
Microservice-based IoT for Smart Buildings

Dilshat Salikhov, Kevin Khanda, Kamill Gusmanov
Manuel Mazzara, Nikolaos Mavridis

Innopolis University, Russia

{d.salikhov, k.khanda, k.gusmanov, m.mazzara, n.mavridis}@innopolis.ru

Abstract—A large percentage of buildings in domestic or
special-purpose is expected to become increasingly "smarter"
in the future, due to the immense benefits in terms of en-
ergy saving, safety, flexibility, and comfort, that relevant new
technologies offer. As concerns hardware, software, or platform
level, however, no clearly dominant standards currently exist.
Such standards, would ideally, fulfill a number of important
desiderata, which are to be touched upon in this paper. Here,
we will present a prototype platform for supporting multiple
concurrent applications for smart buildings, which is utilizing an
advanced sensor network as well as a distributed microservices
architecture, centrally featuring the Jolie programming language.
The architecture and benefits of our system are discussed, as well
as a prototype containing a number of nodes and a user interface,
deployed in a real-world academic building environment. Our
results illustrate the promising nature of our approach, as well
as open avenues for future work towards its wider and larger
scale applicability.

I. Introduction

The Internet of Things (IoT), as per the ITU Recommenda-

tion ITU-T Y.2060 [2], has been defined as: "a global infrastruc-
ture for the information society, enabling advanced services by
interconnecting (physical and virtual) things based on existing
and evolving interoperable information and communication
technologies." Among physical objects, buildings are playing

a major role in this technological transition. Building function

either as human habitats, for example domestic buildings, or

for some specialized goals, for example storehouses, shops,

industrial buildings, or schools. In some cases they can have

both functions.
There are multiple aspects about the operations of modern-

day buildings that will lead to future automation and optimiza-

tion. It has been shown that the benefits of an improved energy

management through automation are indeed significant [32];

also, security of buildings, human-friendliness and adaptation

to preferences has a vast spectrum of improvement. Smart
buildings, as well as smart cities that are supposed to contain

them, are the target of much research today, and promise to

dramatically improve our lives increasing sustainability and

improving the environment.
Traditionally, most building automation systems were made

for specific applications and offered a few properties of

openness and flexibility. However, with the fast maturation

of a number of supporting technologies, the opportunity to

change this status quo is rapidly growing. First, cheap sensing

and perception technologies have become available for a wide

range of examples: covering not only physical properties of the

building and its spaces, such as temperature, light, and humidity,

but also providing information about the presence, number,

identities, activities, and even emotional states of the people

inside a building or in its surrounding spaces [17]. Second,

affordable and miniature microprocessor-based platforms have

become widespread and are easily inter-connectable to sensors,

which often have enough processing power to support per-

ception and machine vision; with multiple network transports,

even the necessary small battery power is readily available.

Third, networking technology for such platforms has developed

significantly, and nowadays it is easy to implement building-

wide networks, often with dynamic ad hoc topologies, which

also support on-the-fly introduction and replacement of new

nodes, while providing secure communications. Fourth, special

languages and middleware has been developed, in order to

support straightforward development of distributed systems

based around a number of paradigms, including microservices

[9], [16]

Given all these development, one can not only envision, but

can also start implementing and experimenting with the usage

of the IoT for providing generic smart building infrastructure,

which goes beyond the constraints of existing specialized

systems, and provides fluid support for diverse concurrent

applications, sharing the infrastructure, and operating through

microservices provided by the nodes. Furthermore, infrastruc-

ture such as the "Jolie Good Buildings" that we are going to

present here, promises strong scalability, reliability, and ease

of evolution as more powerful hardware becomes available,

and finally direct utilization of the immense power of external

services available on the Internet, as part of the distributed

applications running on the nodes.

In this paper, we will start by providing background on

relevant existing work. Then, we will present the overall

architecture of our system and will explain the requirements and

design choices we have made. Also we are going to present

results, discuss current and future steps, and finish with a

forward-looking conclusion. We hope that this work will help

create a future, in which not only resources are saved and the

environment is protected, but also human life will become less

stressful with enhanced efficiency and creativity.

II. Background

The IoT is an important component of current and future

human life. At the moment, the number of connected devices is

greater than the estimate of 22 billion [3], which is nearly three

2017 31st International Conference on Advanced Information Networking and Applications Workshops

978-1-5090-6231-7/17 $31.00 © 2017 IEEE

DOI 10.1109/WAINA.2017.77

302

times greater than the number of Earth’s inhabitants. However,

the problem is that most devices are incompatible with each

other, and some of them are used for other purposes (not IoT).

Have you ever thought about what kind of information can

you get from a fitness tracker? Using the accelerometer and

gyroscope you can get information about if person is now

running or just walking, is he/she eating or swimming in the

pool. However, the most important part is the ability to work

with this information. On the basis of data from the heart rate

sensor, you can get a small feature on the state of human

health and, if required, suggest various treatments. Also, this

information is very useful in medicine, the physician can better

evaluate diseases based on previous data. For example, since

the disease first spotted, how often problems happened and so

on.

A. Smart Buildings and Cloud Computing
The IoT can be used in almost all spheres of human life.

In this paper, we will focus on Smart Buildings and Human-

Building interactions. There have been many different studies

on the topic, which uses different kinds of sensors, frameworks

and, sometimes, robots. The creation of a single and simple

platform that can communicate with all types of sensors and

robots is a very important step towards the development of

Smart Buildings. It should be noted that it is impossible to

use large computers for computing in each smart building. In

this regard, there is need for Cloud Computing (CC) where

computation is viewed as a "utility". In a similar sense, with

modern power and water networks, cloud users do not need

to own the means of production or distribution (i.e. power

generators, water sources and distribution networks): they just

need to connect with the cloud service and let the distant

distributed computations, storage, and code resources in a

transparent fashion (not knowing the whereabouts or the

specifics of them) to do all the job done with high reliability.
Of course, cloud computing also has some limitations. For

example, it is not effectively connected to the physical world

in the way that a situated robotic agent would be [18]. In this

regard, there is the problem of creating a service view of a

Human-Robot Cloud, in our case a Human-Sensor Cloud. A

further stage of development of the system for Smart Buildings

is to create a system of interaction between sensors and robots

in buildings and humans. Frameworks for human-machine

systems [19] are created and used as the basis for interaction

with robots, and provide easy and fast connection with new

devices instead of old ones. In fact, the connection and further

work with new devices strongly affects the level of performance.

Creating a platform for connection and operation of devices

of various types is necessary to build the right network.

B. Microservices
Microservices are very useful for the IoT. The Microservice

software architecture is an approach for service-oriented

development which popularity is increasing now because of

growing interest to parallel computations. Designed and built

for microservices architecture, Jolie programming language was
developed to work directly with a service-oriented paradigm,

which distinguishes it from other popular languages like C#,

Java, or Python. This means that the language contains features

that are unique to this approach, i.e. example representation

of building blocks. In object-oriented languages, there are

usually classes or functions; in Jolie building blocks are services

themselves.

The Jolie programming language [31], [4] was created to

maximize the use of the microservices architectural style. In

Jolie, microservices are first-class citizens: every microservice

can be reused, orchestrated, and aggregated with others [29].

This approach brings simplicity in components management,

reducing development and maintenance costs, and supporting

distributed deployments [10].

The development of Jolie followed a major formalization

effort on workflow and service composition languages, and

the EU Project SENSORIA [1] has successfully produced a

plethora of models for reasoning about composition of services

(e.g., [15], [22], [23]). On the mathematical side, the formal se-

mantics of Jolie [12], [11], [28] have been inspired by different

process calculi, such as CCS [26] and the π-calculus [27]. From

a practical point of view, however, Jolie is a descendant of

standards for Service-Oriented Computing such as, for example,

WS-BPEL [6]. With both theoretical and practical influences,

Jolie is a suitable candidate for the application of recent research

techniques, e.g., runtime adaptation [33], process-aware web

applications [30],or correctness-by-construction in concurrent

software [8].

III. Architecture

At this stage, the main goal is to create a small and simple

system, where major responsibility was taken by Jolie. The

system architecture scheme is shown on a Figure II.1. In order

to achieve the goal, the entire process was divided in three

steps.

A. Step 1: Connecting and configuring sensors

The first step was to connect and configure sensors and

Raspberri Pi through BLE. The main data that is tempera-

ture, humidity and luminosity was collected using CC2650

SensorTags, because they contain all necessary sensors, they

are compact and require low power consumption (just a coin

cell battery). Working with sensors are very similar to the

creation of sketches for Arduino: C code is written with the

necessary libraries for the SensorTag, sensors that are used

and ways of exchanging information with these sensors. In our

case, data was sent via BLE, as it is very comfortable to use

and configure. Also we used a door sensor from Aeon Labs,

which works on the Z-Wave protocol that was used to create a

monitoring system entrance/exit to the premises. To work with

this device, HomeOS [20] was used, which is written usinge

C# and has all necessary functionality to work with the devices

of this company in the protocol Z-Wave.

303

Figure II.1. A scheme of devices and their connections

Figure III.1. A graph of the outdoor temperature. Axis of abscissae: Time of the day. Axis of ordinates: Celsius degrees

B. Step 2: Coding in Jolie to work with sensors
The next step was to write simple code to work with

sensors using Jolie. A major advantage of this approach is code

reusability and scalability. Our system will support different

types of sensors, because main logic of their connectivity and

data extraction is similar for most of them. Also, product

support becomes easier because of code reusability. The same

service can be used for several sensors. From this advantage we

receive some kind of bug avoidance. With reusable code it is

easier to determine a bug, if it will appear in several modules. A
third advantage that may be interesting for future collaborators

is simplicity. Jolie divides all system logic into small parts: we

have several services that are responsible for each sensor or each

action, the naming of each block is intuitively understandable,

so these language features increase code readability. In addition,

one more significant advantage is working with Java code in

Jolie. Thus, the part of the work with getting data from BLE

devices was written using Java programming language and was

divided into simple functions, e.g. connecting to devices and

data retrieval, which is called from Jolie. Thus, the code is

easy to read, clean, and ready for further work as a client for

other sensors.

304

C. Step 3: Data Collection
The last step is data collection. From SensorTags, we read

data about room temperature, humidity, light and pressure.

Also we parsed outdoor temperature from the meteorological

data gathered through the Internet (Figure III.1). All of these

datasets were recorded in .csv format for later processing and

graphing in MATLAB (we used it for graphs inside this paper).

Data from Aeon Labs sensor is the number of openings and

closings of the door. Also we were monitoring incoming and

outgoing people using the webcam for accuracy check by

ourselves, which recorded in .csv and .jpg format respectively.

Also we developed a way to determine who is inside the room

by using the MiBand2 fitness-trackers. They were also sending

a BLE signal with mac address of device which our Raspberry

Pi was capturing as soon as the person came inside the room.

This is also how we determined the number of people inside

the room and also a person recognition by device mac address.
It is also worth to note that all codes were working on

Raspberry Pi, which has all necessary libraries and connections.

Despite its apparent simplicity, there were several issues at

work with devices. The first serious problem was the lack of

libraries for Java to work with BLE devices. But we found a

great and simple library for Intel Edison devices and used it.

The next issue was working with Z-Wave devices in HomeOS,

which periodically generated exceptions and did not connect

to the device. However, all these problems were solved, which

allowed us to come to the result, which will be described in

the next section.

IV. Results

We have developed a platform to work with the SensorTags

based on Jolie and Java programming languages. Despite

its small size, it obtained most of the data, with which we

were working. The ability to embed Java code allows to add

necessary segments and give more functionality and usability

to Jolie language. By the way, Jolie language is still developing

with a worldwide community. So, maybe ine day we won’t

need to embed a Java code in it.
At this stage, our goal was to build the prototype of device

that is working with sensors, understand how they work

and how to interact with them and get ideas for the further

development of the project. In order to analyze performances,

we have placed sensors in three rooms: the students’ rooms

in the dormitory and the laboratory of Innopolis University

(Russian Federation), in which we spend most time of the day.

It is worth noting that both rooms can be ventilated and fitted

with lights and heaters.
In the students’ rooms we set the Raspberry Pi with the

connected Bluetooth adapter and the SensorTag to obtain data

on the temperature. For tracking of location of the student in

the room, we used data from a fitness-tracker MiBand2, using

its mac address. Since the room is small we could accurately

determine when the student enters and when he/she leaves.

The collected dataset has been used to construct graps of

temperature, humidity, light and pressure (Figures IV.1, IV.2,
IV.3, IV.4) in the room, which will later be used to optimize

environment conditions (future development and researches).

Regarding humidity trend, the ideal value should be 40-50%

[5]. In our experiment humidity is always lower than 30%,

which causes discomfort and can lead to illness, and more in

general does not support students to perform at their best in

daily intellectual activities.

For the light sensor it is worth noticing that in the second

room values are never greater than 200 lux, while in first

room there is an average of 600 lux. The reason is that the

second room is located between two building and never receive

sufficient sunlight, while the first has an open view from a

luminous window.

For now, system is just collecting the data from sensors and

devices. What we are planning is to connect some household

appliances to our system and allow it to configure environment

automatically for users needs.

In the laboratory, we placed more devices and used multiple

platforms to work with them. This time SensorTag also sent

data about room temperature, humidity, light and pressure. Also,

we used a sensor of opening/closing doors and a web camera to

record those who entered/exited the room just to learn how to

transfer this data inside our system, without people recognition

for now. But web camera was equipped with OpenCV and

allowed to take photos of people that were in the lab, so we

collected a small dataset with photos of lab visitors. Using a

sensor on the door, we determined how many people were in

the room in each moment of time.

As noted earlier, for obtaining data on temperature, humidity

and light sensors, their metrics were saved to file which we

were using form graphs in MATLAB and which will use for

computations in future.

We used two programming language: Java and Jolie, which

were running on the Raspberry Pi. Work with other sensors

and a camera was assigned to HomeOS, which has all the

necessary functionality for working with the devices.

This completes the main work of the first stage. Plans for

further development of the project and data will be described

in the next section.

V. Future Steps

Despite of having solved many of the issues related to

obtaining data from the sensors and its further processing, in

order to get the targeted result there are further aspects that

need to be taken into consideration. First, we must configure

all SensorTags to work on the ZigBee protocol. Also we are

going to set up these sensors in a variety of classrooms at our

university, and there is a need to build a network or a protocol

for communication between devices and further processing

using the Jolie language. Second, we need to expand the

functionality of this to work with all the devices. In this case,

we will have to write the modules for BLE, ZigBee and Z-Wave

devices to continue to connect easily and share data between

smart devices. In addition, we want to rewrite the module for

working with the Aeon Labs sensors using Jolie language.

As we briefly mentioned before, we need to place all sensors

and the Raspberry Pi in the classrooms of our University and in

305

Figure IV.1. Temperature in the rooms. Blue figure in first room and red in second. Axis of abscissae: Time of the day. Axis of ordinates: Celsius degrees

Figure IV.2. Humidity in the room. Axis of abscissae: Time of the day. Axis of ordinates: Percentage of Relative humidity (RH)

the students’ rooms and start collecting data. In the rooms of the

students, system will continue collecting data on temperature,

including the data on humidity and lighting as well, and we

are going to install a window-opening sensor that will allow

us to get better dataset to determine the preferred mode of

temperature, light and humidity in the room and drawing a

small daily schedule of a student. In the classrooms, we will

also install a small cameras to track the number of people in

the room and launch a small bot to Telegram messenger to

gather feedback from students in terms of comfort temperature

and humidity in the auditorium. Determining number of people
in a class is also a tricky task. Possible, we may use some of

the existing approaches, like OpenCV, etc.

In the lab, we will add a motion sensor and several relays

to control lights and power sockets in the room that will be

activated either automatically or manually through a central

control system. In the longer term, we also envision monitoring

outside areas, such as the building parking spaces [14],

outdoor and indoor vegetation [13], and also connecting with

social-driven recommendation systems to create customized

hospitality tours in large buildings [7].

Based on the obtained data, which will take about a month

to collect, we will built a prediction system for students and

306

Figure IV.3. A graph of the data from light sensor in the rooms. Axis of abscissae: Time of the day. Axis of ordinates: Lux

employees, which will be checked by a simple small bot in

Telegram. Thus, we will improve our result in order to create

a small AI system that will be responsible for the control of

lighting, temperature, electricity and comfort level in the room.

This will lead to the creation of a unified platform, unified

control center, written in Jolie that will allow:

1) To develop a system based on microservices using Jolie,

2) To incorporate new devices according to one of three

protocols,

3) To track the preferences of students and staff in the

environment (Innopolis University),

4) To control the flow of electricity to the premises and, if

possible, to suggest ways to reduce costs,

5) Develop the idea of Human-Building Interaction and

technologies on campus and the entire city.

On the software engineering side, instead, all the develop-

ment process have to be streamlined and organized in a more

formal way, from requirements elicitation to deploy and testing.

Formal techniques will be here of major help [24], [25].

VI. Conclusions

In this paper we presented preliminary steps toward the

transformation of the Innopolis University building and students

dorms into an effective smart building. Tracking some key

environmental values emphasized the need for an optimization

to lead to both to energy save and improved living conditions.

In the future it is not impossible to imagine buildings capable to

adapt and self-configure depending on environmental conditions

and human needs, in the same way as modern software shows

the same flexibility [21].

Jolie demonstrated to be flexible and simple enough for

working with microservices and the Internet of Things: code

is easy to write, to deploy and devices are easy t connect. The

overall scenario looks promising to be repicated in several

projects related to smart homes and cities.

A large obstacle to the development is existence of a narrow

set of tools for the job, and limited documentation, that will

require specific attention on a case to case basis. However, the

Internet community and students of many European Universities

supported us in our enterprise. In the future, this work will

allow us to create a system of HBI that is easier to use and

more affordable.

Acknowledgements

The authors received logistic and financial support by Innop-

olis University. We would like to thank Daniel Johnston and

Ruslan Tushov for linguistic assistance and all the colleagues

and students who made this work possible.

References

[1] EU Project SENSORIA. Accessed April 2016. http://www.sensoria-ist.
eu/.

[2] Internet of things global standards initiative. http://www.itu.int/en/ITU-T/
gsi/iot/Pages/default.aspx. Online; accessed 25th of October 2016.

[3] Internet of things (iot): number of connected devices worldwide
from 2012 to 2020. https://www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide/. Online; accessed 25th
of October 2016.

[4] Jolie Programming Language. Accessed April 2016. http://www.
jolie-lang.org/.

307

Figure IV.4. A graph of the pressure in the rooms. Axis of abscissae: Time of the day. Axis of ordinates: millibars

[5] Relative humidity and your home. http://www.thermastor.com/
information/relative-humidity-and-your-home.aspx. Online; accessed
25th of October 2016.

[6] WS-BPEL OASIS Web Services Business Process Execution Lan-
guage. accessed April 2016. http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-specification-draft.html.

[7] Kanna Al Falahi, Nikolaos Mavridis, and Yacine Atif. Social networks
and recommender systems: a world of current and future synergies. In
Computational Social Networks, pages 445–465. Springer, 2012.

[8] Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design:
multiparty asynchronous global programming. In POPL, pages 263–274,
2013.

[9] Nicola Dragoni, Manuel Mazzara, Saverio Giallorenzo, Fabrizio Montesi,
Alberto Luch Lafuente, Ruslan Mustafin, and Larisa Safina. Microser-
vices: yesterday, today, and tomorrow. In Present and Ulterior Software
Engineering. Springer Berlin Heidelberg, 2017.

[10] M. Fowler. Microservice Trade-Offs. http://martinfowler.com/articles/
microservice-trade-offs.html, (2015).

[11] C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro. Dynamic error handling
in service oriented applications. Fundam. Inform., 95(1):73–102, 2009.

[12] C. Guidi, R. Lucchi, G. Zavattaro, N. Busi, and R. Gorrieri. Sock: a
calculus for service oriented computing. In ICSOC, volume 4294 of
LNCS, pages 327–338. Springer, 2006.

[13] Abdulhamid Haidar, Haiwei Dong, and Nikolaos Mavridis. Image-based
date fruit classification. In Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), 2012 4th International Congress on,
pages 357–363. IEEE, 2012.

[14] Jermsak Jermsurawong, Mian Umair Ahsan, Abdulhamid Haidar, Haiwei
Dong, and Nikolaos Mavridis. Car parking vacancy detection and its
application in 24-hour statistical analysis. In Frontiers of Information
Technology (FIT), 2012 10th International Conference on, pages 84–90.
IEEE, 2012.

[15] R. Lucchi and M. Mazzara. A pi-calculus based semantics for WS-BPEL.
J. Log. Algebr. Program., 70(1):96–118, 2007.

[16] Larisa Safina Ivan Lanese Manuel Mazzara, Ruslan Mustafin. Towards
microservices and beyond: An incoming paradigm shift in distributed
computing. arXiv preprint arXiv:1610.01778, 2016.

[17] Ilaria Baroni Marco Nalin and Manuel Mazzara. A holistic infrastructure
to support elderlies’ independent living. Encyclopedia of E-Health and
Telemedicine, IGI Global, 2016.

[18] Nikolaos Mavridis, Thirimachos Bourlai, and Dimitri Ognibenes. The
human-robot cloud: Situated collective intelligence on demand. Cyber
Technology in Automation, Control, and Intelligent Systems (CYBER),
2012 IEEE International Conference.

[19] Nikolaos Mavridis, Stasinos Konstantopoulos, Ioannis A. Vetsikas,
I. Heldal, Pythagoras Karampiperis, G. Mathiason, Serge Thill, K. Stathis,

and Vangelis Karkaletsis. CLIC: A framework for distributed, on-demand,
human-machine cognitive systems. CoRR, abs/1312.2242, 2013.

[20] Nikolaos Mavridis, Georgios Pierris, Chiraz BenAbdelkader, Aleksandar
Krstikj, and Christos Karaiskos. Smart buildings and the human-machine
cloud. In GCC Conference and Exhibition (GCCCE), 2015 IEEE 8th.
IEEE, 2015.

[21] Dragoni Nicola Zhou Mu. Mazzara, Manuel. Dependable workflow
reconfiguration in WS-BPEL. In Proceedings of the 5th Nordic Workshop
on Dependability and Security, 2011.

[22] M. Mazzara, F. Abouzaid, N. Dragoni, and A. Bhattacharyya. Toward
design, modelling and analysis of dynamic workflow reconfigurations -
A process algebra perspective. In Web Services and Formal Methods -
8th International Workshop, WS-FM, pages 64–78, 2011.

[23] Manuel Mazzara. Towards Abstractions for Web Services Composition.
PhD thesis, University of Bologna, 2006.

[24] Manuel Mazzara. Deriving specifications of dependable systems: toward
a method. In 12th European Workshop on Dependable Computing
(EWDC), 2009.

[25] Manuel Mazzara. On methods for the formal specification of fault tolerant
systems. In 4th International Conference on Dependability (DEPEND),
2011.

[26] R. Robin Milner. A calculus of communicating systems. Lecture notes
in computer science. Springer-Verlag, Berlin, New York, 1980.

[27] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, I and II. Information and Computation, 100(1):1–40,41–77,
September 1992.

[28] F. Montesi and M. Carbone. Programming Services with Correlation Sets.
In Proc. of Service-Oriented Computing - 9th International Conference,
ICSOC, pages 125–141, 2011.

[29] Fabrizio Montesi. JOLIE: a Service-oriented Programming Language.
Master’s thesis, University of Bologna, 2010.

[30] Fabrizio Montesi. Process-aware web programming with Jolie. In
Proceedings of the 28th Annual ACM Symposium on Applied Computing,
SAC ’13, pages 761–763, New York, NY, USA, 2013. ACM.

[31] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-
oriented programming with jolie. In Web Services Foundations, pages
81–107. 2014.

[32] Renato Jorge Caleira Nunes. Home automation - a step towards
better energy management. In INTERNATIONAL CONFERENCE ON
RENEWABLE ENERGIES AND POWER QUALITY (ICREPQ 2017).

[33] Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro,
and Maurizio Gabbrielli. AIOCJ: A choreographic framework for safe
adaptive distributed applications. In Software Language Engineering -
7th International Conference, SLE 2014, Västerås, Sweden, September
15-16, 2014. Proceedings, pages 161–170, 2014.

308

