA level and subsequently protein starvation and cell death. 5-FU could exert toxic 

effects on neighboring cells through freely diffusion across the cellular membrane without 

GJIC mediation, owing to its small size and suitable charge (Gopinath and Ghosh, 2008; 

Karjoo et al., 2016a). 5-FC, but not 5-FU crosses the blood brain barrier (Karjoo et al., 2016a; 

Ostertag et al., 2012). This capability seems to be another advantage of this gene, since it 

makes 5-FC appropriate for treatment of tumors in brain with difficult accessibility. Several 

reports revealed that CD/5FU system accompanied with radiotherapy will be more effective 

in tumor suppression (Kaliberov and Buchsbaum, 2012). Comparative studies showed that 

yeast CD produces 15 fold higher amount of 5-FU than bacterial CD (Kievit et al., 2000). 

Also results demonstrated that bifunctional yeast fusion gene CD::UPRT (cytosine 

deaminase::uracil phosphoribosy ltransferase) could produce 100 - 10,000-higher amount of 

5-FU compared with CD enzyme alone, in vitro and in vivo (Kanai et al., 1998; Tiraby et al., 
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1998). The ABC transporters are trans-membrane proteins that can facilitate the export of 

substrates through cellular membranes. ABC transporters participate in chemo-resistance of 

cultured cells. Actually multidrug resistance protein 5 (MRP5) and MRP8 confer resistance 

to 5-FU by increase the permeability of cellular membrane to monophosphate metabolites 

(Nambaru et al., 2011; Oguri et al., 2007). Matuskova et al., shown that silencing of the 

ABCC11 by RNA interference significantly sensitized breast carcinoma cell line (MDA-MB-

231) to the CD::UPRT system (Matuskova et al., 2012). 

1.2. Herpes simplex thymidine kinase (HSV-TK) / ganciclovir (GCV) 

 HSV-TK gene codes for a thymidine kinase that able to convert GCV to GCV 

monophosphate which is then turned into GCV-di and triphosphate by endogenous kinases. 

Insertion of GCV triphosphate to double stranded DNA leads to termination of DNA 

synthesis and finally continued with apoptosis as a result of maintenance of cell in S phase 

(Abate-Daga et al., 2010; Tomicic et al., 2002). Since HSV-TK has greater affinity for GCV 

in compare to endogenous kinases enzymes, the primary steps of GCV phosphorylation 

occurs mainly by viral TK. But GCV required very high dose rate to fully occupy the active 

site (Gallois-Montbrun et al., 2004; Karjoo et al., 2016a). This creates nonspecific toxicity 

such as immune suppression, acute depression of the bone-marrow and finally insufficient 

tumor killing ability. Manipulation of enzyme gene to create a mutant HSV-TK that provide 

the same effect of wild type enzyme at lower levels of prodrug, can greatly reduce this 

obstacle (Balzarini et al., 2006; Black et al., 2001). HSV-TK/GCV system similar to CD/5-

FC system has been shown bystander effect. The difference is that GCV trafficking is 

depending on the presence of gap junctions, which enable the exchange of toxic products 

between transduced and untransduced cells (Li Bi et al., 1993; Mesnil et al., 1996). As it 

seems CD/5-FC system has better performance because it is freely diffusible across the 

cellular membrane and independent of GJIC and connexins expression. Rainov NG et al., 
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reported that Temozolomide enhances the efficiency of TK/GCV against malignant glioma 

(Rainov et al., 2001). On the other hand, some ABC transporters such as ABCC4 and 

ABCG2 enhanced resistancy of transgene-expressing and bystander cells against TK/GCV 

system (Adachi et al., 2002). Also, based on previous studies, the origins of mutations are 

distinct in different tumor types so they show differences in sensitivity to various 

enzyme/prodrug systems (Huang et al., 2009; Jiang et al., 2014). This situation is seen more 

in single suicide gene therapy. Some results suggested that double suicide gene therapy with 

this genes had severer deadly effects than either one used alone (Aghi et al., 1998; Freytag et 

al., 1998; Uckert et al., 1998). On the other hand some reports shown that anticancer effect 

and survival rate were not significantly different between one and double suicide gene 

delivery, even single suicide gene systems may be preferable than combinations of the two 

systems (Chang et al., 2000; Moriuchi et al., 2002). 

 

1.3. Other important suicide genes 

 

The other gene/prodrugs that commonly used as suicide genes including  CYP2B6/ 

cyclophosphamide (CPA), nitroreductase/CB1954 (NTR/CB1954), carboxylesterase 

(CE)/  CPT-11 (irinotecan) and Inducible caspase-9 (iC9) /chemical inducer of dimerization 

(CID). Primary studies demonstrate that efficiency of CYP2B6 for cancer therapy is low; the 

poor results may be explained by low affinity of CYP2B6 to CPA. This can be solved by 

insertion mutations in CYP2B6 (CYP2B6TM; CYP2B6 triple mutant) and fusion with 

NADPH cytochrome P450 reductase (RED) (CYP2B6TM-RED) (Argos, 1990; Braybrooke 

et al., 2002; Nguyen et al., 2008; Touati et al., 2014). NfsB nitroreductase (NTR) isolated 

from Escherichia coli can convert CB 1954 (5-(aziridin-1-yl)-2, 4-dinitrobenzamide) to a 

potent cytotoxic DNA chelating agent which can freely diffuse across the cell membrane and 
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trigger extensive DNA damage and apoptosis in cancer cells. However, low activation rate of 

this non-natural substrate, CB1954, appears to restrict the impact of this enzyme. In addition 

CB1954 induced dose-dependent hepatotoxicity (Chung-Faye et al., 2001; Greco and Dachs, 

2001; Green et al., 2013). Gene-directed enzyme prodrug therapy (GEPT) is another 

approach for chemotherapeutics selectivity improvement. One of such gene/prodrug to drug 

systems is carboxylesterase (CE)/campothecin (CPT-11) to SN-38 (7-ethyl-10-

hydroxycamptothecin). CPT-11 could inhibit mammalian DNA topoisomerase I, while SN-

38 Inhibits this enzyme activity approximately 1000 times more effectively than CPT-11 

(Pommier, 2006; SATOH et al., 1994; Wierdl et al., 2001). iC9 is another suicide context  

refer to an inducible caspase-9 actually a pro-apoptotic protein caspase9 that bind to a 

modified human FK-binding protein. AP1903, as chemical inducer of dimerization (CID) can 

activate iC9 and dimerized caspase-9 resulting in apoptosis (Ando et al., 2014; Boatright et 

al., 2003). 

 

2. Talent of MSCs in Cancer Gene Therapy 

Adult stem (AS) cells are a potentially valuable source in regenerative medicine .they are 

dividing to neural stem cells (NSCs) (ectoderm), hematopoietic stem cells (HSCs) 

(mesoderm), and MSCs (mesoderm)  (Robinton and Daley, 2012; Weissman, 2000). In vitro 

expansion of NSCs is limited to the nervous system; they couldn’t survive outside the 

nervous system. HSCs have been utilized in allogeneic cell therapy. Although bone marrow 

(BM) has been the principal source for the isolation of these cells, the harvesting of bone 

marrow entailed a highly invasive procedure with low cell yields (Prockop, 1997; Sylvester 

and Longaker, 2004). It is easier to work with MSCs, due to their less invasive and free of 

ethical issues harvest in compare with other sources (Amara et al., 2014; Cavarretta et al., 

2010; Compte et al., 2009). MSCs were first obtained from bone marrow and defined as 
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fibroblast-like multipotent stem cells by Friedenstein and coworkers in 1974 (Friedenstein et 

al., 1970). 

International Society for Cell Therapy (ISCT) proposed minimal criteria to describe human 

MSCs; adhere to plastic, ability to differentiate into adipocytes, osteoblasts, and 

chondrocytes, fibroblastoid phenotype and expression of cell surface markers CD105, CD73, 

CD271, CD90 and ganglioside GD2 in more than 95% of cells and absence of CD45, CD79a 

or CD19, CD34, CD14 or CD11b, CD40, CD80, CD86 and the MHC II class cellular 

receptor HLA-DR (Baird, 2015; Dominici et al., 2006; Goradel et al., 2017; Horwitz et al., 

2005; Mirzaei et al., 2016d; Mirzaei et al., 2017d; Mohammadi et al., 2016b). But it should 

be noted that there is no unique key determinant factor to distinguish MSCs, also the relative 

expression levels for these markers could be varied according to the species diversity, tissue 

sample and culture conditions. At first MSCs isolated from bone marrow (BM) but 

subsequently found in other source such as adipose tissue (AT), umbilical cord blood (UCB), 

peripheral blood, surrounding blood vessels, synovium, the circulatory system, dental pulp 

and amniotic fluid (Morizono et al., 2003; Phinney and Prockop, 2007; Uchibori et al., 2014). 

In spite of the fact that MSCs only represent a small percentage of the total number of BM 

populating cells 0.01-0.001%), they extensively used by many researchers (Li et al., 2015). 

Since MSC isolation from BM recognized as an unpleasant experience, adipose tissue 

another valuable source of MSCs, has drown great attention in recent years (Kucerova et al., 

2008). 

Adipose tissue mostly isolated from subcutaneous tissue, we can get ~ 40-fold higher yield of 

MSC from adipose tissue compared with the bone marrow. The rate of isolation of MSC from 

human AT is 100%. Great interest has developed in AT-MSC, which is free of ethical 

concerns and invasiveness (Kern et al., 2006). Moreover it was reported that AT-MSC can be 

expanded long term without the loss of their phenotype. In contrary, BM-MSCs should be 
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used during early cell passages (below P8) to prevent potential differentiation (Lee et al., 

2006). UCB-derived MSC has significantly higher rate of expansion in compared with BM-

MSC. Since these cells are obtained from placenta that discarded after birth, so the collection 

procedure is totally noninvasive and free from ethical considerations (Li et al., 2015). MSCs 

also have been exploited as tumor specific delivery vehicles for cancer gene therapy by 

multiple reasons; immunoprivileged status (due to lack of major histocompatibility complex 

MHC-II and only minimal MHC-I expression) and natural tropism for tumors and their 

metastases. MSCs do not motivate the host immune response and escape immunological 

rejection in allogeneic injection (Desmoulière, 2008; Kidd et al., 2008; Zhang et al., 2014). 

In addition MSCs can be efficiently transduced with viral or non-viral vectors containing a 

target gene. For example,  in separate studies JIANG  and Bak et al., demonstrated that 

hUCB-MSCs and hBM-MSCs can be simply infected by the lentivector and baculovirus 

respectively at a high efficiency of over 80% (Bak et al., 2010; Jiang et al., 2014). MSCs 

mostly transduced through viral vectors including lentiviruses, retroviruses, baculovirus and 

adenoviruses. All of these viral vehicles produce stable expression, while the later create 

transient expression of therapeutic genes. Non-viral vectors have been exploited in limited 

number of studies. The examples are nucleofection, spermine-pullulan (SP), PEIcyclodextrin 

and cationic liposomes and cationic polymers (Gao et al., 2010; Uchibori et al., 2009; Zhang 

et al., 2014). Results revealed that in healthy animal models MSCs mostly migrate to lung, 

liver and bone but also MSCs have high migration potential to the tissue injury and 

inflammation (Hu et al., 2010; Kidd et al., 2008). For example, inflammation has long been 

associated with the development of cancer, MSCs exhibit strong tropism toward tumors and 

their metastases by expression of receptors such as CCR1, CCR4, CCR7, CCR9, CCR10, 

CXCR4, CXCR5, CXCR6, RAGE, CX3CR1, VEGFR, c-Kit and c-Met for Infammatory 

chemokines and growth factors including SDF-1(CXCL12), MCP-1, HGF, IL-8, NT3, TGF-
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b, GCSF, VEGF, IL-8, IL-6, CCL2, HMGB1 and SCF (Honczarenko et al., 2006; Reagan 

and Kaplan, 2011; Ringe et al., 2007). CXCR4 is the most important chemokine receptor 

implicated in targeted homing of MSCs. MSCs expression profiling demonstrates that 

overexpression of CXCR4 and down regulation of MMP-2 have greater role in migration 

capability in to tumor sites, whereas knockdown of SDF-1 plays a negative role in stem cell 

recruitment to tumors (Menon et al., 2007; Song and Li, 2011). Sato et al demonstrated that 

epidermal growth factor receptor gene transfection conferred enhanced migratory activity 

towards GL261 gliomas or B16 melanoma in vivo (Sato et al., 2005). Moreover adhesion 

molecules, such as b1- and b2-integrins and L-selectin, are involved in MSC migration and 

homing to tumor site (Hu et al., 2010). A recent report on MSC behavior have highlighted the 

great impact of irradiation on MSC tropism and engraftment to tumor location, mediated at 

least in part by apoptosis and subsequent enhanced local release of inflammatory signals such 

as CCL2 and CCR8. For example UCB-MSCs-based TRAIL gene delivery to irradiated 

glioma tumors enhanced apoptosis in glioma cells. Besides radiotherapy could increase MSC 

localization in LoVo, HT-29 (colon) and MDA-231 breast cancer cells (Kim et al., 2010; 

Klopp et al., 2007; Zielske et al., 2009). Every safe cell-based therapy will require the 

capability to harness the unwanted growth of cells. Local injection of MSC developed some 

side effects i.e. ectopic ossification and calcification foci in mouse and rat models of 

myocardial infarction. Moreover bilateral diffuse pulmonary arises after bone marrow 

transplant in a dog. In a distinct study spontaneous osteosarcoma formation in culture has 

been reported in murine-derived MSCs (Breitbach et al., 2007; Sale and Storb, 1983; Yoon et 

al., 2004). Albeit MSCs have been utilized for treatment of many patients without major 

undesirable effects but some results, both in vitro and in vivo models suggest that must be 

cautions in this regard. MSCs exhibit pro-tumorigenic or tumor-supporting roles through 

inhibition of immune system and apoptosis, stimulation of EMT (epithelial– mesenchymal 
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transition) and enhancement of angiogenesis, proliferation, migration and metastasis (Djouad 

et al., 2003; Martin et al., 2010; Ramasamy et al., 2007). Unmodified MSC have antitumor 

properties in leukemias, glioma, and melanoma, and breast, hepatoma and lung cancer cells 

(Ramasamy et al., 2007; Sun et al., 2009). In this regards Ma et al observed the growth 

inhibition of breast CSCs by hUCMSC both in vitro and in vivo. Ohlsson L et al., showed 

that mesenchymal progenitor (immortalized MSCs) are effective at inhibiting the in vivo 

proliferation of rat colon carcinoma cells (Ma et al., 2012; Ohlsson et al., 2003). The 

underlying mechanism about antitumor effect of MSCs is likely related to down-regulation of 

Wnt, Akt, PI3K and NF-kB signaling pathways by factors released from MSC in tumor 

position (Dai et al., 2011; Ma et al., 2012). Some studies in order to increase the innate 

antitumor effects of MSCs carried out gene modification with oncogenes or other genes 

promoting cell proliferation but these modifications are associated with higher risk of 

tumorigenicity (Miletic et al., 2007). Engineered MSCs was first use for direct delivery of 

interferon ß (IFN-ß) gene to melanoma xenografts mice (Studeny et al., 2002). Considerable 

reduced in tumor growth rate and significant prolongation of survival of tumor-bearing mice 

motivated more researches to study therapeutic efficacy of genetically modified MSCs as 

cellular vehicles for several cancer treatments. MSCs explored for local secretion of 

therapeutic cytokine proteins such as; IFN-ß, IL-12, IL-24 and IL-2, delivery of prodrug 

activator genes (i.e. actually suicide genes) that will be explained in the following, amplifying 

and deliver of oncolytic viruses such as conditionally replicating oncolytic adenoviruses 

(CRAd), ICOVIR-5 and measles virus (MV), secretion of pro-apoptotic proteins such as 

TRAIL, TNF-related apoptosis ligand, anti-angiogenic agents such as TSP1 and endostatin 

and growth factor antagonists i.e. NK4 (antagonist of hepatocyte growth factor (HGF)) (Fig 

1) (Dwyer et al., 2010; Li et al., 2016; Shah, 2012). MSCs loaded with nanoparticles 
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containing chemotherapy drug, paclitaxel have been shown high efficient tumoricidal effect 

(Sadhukha et al., 2014).  

It has been showed that MSCs could have dual effects on cancerous condition. Anti-cancer 

and tumorgensis effects of MSCs led to some concerns about utilization of them as 

therapeutic agents. It has been showed that express of different types of MSCs surface 

markers play critical roles in the effect of MSCs in various conditions.  

Finally, three main points regarding employing of MSCs as vectors remain to be defined: i) 

MSCs are cells with active physiological process which using of them are not simple delivery 

platform. They could release a wide array of different molecules (i.e. growth factors, 

cytokines and chemokines).  Hence, they may provide various signals which could lead to 

enhancing of tumor burden and metastases. ii) Cancerous microenvironments may lead to 

inducing of malignant transformation in the injected MSCs. iii) How many MSCs need to be 

given and when and where they should be administrated. Hence, better understanding of 

MSCs physiology within the tumor sites, and more robust studies characterizing their homing 

mechanisms could enhance suggested therapies.  

MSCs-exosomes as new therapeutic approach for cancer therapy 

Among of various signaling and cellular effects of MSCs, exosomes released from MSCs 

have critical roles for transferring specific signals to host cells. Exosomes are known as nano 

vesicles which could carry a variety of molecules and markers such as DNAs, mRNAs, 

microRNAs, and proteins (Banikazemi et al., 2017; Borujeni et al., 2017; Mirzaei et al., 

2016e). The cargos are able to change behavior of host cells via targeting various cellular and 

molecular targets (Mirzaei et al., 2016e; Saadatpour et al., 2016). For example, microRNAs 

(miRNAs) are one of important cargos which could be carried by exosomes. MiRNAs are 

small non-coding RNAs which have critical roles in regulating of a variety of vital biological 

processes such as growth, angiogenesis, and differentiation (Golabchi et al., 2017; Hashemi 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwicgrmWgffSAhWFVhoKHa5xAawQFgglMAE&url=http%3A%2F%2Fchemocare.com%2Fchemotherapy%2Fdrug-info%2FPaclitaxel.aspx&usg=AFQjCNFwyW5BwFv0zAn6bRzV-yS4I_1e8Q
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Goradel et al., 2017; Keshavarzi et al., 2017b; Mashreghi et al., 2017; Mirzaei et al., 2017b; 

Mirzaei et al., 2016g; Rashidi et al., 2017; Salarinia et al., 2016). It has been showed that 

deregulation of them could be associated with imitation and progression of a wide range of 

diseases such as cardiovascular diseases, stroke, diabetes and cancer (Fathullahzadeh et al., 

2016; Gholamin et al., 2017; Hoseini et al., 2017; Keshavarzi et al., 2017a; Mirzaei, 2017; 

Rabieian et al., 2017; Rashidi et al., 2016; Simonian et al., 2017). These molecules exert their 

effects via targeting various cellular and molecular pathways involved in various 

physiological processes (Gholamin et al., 2016; Mirzaei et al., 2017a; Mirzaei et al., 2016b; 

Mirzaei et al., 2017c; Mirzaei et al., 2016i; Mohammadi et al., 2016a; Moridikia et al., 2017).  

Hence, targeting of miRNAs by exosomes could lead to change behavior of host cells and 

could be associated with emerging of diseases condition or therapeutic effects (Mirzaei et al., 

2016a; Mirzaei et al., 2016c). Exosomes could be released from various types of cells such as 

cancer cells, and MSCs. These nano-particles could exert their inflammatory or anti-

inflammatory effects on host cells (Rani et al., 2015). It has been showed that MSCs 

employed exosomes for paracrine functions.  Paracrine functions of MSCs are known as one 

of important mechanisms involved in anti-inflammatory effects of MSCs (Rani et al., 2015). 

Hence, it seems that utilization of exosomes released from MSCs could be used as effective 

candidate for treatment of various diseases.  

  

 

3. MSCs as a Vehicle for Targeting Suicide Genes 

 

Identification of new drug delivery platform is one of the major landscapes in cancer gene 

therapy (Mohammadi et al., 2016b). Despite a numerous of novel therapeutic approaches 

have emerged, none has yet confirmed the ability to cure various cancers. In this regard 
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MSCs emerge to be promising new therapeutic option. The natural tropism of MSCs for 

tumor sites makes them excellent vehicles for tumor-targeted therapies (Mohammadi et al., 

2016b). Also, it has been showed that use of genetically-modified MSCs may overcome 

limitations related with systemic administration of some cytokines and anti-neoplastic agents 

with a short half-life and high toxicity (Mohammadi et al., 2016b). Viral vectors for directed 

enzyme prodrug therapy (GDEPT) or suicide gene therapy have been utilized by multiple 

studies. This approach has some limitations due to its low specificity for tumor cells and 

systemic toxicity. Utilization of viral vectors for targeting various genes such as suicide gene 

are associated with various limitations such as high immunogenicity (Mirzaei et al., 2016f). 

Hence, several studies applied improved viral vectors for overcoming to various limitations. 

Moreover, it has been showed that other vectors such as Piggybac could be used for targeting 

various genes and be associated with same or better results than viral vectors (Mirzaei et al., 

2016f). Hence, utilization of Piggybac or improved viral vectors could be employed as new 

delivery system with high potential for targeting various genes such as suicide genes. 

Genetically engineered MSCs using a GDEPT strategy could be a good resolve for these 

obstructions. MSC-targeted gene therapy is a two-step procedure. In the first step, the gene 

for the foreign enzyme (bacterial, yeast or viral) is targeted to the tumor by transduction of 

MSCs. In the second step, transcription of the gene encoding the prodrug-drug converting 

enzyme could generate a lethal substance at the tumor site. With looking to previous studies 

we found that the retroviral suicide gene construct is often used for MSC transduction and 

most frequent transduced suicide genes are CD and HSV-TK. A large number of approaches 

have been applied using AT-MSCs and BM-MSCs as a delivery system for anti-neoplastic 

agents (Amara et al., 2014). A key characteristic of manipulated MSCs is that they have no 

difference with naïve MSCs in terms of proliferation, differentiation and tumor homing 

potentials as well as surface antigenicity (Park et al., 2013). Until now many in vitro and in 
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vivo studies carried out using MSCs in cancer therapy. A brief report of studies within this 

research area is embedded in Table 1. Due to this fact that MSCs express very low levels of 

receptors, like most healthy tissues, are unaffected by TRAIL-induced apoptosis. As a result 

recruitment of MSCs secreting TRAIL brings brilliant results in cancer treatment (Grisendi et 

al., 2010; Kim et al., 2008; Loebinger et al., 2009; Mohr et al., 2008). Moreover co-

transfection of the TRAIL gene with some cases of double suicide gene approaches (i.e. 

HSV-TK) that confront with some difficulties including antagonistic antitumor activity, could 

improve the efficiency of tumoricidal effect (Kim et al., 2013; Martinez‐Quintanilla et al., 

2013). In order to achieve efficient homing of MSCs to the tumor site, the median amount of 

administered therapeutic cells recommended to be less than 10% of the tumor mass (Hung et 

al., 2005). Therefore, it is logical to use multiple injections of the therapeutic cells at a low 

dose rather than single injection at high dose. For example, Kim W et al., reported that mouse 

with metastatic renal cell carcinoma (RCC) after 2 and 3 injections of small-divided doses of 

MSC/TRAIL-TK represents 50% and 100% survival respectively (Kim et al., 2013). The 

potency of consecutive suicide gene therapy was also evaluated in another study in which 

repeated intracerebral injection of CDy:UPRT-AT-MSC lead to 88% increase in the survival 

time of rat with glioblastoma (Altanerova et al., 2012). Some studies employed combined 

therapeutic modalities for malignant disease treatment. Combination of suicide gene- MSCs 

with chemotherapy drug shows satisfying results in some cases. Ando M et al revealed that 

NSCLC progression prevents following proteasome inhibitor bortezomib administration, 

together with MSC- Ad.iC9. While, this drug is ineffective for the treatment of NSCLC, 

alone (Ando et al., 2014). In another study MSCs-TK and Valproic acid (VPA) has been used 

for treatment of glioma-bearing mice (Ryu et al., 2012). The combined treatment had 

dramatic inhibitory effects on tumor growth and prolonged the survival rate in mice. 
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Future perspective 

Current data indicate that cancer incidence is steadily increasing in the World. There is high 

mortality statistic available in current decades. All of these highlighted the urgent need for 

more safer and more effective therapies. One of the principal challenges along cancer 

treatment is how to destroy malignant tumors without damaging healthy cells. A new 

approach that shows great promise in this area is employment of a suicide gene. In this way 

we need an appropriate carrier for therapeutic gene delivery specific to cancer site. The 

application of anti-cancer gene-expressing MSCs for targeted cancer therapy is a novel and 

promising strategy. MSCs with important characteristic such as strong tumor tropism, 

unlimited packaging capacity and unique immunologic tolerance, could overcome current 

obstacles and successfully deliver these suicide genes. Although MSCs have anticancer 

capacity but based on some reports could have positive role in tumor progression. Eventually 

more researches required to find novel insights into MSCs biology, potential clinical 

application and molecular mechanism for homing to tumor site. 
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Table 1. Characteristic of previous studies in MSC-targeted suicide gene therapy 

Type of cancer 

(cell line) 

Source 

of MSCs 

Type of suicide 

gene 

Vector Administratio

n route 

Ref 

ovarian carcinoma 

(SKOV3) 

 

hUCBMS

Cs 

HSV-tk/ CD  

Combined 

treatment 

lentivirus Just in vitro (Jiang 

et al., 

2014) 

colon cancer 

(HT-29) 

 

hAT-

MSC 

CD::UPRT retrovirus systemically 

administered 

(Kucer

ova et 

al., 

2007) 

bone metastatic PC 

(Du145, PC3, and 

LNCaP) 

 

hAT-

MSC 

CD::UPRT retrovirus systemically 

administered 

(Cavarr

etta et 

al., 

2010) 

Glioma 

(9L) 

 

hBM-

MSC 

Hsv-tk pcDNA3.1/Hygr

o(-) 

plasmid 

local injection (Mori 

et al., 

2010) 

Glioma 

(9L) 

 

RatBM-

MSC 

HSV-tk retrovirus local injection (Mileti

c et al., 

2007) 

Lewis lung 

carcinoma 

(LLC cell line) 

 

miceAT-

MSC 

CD::UPRT & 

CD::UPRT::VP

22 

Separately 

 

plasmid systemically 

administered 

(Krassi

kova et 

al., 

2016) 
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Melanoma 

(A375) 

 

hAT-

MSC 

CD::UPRT retrovirus systemically 

administered 

(Kucer

ova et 

al., 

2008) 

gastric cancer 

(MKN45) 

 

hBM-

MSC 

CD pcDNA-CD 

plasmid 

systemically 

administered 

(You et 

al., 

2009) 

non-small cell lung 

cancer 

 

hBM-

MSC 

iC9 adenovirus systemically 

administered 

(Ando 

et al., 

2014) 

Breast cancer 

MDA-MB-231 

 

hAT-

MSC 

CD::UPRT or 

HSV-tk 

Seperatly  

 

retrovirus systemically 

administered 

(Matus

kova et 

al., 

2015) 

Renal Cell 

Carcinoma 

(RENCA) 

 

RatBM-

MSC 

TRAIL-tk adenovirus systemically 

administered 

(Kim et 

al., 

2013) 

Glioma 

(C6) 

 

hAT-

MSC 

CD::UPRT retrovirus local injection (Altane

rova et 

al., 

2012) 

mice bearing TC1-

Luc2 

tumors 

miceBM-

MSC 

CYP2B6TM-

RED 

lentivirus local injection (Amara 

et al., 

2016) 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

This article is protected by copyright. All rights reserved 

 

  

pulmonary 

melanoma 

(B16F10) 

 

RatBM-

MSC 

CMV-tk spermine-

pullulan (SP) 

systemically 

administered 

(Zhang 

et al., 

2014) 

ovarian cancer 

(SKOV3) 

hBM-

MSC 

TK007 & TK 

SR39 & 

CD:UPRT & 

NTR 

Seperatly  

 

mammalian 

Expression 

plasmid vectors 

local injection (Nouri 

et al., 

2015) 

Glioma 

(8-MGBA, 

42-MG-BA and U-

118 MG) 

 

hAT-

MSC 

HSV-tk retrovirus systemically 

administered 

(Matus

kova et 

al., 

2010) 

Melanoma (A375) & 

Glioma (8-MG-BA) 

 

hAT-

MSC 

HSV-tk & 

CD::UPRT 

Seperatly 

 

retrovirus Just in vitro (Matus

kova et 

al., 

2012) 

Prostate cancer 

(TRAMPC1 & 

TRAMPC2) 

hAT-

MSC & 

miceBM-

MSC 

 

CD::UPRT retrovirus systemically 

administered 

(Abrate 

et al., 

2014) 
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Glioma 

(9L) 

 

RatBM-

MSC 

HSV-tk retrovirus local injection (Uchib

ori et 

al., 

2009) 

Glioma 

(U87MG) 

 

hBM-

MSC 

CD retrovirus local injection (Park 

et al., 

2013) 

Hepatocellular 

Carcinoma 

(Huh7) 

 

miceBM-

MSC 

HSV-tk plasmid systemically 

administered 

(Niess 

et al., 

2011) 

Lung 

adenocarcinoma 

(A549) 

 

miceBM-

MSC 

HSV-tk retrovirus Just in vitro (Yang 

et al., 

2014) 

Prostate cancer 

(DU145 & PC3) 

 

SV40-

hfBMSCs

* 

HSV-tk lentivirus systemically 

administered 

(Lee et 

al., 

2013) 

Lung metastatic 

(By B16F10) 

 

RatBM-

MSC 

HSV-tk spermine-

pullulan (SP) 

systemically 

administered 

(Zhang 

et al., 

2015) 

Osteosarcoma 

(Cal72) 

 

hBM-

MSC 

CD::UPRT plasmid systemically 

administered 

(Nguye

nThai 

et al., 

2015) 
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Pancreatic carcinoma 

(Panc02) 

 

miceBM-

MSC 

HSV-tk plasmid systemically 

administered 

(Zische

k et al., 

2009) 

Glioma 

(TJ899, TJ905, 

U251, U87 & C6) 

 

RatBM-

MSC 

HSV-tk adenovirus 

 

local injection (Huang 

et al., 

2010) 

Glioma 

(C6) 

 

RatBM-

MSC 

CD lentivirus local injection (Fei et 

al., 

2012) 

Glioma 

(U-87) 

 

hAT-

MSC 

HSV-tk lentivirus local injection (de 

Melo et 

al., 

2015) 

Glioma 

(C6/LacZ7) 

 

hBM-

MSC 

CD retrovirus systemically 

administered 

(Chang 

et al., 

2010) 

Glioma 

(C6) 

 

RatBM-

MSC 

HSV-tk retrovirus local injection (Gu et 

al., 

2010) 

Glioma 

(9L) 

 

RatBM-

MSC 

CD adenovirus 

 

local injection (Kosak

a et al., 

2012) 

Glioma 

(U-87) 

hBM-

MSC 

CD retrovirus local injection (Jung 

et al., 
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 2015) 

prostate cancer 

(PC3,DU145) & 

breast cancer 

(MCF7) & 

mouse fibrosarcoma 

(RIF1) 

 

RatBM-

MSC 

HSV-tk lentivirus systemically 

administered 

(Song 

et al., 

2010) 

Glioma 

(C6) 

 

RatBM-

MSC 

HSV-tk retrovirus local injection (Aman

o et al., 

2011a) 

Glioma 

(C6) 

 

RatBM-

MSC 

HSV-tk retrovirus local injection (Aman

o et al., 

2011b) 

Glioma 

(U-87) 

 

hBM-

MSC 

HSV-tk adenovirus local injection (Ryu et 

al., 

2012) 

Glioma 

(U87MG) 

hBM-

MSC 

HSV-tk baculovirus systemically 

administered 

(Bak et 

al., 

2010) 

* Immortalization of human fetal bone marrow-derived mesenchymal stromal cells by simian 

virus 40 

 

 


	Based on World Health Organization (WHO), Cancer is the second leading cause of death globally which was responsible for 8.8 million mortality in 2015. Nearly 1 in 6 deaths is due to cancer and the number of new cases is expected to rise by about 70% ...
	Hepatocellular Carcinoma
	(Huh7)

