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Abstract

The article proposes a way to add marketing into the standard threshold
model of social networks. Within this framework, the article studies logical
properties of the influence relation between sets of agents in social networks.
Two different forms of this relation are considered: one for promotional mar-
keting and the other for preventive marketing. In each case a sound and
complete logical system describing properties of the influence relation is pro-
posed. Both systems could be viewed as extensions of Armstrong’s axioms
of functional dependency from the database theory.

1. Introduction

1.1. Social Networks

In this article we study how diffusion in social networks could be affected
by marketing. Diffusion happens when a product or a social norm is initially
adopted by a small group of agents who later influence their peers to adopt
the same product. The peers influence their peers, and so on. There are
two most commonly used models of diffusion: the cascading model and the
threshold model. In the cascading model [18, 12] the behaviour of agents is
random and the peer influence manifests itself in a change of a probability
of an agent to adopt the product. In the threshold model [24, 14, 11, 1],
originally introduced by Granovetter [10] and Schelling [19], the behavior of
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the agents is deterministic. Other models of diffusion, such as propositional
opinion diffusion model [9], have also been studied.

The focus of this article is on the threshold model of diffusion of a given
product. In this model, there is a threshold value θ(a) associated with each
agent a and an influence value w(a, b) associated with each pair of agents a
and b. Informally, the threshold value θ(a) represents the resistance of agent
a to adoption of the product and the influence value w(a, b) represents the
peer pressure that agent a puts on agent b upon adopting the product. If the
total peer pressure from the set of agents A who have already adopted the
product on an agent b is no less than the threshold value θ(b), i.e.,∑

a∈A
w(a, b) ≥ θ(b), (1)

then agent b also adopts the product.

1.2. Influence Relation

We say that a set of agents A influences a set of agents B if the social
network is such that an adoption of the product by all agents in set A will
unavoidably lead to an adoption of the product by all agents in set B. Note
that it is not important how original adoption of the product by agents in
set A happens. For example, agents in set A can receive and start using free
samples of the product. Also, agents in set A can influence agents in set B
indirectly. If agents in set A put enough peer pressure on some other agents
to adopt the product, who in turn put enough peer pressure on the agents
in set B to adopt the product, we still say that set A influences set B. We
denote this influence relation by A � B.

In this article we focus on universal principles of influence that are true
for all social networks. The set of such principles for a fixed distribution
of influence values has been studied by Azimipour and Naumov [3], who
provided a complete axiomatization of these principles that consists of the
following three axioms of influence:

1. Reflexivity: A � B, where B ⊆ A,

2. Augmentation: A � B → (A,C � B,C),

3. Transitivity: A � B → (B � C → A � C),

and an additional fourth axiom describing a property specific to the fixed
distribution of influence values. In these axioms, A,B denotes the union of
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sets A and B. The three axioms above were originally proposed by Arm-
strong [2] to describe functional dependence relation in database theory.
They became known in database literature as Armstrong’s axioms [8, p. 81].
Väänänen proposed a first order version of these principles [22]. Beeri, Fagin,
and Howard [5] suggested a variation of Armstrong’s axioms that describes
properties of multi-valued dependence. Naumov and Nicholls [15] proposed
another variation of these axioms that describes a rationally functional de-
pendence.

There have been at least two different attempts to enrich the language of
Armstrong’s axioms by introducing an additional parameter to the functional
dependence relation. Väänänen [23] studied approximate dependence rela-
tion A�pB, where p refers to the fraction of “exceptions” in which functional
dependence does not hold. Naumov and Tao [16] interpreted relation A�pB
as “knowing values of database attributes A and having an additional budget
p one can reconstruct the values of attributes in set B”. In this article we
interpret A�p B as the influence relation in social networks with parameter
p referring to the available marketing budget to either promote or prevent
influence.

1.3. Marketing Impact

We propose an extension of the threshold model that incorporates mar-
keting. This is done by representing a marketing campaign as a non-negative
spending function s, where s(b) specifies the amount of money spent on mar-
keting the product to agent b. In addition, we associate a value λ(b) with
each agent b, which we call the receptivity of agent b. This value represents
the responsiveness of agent b to marketing. The higher the value of the re-
ceptivity is, the more responsive the agent is to the marketing. We modify
formula (1) to say that agent b adopts the product if the total sum of the
marketing pressure and the peer pressure from the set of agents who have
already adopted the product is no less than the threshold value:

λ(b) · s(b) +
∑
a∈A

w(a, b) ≥ θ(b). (2)

In the first part of this article we assume that the goal of marketing is
to promote the adoption of the product. In the second part of the article we
investigate marketing campaigns designed to prevent adoption of the product.
An example of the second type of campaign is an anti-smoking advertisement
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campaign. In either of these two cases, the same equation (2) describes the
condition under which the product is adopted by agent b.

Note that most people would be more likely to buy a product when they
are exposed to a promotional marketing campaign. That is, in case of pro-
motional marketing, the value of the receptivity is usually positive. On the
other hand, people are usually less likely to buy a product or to adopt a social
norm after being exposed to preventive marketing. In other words, in the
preventive marketing setting, the value of the receptivity is usually negative.
However, our framework is general enough to allow for the receptivity value
to be either positive or negative in both of these cases.

While studying the marketing that promotes adoption of the product, we
interpret predicate A�pB as “there is a marketing campaign with budget no
greater than p that guarantees that the set of agents A will influence the set
of agents B”. When p = 0, relation A �p B becomes the influence relation
A � B discussed above. On the other hand, statement ¬(∅ �p B) means
that there is no marketing campaign with budget p that alone can influence
all agents in set B. As we show, the following three modified Armstrong’s
axioms give a sound and complete axiomatization of universal propositional
properties of the relation A �p B:

1. Reflexivity: A �p B, where B ⊆ A,

2. Augmentation: A �p B → A,C �p B,C,

3. Transitivity: A �p B → (B �q C → A �p+q C).

These axioms are identical to the axioms of budget-constrained functional
dependence proposed by Naumov and Tao [16]. Informally, the first of these
axioms captures the fact that every set of agents vacuously influences itself no
matter what the budget is. The second axiom says that if set A can influence
set B on a given budget, then any of its supersets can also influence B on the
same budget. Finally, the last axiom states that two marketing campaigns,
whose existences are expressed by statements A �p B and B �q C, could be
combined into one single campaign that achieves A �p+q C.

In the case of marketing that aims to prevent the influence, one would
naturally be interested in considering relation “there is a marketing campaign
with budget no greater than p that guarantees that the set of agents A will not
influence the set of agents B”. Equivalently, one can study the properties of
the negation of this relation, or, in other words, the properties of the relation
“for any preventive marketing campaign with budget no greater than p, the
set of agents A is able to influence the set of agents B”. We have chosen

4



to study the latter relation because the axiomatic system for this relation is
more elegant. In this article we show that the following four axioms give a
sound and complete axiomatization of the latter relation:

1. Reflexivity: A �p B, where B ⊆ A,

2. Augmentation: A �p B → A,C �p B,C,

3. Transitivity: A �p B → (B �p C → A �p C),

4. Monotonicity: A �p B → A �q B, where q ≤ p.

The difference between the axiomatic systems for promotional marketing
and preventive marketing is in transitivity and monotonicity axioms. Both
systems include a form of transitivity axiom, but these forms are different
and not equivalent. The system for preventive marketing contains a form
of monotonicity axiom. For promotional marketing, the following form of
monotonicity axiom is true and provable, as is shown in Lemma 7:

A �p B → A �q B, where p ≤ q.

Both of the above axiomatic systems differ from Väänänen [23] axiomatiza-
tion of approximate functional dependence.

There are several other logical frameworks for reasoning about diffusion in
social networks. Facebook Logic proposed by Seligman, Liu, and Girard [20]
captures properties of epistemic social networks in modal language. In pa-
pers [21, 13], the approach was further developed by introducing dynamic
friendship relations. Christoff and Hansen [6] simplified Seligman, Liu, and
Girard setting and gave a complete axiomatization of the logical system for
this new setting. Minimal Threshold Influence Logic proposed by Christoff
and Rendsvig [7] uses modal language to capture dynamic of diffusion in a
threshold model and a complete axiomatization of this logic was given. Bal-
tag, Christoff, Rendsvig, and Smets [4] discussed logics for informed update
and prediction update. The languages of the systems described above are
significantly different from ours and, as a result, neither of these systems
deals with marketing in social networks.

The article is organized as follows. In Section 2, we give formal defini-
tions of a social network and of a diffusion in such networks. We also prove
basic properties of diffusion used later in the article. This section of the
article is common to both promotional and preventive marketing. In Sec-
tion 3, we introduce semantics of promotional marketing, give axioms of our
logical system for promotional marketing and prove the soundness and the
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completeness of this logical system. In Section 4, we do the same for pre-
ventive marketing. Section 5 concludes the article. A preliminary version of
this work without proofs of completeness appeared as [17].

2. Social Networks

As discussed in the introduction, the threshold model of a social network
is specified by a non-negative influence value between any pair of agents in
the network and by a threshold value for each agent. Additionally, each
agent is assigned a receptivity value that specifies the responsiveness of the
agent to marketing. The value of the receptivity could be positive, zero, or
negative. We assume that the set of agents is finite.

Definition 1. A social network is a tuple (A, w, λ, θ), where

1. Set A is a finite set of agents.
2. Function w maps A×A into the set of non-negative real numbers. The

value w(a, b) represents the “influence” of agent a on agent b.
3. Function λ maps A into real numbers. The value of λ(a) represents

the “receptivity” of an agent a to marketing.
4. “Threshold” function θ maps A into the set of real numbers.

Figure 1 illustrates Definition 1. In this figure, the set of agents is the set
{u, v, w, t, x, y, z}. The influence value w(a, b) is specified by the label on the
directed edge from a to b. The edges for which the influence value is zero are
omitted. Threshold and receptivity values are shown next to each agent.
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Figure 1: A Social Network.

We describe a marketing campaign by specifying “spending” on adver-
tisement to each agent in the social network.
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Definition 2. For any social network (A, w, λ, θ), a spending function is an
arbitrary function from set A into non-negative real numbers.

The following is an example of a spending function for the social network
depicted in Figure 1. This function specifies a marketing campaign targeting
exclusively agent t.

s(a) =

{
3, if a = t,

0, otherwise.
(3)

Definition 3. For any social network (A, w, λ, θ) and any spending function
s, let ‖s‖ =

∑
a∈A s(a).

For the spending function defined by equation (3), we have ‖s‖ = 3.
Next we formally define the diffusion in social network under marketing

campaign specified by a spending function s. Suppose that initially the
product is adopted by a set of agent A. We recursively define the diffusion
chain of sets of agents

A = A0
s ⊆ A1

s ⊆ A2
s ⊆ A3

s ⊆ . . . ,

where Ak
s is the set of agents who have adopted the product on or before the

k-th step of the diffusion.

Definition 4. For any given social network (A, w, λ, θ), any spending func-
tion s, and any subset A ⊆ A, let set An

s be recursively defined as follows:

1. A0
s = A,

2. An+1
s = An

s ∪
{
b ∈ A | λ(b) · s(b) +∑

a∈An
s
w(a, b) ≥ θ(b)

}
.

For example, consider again the social network depicted in Figure 1. Let
A be the set {v} and s be the spending function defined by equation (3).
Note that the threshold value of agent u in this network is zero and, thus, it
will adopt the product without any peer or marketing pressure. For the other
agents in this network, the combination of the marketing pressure specified
by the marketing function s and the peer pressure from agent v is not enough
to adopt the product. Thus, A1

s = {v, u}. Once agent v and agent u both
adopt the product, their combined peer pressure on agent w reaches the
threshold value of w and agent w also adopts the product. No other agent
is experiencing enough pressure to adopt the product at this point. Hence,
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A2
s = {v, u, w}. Next, agent t will adopt the product due to the combination

of the peer pressure from agent w and the marketing pressure specified by
the spending function s, and so on. This diffusion process is illustrated in
Figure 2.
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Figure 2: Diffusion Chain A1
s ⊆ A2

s ⊆ A2
s ⊆ A4

s.

Corollary 1. (An
s )

k
s = An+k

s for each social network (A, w, λ, θ), each n, k ≥
0, each set A ⊆ A, and each spending function s.

Definition 5. A∗
s =

⋃
n≥0A

n
s .

Corollary 2. A ⊆ A∗
s for each social network (A, w, λ, θ), each spending

function s, and each subset A ⊆ A.

In the rest of this section we establish technical properties of the chain
{An

s}n≥0 and the set A∗
s that are used later. The first of these properties

is a corollary that follows from the assumption of the finiteness of set A in
Definition 1.

Corollary 3. For any social network (A, w, λ, θ), any subset A of A and
any spending function s, there is n ≥ 0 such that A∗

s = An
s .

Next, we prove that A∗
s is an idempotent operator.
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Lemma 1. (A∗
s)

∗
s ⊆ A∗

s for each social network (A, w, λ, θ), each spending
function s, and each subsets A of A.

Proof. By Corollary 3, there is n ≥ 0 such that A∗
s = An

s . By the same
corollary, there also is k ≥ 0 such that (An

s )
∗
s = (An

s )
k
s . Thus, by Corollary 1,

(A∗
s)

∗
s = (An

s )
∗
s = (An

s )
k
s = An+k

s .

Therefore, (A∗
s)

∗
s ⊆ A∗

s by Definition 5. �

We now show that any set of agents influences at least as many agents
as any of its subsets, given the same fixed spending function. This claim is
formally stated as Corollary 4 that follows from the next lemma:

Lemma 2. If A ⊆ B, then Ak
s ⊆ Bk

s , for each social network (A, w, λ, θ),
each spending function s, each k ≥ 0, and all subsets A and B of A.

Proof. We prove the statement of the lemma by induction on k. If k = 0,
then A0

s = A ⊆ B = B0
s by Definition 4.

Suppose that Ak
s ⊆ Bk

s . Let x ∈ Ak+1
s . It suffices to show that x ∈

Bk+1
s . Indeed, by Definition 4, assumption x ∈ Ak+1

s implies that either
x ∈ Ak

s or λ(x) · s(x) + ∑
a∈Ak

s
w(a, x) ≥ θ(x). When x ∈ Ak

s , by the

induction hypothesis, x ∈ Ak
s ⊆ Bk

s . Thus, x ∈ Bk
s . Therefore, x ∈ Bk+1

s by
Definition 4.

When λ(x)·s(x)+∑
a∈Ak

s
w(a, x) ≥ θ(x), due to the assumption Ak ⊆ Bk,

λ(x) · s(x) +
∑
b∈Bk

s

w(b, x) ≥ λ(x) · s(x) +
∑
a∈Ak

s

w(a, x) ≥ θ(x).

Therefore, x ∈ Bk+1
s by Definition 4. �

Corollary 4. If A ⊆ B, then A∗
s ⊆ B∗

s , for each social network (A, w, λ, θ),
each spending function s, and all subsets A and B of A.

Next, we establish that the influence of the union of two sets of agents is at
least as strong as the combination of the influence of these two sets.

Lemma 3. A∗
s ∪ B∗

s ⊆ (A ∪ B)∗s, for each social network (A, w, λ, θ), each
spending function s, and all subsets A and B of A.
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Proof. Note that A ⊆ A ∪ B and B ⊆ A ∪ B. Thus, A∗
s ⊆ (A ∪ B)∗s and

B∗
s ⊆ (A ∪ B)∗s by Corollary 4. Therefore, A∗

s ∪ B∗
s ⊆ (A ∪ B)∗s. �

One might intuitively think that the result of two consecutive marketing
campaigns can not be more effective than the combined campaign, or, in
other terms, that (A∗

s1
)∗s2 ⊆ A∗

s1+s2
. More careful analysis shows that this

claim is true only if all agents have non-negative receptivity. However, this
property can be restated in the form which is true for negative receptivity as
well. To do this, we introduce a binary operation ⊕λ on spending functions.

Definition 6. For any two spending functions s1 and s2 and any receptivity
function λ, let s1 ⊕λ s2 be spending function such that for each agent a,

(s1 ⊕λ s2)(a) =

{
s1(a) + s2(a), if λ(a) ≥ 0,

0, otherwise.

The desired property, expressed in terms of operation ⊕λ, is stated later
as Lemma 6. We start with two auxiliary observations.

Lemma 4. λ(b)·s1(b) ≤ λ(b)·(s1⊕λs2)(b) for any social network (A, w, λ, θ),
any agent b ∈ A, and any two spending functions s1 and s2.

Proof. We consider the following two cases separately:
Case I: λ(b) ≥ 0. In this case by Definition 6 and because s2(b) ≥ 0 due
to Definition 2, we have s1(b) ≤ s1(b) + s2(b) = (s1 ⊕λ s2)(b). Therefore,
λ(b) · s1(b) ≤ λ(b) · (s1 ⊕λ s2)(b) by the assumption λ(b) ≥ 0.
Case II: λ(b) < 0. In this case by Definition 6 and because s1(b) ≥ 0 due
to Definition 2, we have s1(b) ≥ 0 = (s1 ⊕λ s2)(b). Therefore, λ(b) · s1(b) ≤
λ(b) · (s1 ⊕λ s2)(b) by the assumption λ(b) < 0. �

Now we prove that the spending function s1 ⊕λ s2 is at least as effective
as s1.

Lemma 5. An
s1

⊆ An
s1⊕λs2

, for any social network (A, w, λ, θ), any set A ⊆
A, any n ≥ 0, any receptivity function λ, and any two spending function s1
and s2.

Proof. We show the lemma by induction on n. If n = 0, then, by Defini-
tion 4, A0

s1
= A = A0

s1⊕λs2
. Suppose that An

s1
⊆ An

s1⊕λs2
. We need to show
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that An+1
s1

⊆ An+1
s1⊕λs2

. Indeed, by Definition 4, Lemma 4, and the induction
hypothesis,

An+1
s1

= An
s1
∪
⎧⎨
⎩b ∈ A | λ(b) · s1(b) +

∑
a∈An

s1

w(a, b) ≥ θ(b)

⎫⎬
⎭

⊆ An
s1⊕λs2

∪
⎧⎨
⎩b ∈ A | λ(b) · (s1 ⊕λ s2)(b) +

∑
a∈An

s1⊕λs2

w(a, b) ≥ θ(b)

⎫⎬
⎭

= An+1
s1⊕λs2

.

�

Finally, we are ready to state and prove that a marketing campaign with
spending function s1⊕λ s2 is at least as effective as a sequential combination
of two marketing campaigns with spending functions s1 and s2. This prop-
erty is used in Lemma 12 to prove the soundness of Transitivity axiom for
promotional marketing.

Lemma 6. (A∗
s1
)∗s2 ⊆ A∗

s1⊕λs2
, for any social network (A, w, λ, θ), any set

A ⊆ A, any receptivity function λ, and any two spending function s1 and s2.

Proof. By Corollary 3, there are n1, n2 ≥ 0 such that A∗
s1
= An1

s1
and (An1

s1
)∗s2 =

(An1
s1
)n2
s2
. Thus,

(A∗
s1
)∗s2 = (An1

s1
)n2
s2

⊆ (An1
s1⊕λs2

)n2
s2

by Lemma 5 and Lemma 2

⊆ (An1
s1⊕λs2

)n2
s2⊕λs1

by Lemma 5

⊆ (An1
s1⊕λs2

)n2
s1⊕λs2

by Definition 6

⊆ An1+n2
s1⊕λs2

by Corollary 1

⊆ A∗
s1⊕λs2

by Definition 5.

�
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3. Logic of Promotional Marketing

There are two logical systems that we study in this article. In this section
we introduce a logical system for the marketing aiming to promote influence
and prove its soundness and completeness. In the next section we do the
same for the marketing aiming to prevent influence.

3.1. Syntax and Semantics

We start by defining the syntax of our logical systems. The logic of
promotional marketing and the logic of preventive marketing use the same
language Φ(A), but different semantics.

Definition 7. For any finite set A, let Φ(A) be the minimum set of formulas
such that

1. A �p B ∈ Φ(A) for all subsets A and B of set A and all non-negative
real numbers p,

2. ¬φ ∈ Φ(A) for all φ ∈ Φ(A),

3. φ → ψ ∈ Φ(A) for all φ, ψ ∈ Φ(A).

The next definition is the key definition of this section. Its item 1 specifies
the influence relation in a social network with a fixed marketing budget.

Definition 8. For any social network N with the set of agents A and any
formula φ ∈ Φ(A), we define satisfiability relation N � φ as follows:

1. N � A�pB if B ⊆ A∗
s for some spending function s such that ‖s‖ ≤ p,

2. N � ¬ψ if N � ψ,

3. N � ψ → χ if N � ψ or N � χ.

For example, as we have seen in the introduction, for social network N de-
picted in Figure 1, we have {x, z} ⊆ {v}∗s, where spending function s is
defined by equation (3). Thus, N � {v} �3 {x, z}. Through the rest of
the article we omit curly braces from the formulas like this and write them
simply as N � v �3 x, z.

12



3.2. Axioms

Let A be any fixed finite set of agents. Our logical system for promotional
influence, in addition to propositional tautologies in language Φ(A), contains
the following axioms:

1. Reflexivity: A �p B, where B ⊆ A,

2. Augmentation: A �p B → A,C �p B,C,

3. Transitivity: A �p B → (B �q C → A �p+q C).

We write 
 φ if formula φ ∈ Φ(A) is derivable in this logical system using
Modus Ponens inference rule. We write X 
 φ if formula φ is derivable using
an additional set of axioms X ⊆ Φ(A).

3.3. Examples

The soundness and the completeness of our logical system will be shown
later. In this section we give several examples of formal proofs in our system.
We start with a form of the monotonicity statement from the introduction.
As the next lemma shows, this statement is provable in our logic of promo-
tional marketing when p ≤ q:

Lemma 7. 
 A �p B → A �q B, where p ≤ q.

Proof. By Transitivity axiom, 
 A �q−p A → (A �p B → A �q B). At the
same time, 
 A �q−p A by Reflexivity axiom. Thus, 
 A �p B → A �q B by
Modus Ponens inference rule. �

Lemma 8. 
 A �p B → (A �q C → A �p+q B,C).

Proof. By Augmentation axiom,


 A �p B → A �p A,B (4)

and

 A �q C → A,B �q B,C. (5)

By Transitivity axiom,


 A �p A,B → (A,B �q B,C → A �p+q B,C). (6)
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The statement of the lemma follows from statements (4), (5), and (6) by the
laws of propositional logic. �

The next lemma will be used later in the proof of the completeness.

Lemma 9. Let X be a subset of Φ(A), m be a non-negative integer num-
ber, sets A,B1, . . . , Bm be subsets of A, and p1, . . . , pm be non-negative real
numbers. If X 
 A �pi Bi for all 1 ≤ i ≤ m, then X 
 A �q

⋃m
i=1Bi, where

q =
∑m

i=1 pi.

Proof. We prove the lemma by induction on m. If m = 0, then we need to
show that X 
 A �0 ∅, which is an instance of Reflexivity axiom.

Suppose that X 
 A�q′
⋃m−1

i=1 Bi, where q
′ =

∑m−1
i=1 pi. Since X 
 A�pm

Bm due to the assumption of the lemma, by Lemma 8, X 
 A �q

⋃m
i=1Bi,

where q =
∑m

i=1 pi. �

3.4. Soundness

In this section we prove the soundness of the logic for promotional mar-
keting.

Theorem 1. For any finite set A and any φ ∈ Φ(A), if 
 φ, then N � φ
for each social network N = (A, w, λ, θ).

The soundness of propositional tautologies and of Modus Ponens inference
rule is straightforward. Below we show the soundness of each of the remaining
axioms as a separate lemma.

Lemma 10. N � A �p B, for any social network N = (A, w, λ, θ) and any
subsets A and B of A such that B ⊆ A.

Proof. Let s be the spending function equal to 0 on each a ∈ A. Thus,
‖s‖ = 0 ≤ p by Definition 3. At the same time, B ⊆ A ⊆ A∗

s by Corollary 2.
Therefore, N � A �p B by Definition 8. �

Lemma 11. If N � A�pB, then N � A,C �pB,C, for each social network
N = (A, w, λ, θ) and all subsets A, B, and C of A.
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Proof. Suppose that N � A�p B. Thus, by Definition 8, there is a spending
function s such that ‖s‖ ≤ p and B ⊆ A∗

s . Note that C ⊆ C∗
s by Corollary 2.

Thus, B∪C ⊆ A∗
s∪C∗

s ⊆ (A∪C)∗s by Lemma 3. Therefore, N � A,C�pB,C,
by Definition 8. �

Lemma 12. For any social network N = (A, w, λ, θ), if N � A �p B and
N � B �q C, then N � A �p+q C.

Proof. By Definition 8, assumption N � B �q C implies that there is a
spending function s1 such that ‖s1‖ ≤ q and C ⊆ B∗

s1
.

Similarly, assumptionN � A�pB implies that there is a spending function
s2 such that ‖s2‖ ≤ p and B ⊆ A∗

s2
. Hence, B∗

s1
⊆ (A∗

s2
)∗s1 by Corollary 4.

Thus, B∗
s1
⊆ A∗

s1⊕λs2
by Lemma 6.

It follows that C ⊆ B∗
s1

⊆ A∗
s1⊕λs2

. At the same time, ‖s1 ⊕λ s2‖ ≤
‖s1‖ + ‖s2‖ ≤ p + q, by Definition 6. Therefore, N � A �p+q C by Defini-
tion 8. �

This concludes the proof of the soundness of our logical system for pro-
motional marketing.

3.5. Completeness

We now show the completeness of our logical system for promotional mar-
keting. This result is formally stated as Theorem 2 in the end of this section.
As usual, at the core of the proof of the completeness is a construction of a
canonical model. In our case, the role of a canonical model is played by the
canonical social network.

Let A0 be any finite set and X = {Ai �pi Bi}i≤m be any finite set of
atomic formulas in language Φ(A0). We now proceed to define the canonical
social network NX = (A, w, λ, θ). An example of the canonical network for
set X consisting of formula a, c �1 d, formula b, c �2 a, and formula a, b �3 c
is depicted in Figure 3. We associate two new agents αi and βi with each
formula Ai �pi Bi ∈ X. We assume that agents α1, . . . , αm, β1, . . . , βm are
distinct and that they do not belong to set A0.

Definition 9. A = A0 ∪ {αi}i≤m ∪ {βi}i≤m.

In social network NX only agents {αi}i≤m are responsive to promotional
marketing. We formally capture this through the following definition of func-
tion λ:
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Figure 3: The canonical social network NX for set X consisting of formula a, c �1 d,
formula b, c �2 a, and formula a, b �3 c.

Definition 10. For any a ∈ A,

λ(a) =

{
1, if a = αi for some i ≤ m,

0, otherwise.

We assume that for each i ≤ m, all agents in set Ai as well as agent
αi put peer pressure on agent βi once they adopt the product. In addition,
upon adopting the product, agent βi puts peer pressure on each agent in set
Bi. Besides that, no agent can put peer pressure on any other agent in this
network. We formally capture this in Definition 11.

Definition 11.

w(a, b) =

⎧⎪⎨
⎪⎩
1, if a ∈ Ai ∪ {αi} and b = βi for some i ≤ m,

1, if a = βi and b ∈ Bi for some i ≤ m,

0, otherwise.

Before continuing with the definition of the social network NX , we state
and prove a property of this network that follows from Definition 11. We
show that in order to put peer pressure of at least |Ai| + 1 on agent βi, one
needs to influence agent αi and all of the agents in set Ai.

Lemma 13. If
∑

a∈An
s
w(a, βi) ≥ |Ai|+ 1, then αi ∈ An

s and Ai ⊆ An
s .
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Proof. By Definition 11, w(a, βi) = 1 if a ∈ Ai ∪ {αi} and w(a, βi) = 0 for
all other a ∈ A. Thus, inequality

∑
a∈An

s
w(a, βi) ≥ |Ai| + 1 implies that

Ai ∪ {αi} ⊆ An
s . Therefore, αi ∈ An

s and Ai ⊆ An
s . �

We are now ready to define the threshold value function θ for the so-
cial network NX . Recall that according to Definition 11 and Definition 10,
no agent can put peer pressure on agent αi, but agent αi is responsive to
promotional marketing. We set the threshold value θ(αi) to pi so that this
agent can only be influenced by a marketing campaign with budget at least
pi. We set value θ(βi) high enough to guarantee (see Lemma 13) that agent
αi and each agent in set Ai adopt the product before agent βi is influenced.
Threshold values of all agents in set A0 are set to 1.

Definition 12.

θ(a) =

⎧⎪⎨
⎪⎩
pi, if a = αi for some i ≤ m,

|Ai|+ 1, if a = βi for some i ≤ m,

1, otherwise.

This concludes the definition of the canonical social networkNX = (A, w, λ, θ).
Recall that Figure 3 depicts the canonical social network NX for set X

consisting of formula a, c �1 d, formula b, c �2 a, and formula a, b �3 c. Note
that formula a, c�1 d, formula b, c�2 a, and formula a, b�3 c are all satisfied
in the canonical network depicted in Figure 3. For example, for the formula
a, c �1 d, let spending function s be such that it spends 1 on agent αi and
nothing on all other agents. Thus, {a, c}1s = {a, c, α1}. Once α1 adopts the
product, the total peer pressure on agent β1 becomes 3 and it too adopts
the product: {a, c}2s = {a, c, α1, β1}. Finally, upon adopting of the product,
agent β1 alone puts enough pressure on agent d to also adopt the product:
{a, c}3s = {a, c, α1, β1, d}. Thus, formula a, c�1 d is satisfied in this network.

The next lemma generalizes the observation made in the previous para-
graph to a claim that all formulas from set X = {Ai �pi Bi}i≤m are satisfied
in the canonical network NX .

Lemma 14. NX � Ai �pi Bi for each i ≤ m.

Proof. Consider any i ≤ m. Let s be a spending function such that

s(a) =

{
pi, if a = αi,

0, otherwise.
(7)
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Then, by Definition 10, Definition 11, and Definition 12,

λ(αi) · s(αi) +
∑
a∈Ai

w(a, αi) = 1 · pi +
∑
a∈Ai

0 = pi = θ(αi).

Thus, αi ∈ (Ai)
1
s by Definition 4. Hence, by Definition 10, Definition 11, and

Definition 12,

λ(βi) · s(βi) +
∑

a∈(Ai)1s

w(a, βi) ≥ λ(βi) · s(βi) + w(αi, βi) +
∑
a∈Ai

w(a, βi)

≥ 0 · 0 + 1 + |Ai| = 1 + |Ai| = θ(βi).

Thus, βi ∈ (Ai)
2
s by Definition 4. Finally, for each b ∈ Bi, by Definition 10,

Definition 11, and Definition 12,

λ(b) · s(b) +
∑

a∈(Ai)2s

w(a, b) ≥ 0 · 0 + w(βi, b) = w(βi, b) = 1 = θ(b).

Hence, b ∈ (Ai)
3
s by Definition 4. Thus, b ∈ (Ai)

∗
s by Definition 5 for each

b ∈ Bi. Then, Bi ⊆ A∗
s. Note that ‖s‖ = pi due to definition (7). Therefore,

NX � Ai �pi Bi by Definition 8. �

Our next important result is the converse of Lemma 14 stated later as
Lemma 22. In preparation for its, we make several technical observations
about the social network NX . First, we prove that, for each i ≤ m, agent βi

can not be influenced without agent αi being influenced as well.

Lemma 15. If βi ∈ An
s , then αi ∈ An

s , for each A ⊆ A0, each i ≤ m, and
each n ≥ 0.

Proof. Suppose βi ∈ An
s . Let k be the smallest integer such that 0 ≤ k ≤ n

and βi ∈ Ak
s .

If k = 0, then βi ∈ A0
s = A by Definition 4. Thus, βi ∈ A0 due to the

assumption A ⊆ A0, which contradicts the choice of β1, . . . , βm. Therefore,
the lemma is vacuously true.

Suppose that k > 0. Since k > 0 is the smallest integer such that βi ∈ Ak
s ,

it must be that βi ∈ Ak
s \ Ak−1

s . Thus, by Definition 4,

λ(βi) · s(βi) +
∑

a∈Ak−1
s

w(a, βi) ≥ θ(βi).
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By Definition 10, λ(βi) = 0. By Definition 12, θ(βi) = |Ai|+ 1. Thus,∑
a∈Ak−1

s

w(a, βi) ≥ |Ai|+ 1.

Thus, αi ∈ Ak−1
s by Lemma 13. Hence, αi ∈ Ak−1

s . Therefore, αi ∈ An
s by

Definition 4 and since k − 1 < k ≤ n. �

The next lemma shows that the only way to influence agent αi is to spend
at least pi on promotional marketing to this agent.

Lemma 16. If αi ∈ An
s , then s(αi) ≥ pi, for each A ⊆ A0.

Proof. Suppose that αi ∈ An
s . Note that αi /∈ A0 ⊇ A = A0

s by the choice of
α1, . . . , αm. Thus, by Definition 4, there is k < n such that

λ(αi) · s(αi) +
∑
a∈Ak

s

w(a, αi) ≥ θ(αi).

By Definition 11, w(a, αi) = 0 for each a ∈ A. Hence, λ(αi) · s(αi) ≥ θ(αi).
By Definition 10, λ(αi) = 1. By Definition 12, θ(αi) = pi. Therefore,
s(αi) ≥ pi. �

Lemma 17. For each n ≥ 0 and each subset A of A0, if βi ∈ An+1
s \ An

s ,
then X 
 (An

s ∩ A0) �pi Bi.

Proof. By Definition 4, assumption βi ∈ An+1
s \ An

s implies that

λ(βi) · s(βi) +
∑
a∈An

s

w(a, βi) ≥ θ(βi).

By Definition 10, λ(βi) = 0. Thus,
∑

a∈An
s
w(a, βi) ≥ θ(βi). Hence, by Defini-

tion 12,
∑

a∈An
s
w(a, βi) ≥ |Ai|+1. Thus, Ai ⊆ An

s by Lemma 13. Recall that

Ai ⊆ A0 by the choice of setX. Hence, Ai ⊆ An
s∩A0. Then, 
 (An

s∩A0)�0Ai

by Reflexivity axiom. Recall that Ai�pi Bi ∈ X. Thus, X 
 (An
s ∩A0)�pi Bi

by Transitivity axiom. �

Lemma 18. X 
 (An
s ∩ A0) �q

⋃
βi∈An+1

s \An
s
Bi, where q =

∑
βi∈An+1

s \An
s
pi.
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Proof. The statement of the lemma follows from Lemma 17 and Lemma 9. �

Lemma 19. X 
 (An
s∩A0)�q((A

n+2
s \An+1

s )∩A0), where q =
∑

βi∈An+1
s \An

s
pi,

for each subset A of A0, each spending function s, and each n ≥ 0.

Proof. By Definition 4,

(An+2
s \ An+1

s ) ∩ A0 =

⎧⎨
⎩b ∈ A0

∣∣∣∣∣∣ λ(b) · s(b) +
∑

a∈An+1
s

w(a, b) ≥ θ(b)

⎫⎬
⎭

\
⎧⎨
⎩b ∈ A0

∣∣∣∣∣∣ λ(b) · s(b) +
∑
a∈An

s

w(a, b) ≥ θ(b)

⎫⎬
⎭ .

By Definition 10, λ(b) = 0 for all b ∈ A0. By Definition 12, θ(b) = 1 for all
b ∈ A0. Thus,

(An+2
s \ An+1

s ) ∩ A0

=

⎧⎨
⎩b ∈ A0

∣∣∣∣∣∣
∑

a∈An+1
s

w(a, b) ≥ 1

⎫⎬
⎭ \

⎧⎨
⎩b ∈ A0

∣∣∣∣∣∣
∑
a∈An

s

w(a, b) ≥ 1

⎫⎬
⎭ .

Since α1, . . . , αm, β1, . . . βm /∈ A0, by Definition 11, for each b ∈ A0, we
have w(a, b) = 0 only if a = βi and b ∈ Bi for some i ≤ m, in which case
w(a, b) = 1. Hence,

(An+2
s \ An+1

s ) ∩ A0 =
⋃

βi∈An+1
s \An

s

Bi.

Thus, to finish the proof of the lemma, it is sufficient to show that

X 
 (An
s ∩ A0) �q

⋃
βi∈An+1

s \An
s

Bi,

where q =
∑

βi∈An+1
s \An

s
pi, which follows from Lemma 18. �

Lemma 20. X 
 A �q (A
1
s ∩ A0), for each subset A of A0, each spending

function s, and each non-negative real number q.
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Proof. By Definition 4,

A1
s ∩ A0 = (A ∩ A0) ∪

{
b ∈ A0

∣∣∣∣∣ λ(b) · s(b) +
∑
a∈A

w(a, b) ≥ θ(b)

}
.

By Definition 10, λ(b) = 0 for all b ∈ A0. By Definition 12, θ(b) = 1 for all
b ∈ A0. Thus,

A1
s ∩ A0 = (A ∩ A0) ∪

{
b ∈ A0

∣∣∣∣∣
∑
a∈A

w(a, b) ≥ 1

}
.

By Definition 11, w(a, b) = 0 for all a ∈ A ⊆ A0 and all b ∈ A0. Thus, the
set {

b ∈ A0

∣∣∣∣∣
∑
a∈A

w(a, b) ≥ 1

}

is empty. Hence, A1
s ∩ A0 = A ∩ A0. Therefore, X 
 A �q (A

1
s ∩ A0) by

Reflexivity axiom. �

Lemma 21. X 
 A�q (A
n+1
s ∩A0), where q =

∑
βi∈An

s
pi, for each subset A

of A0, each spending function s, and each n ≥ 0.

Proof. We prove this lemma by induction on n. If n = 0, then the required
follows from Lemma 20.

Assume now that
X 
 A �q (A

n+1
s ∩ A0), (8)

where q =
∑

βi∈An
s
pi.

Note that An
s ⊆ An+1

s by Definition 4. Hence, 
 (An+1
s ∩A0)�0 (A

n
s ∩A0)

by Reflexivity axiom. At the same time, by Lemma 19,

X 
 (An
s ∩ A0) �r ((A

n+2
s \ An+1

s ) ∩ A0),

where r =
∑

βi∈An+1
s \An

s
pi. Thus, by Transitivity axiom,

X 
 (An+1
s ∩ A0) �r ((A

n+2
s \ An+1

s ) ∩ A0).
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Then, by Augmentation axiom,

X 
 (An+1
s ∩ A0), (A

n+1
s ∩ A0) �r ((A

n+2
s \ An+1

s ) ∩ A0), (A
n+1
s ∩ A0).

In other words,
X 
 (An+1

s ∩ A0) �r (A
n+2
s ∩ A0). (9)

Therefore, by Transitivity axiom from statement (8) and (9) we can conclude
X 
 A �q′ (A

n+2
s ∩ A0), where q′ = q + r =

∑
βi∈An+1

s
pi. �

We are now ready to prove the converse of Lemma 14.

Lemma 22. If NX � A �p B, then X 
 A �p B, for each subsets A and B
of A0 and each non-negative real number p.

Proof. Suppose that NX � A �p B. By Definition 8, there is a spending
function s such that ‖s‖ ≤ p and B ⊆ A∗

s. Thus, by Corollary 3, there is
n ≥ 0 such that B ⊆ An

s . By Definition 4, An
s ⊆ An+1

s . Thus, B ⊆ An+1
s .

Since B is a subset of A0, we have B ⊆ An+1
s ∩A0. Hence, 
 (An+1∩A0)�0B

by Reflexivity axiom. Then, from Transitivity axiom and Lemma 21, we have
X 
 A �q B, where q =

∑
βi∈An

s
pi.

Note that
∑

βi∈An
s
pi ≤

∑
αi∈An

s
pi by Lemma 15 and

∑
αi∈An

s
pi ≤

∑
s(αi)≥pi

pi
by Lemma 16. Thus, taking into account Definition 3,

q =
∑
βi∈An

s

pi ≤
∑

αi∈An
s

pi ≤
∑

s(αi)≥pi

pi ≤
∑

s(αi)≥pi

s(αi) ≤
∑
a∈A

s(a) = ‖s‖ ≤ p.

Hence, q ≤ p. Then, 
 B �p−q B by Reflexivity axiom. Finally, X 
 A�q B
and 
 B �p−q B, by Transitivity axiom, imply that X 
 A �p B. �

We conclude this section by stating and proving the completeness theorem
for promotional marketing.

Theorem 2. If � φ, then there exists social network N = (A, w, λ, θ) such
that φ ∈ Φ(A) and N � φ.

Proof. Suppose that � φ. Let M be any maximal consistent subset of

{ψ,¬ψ | ψ is a subformula of ¬φ}

22



such that ¬φ ∈ M . Let X be the set of all atomic formulas of the form
A �p B in set M . To finish the proof of the theorem, we first establish the
following lemma:

Lemma 23. ψ ∈ M if and only if NX � ψ for each subformula ψ of ¬φ.
Proof. We prove the lemma by induction on the structural complexity of
formula ψ. In the base case, suppose that ψ is A �p B.
(⇒) If A �p B ∈ M , then A �p B ∈ X by the choice of set X. Thus,
NX � A �p B by Lemma 14.
(⇐) If NX � A �p B, then X 
 A �p B by Lemma 22. Thus, M 
 A �p B.
Hence, by the maximality of set M , we have A �p B ∈ M since A �p B is a
subformula of ¬φ.

The induction step follows from the induction hypothesis, the maximality
and the consistency of set M and Definition 8 in the standard way. �

To finish the proof of the theorem, note that ¬φ ∈ M by the choice of set
M . Thus, NX � ¬ψ by Lemma 23. Therefore, NX � ψ by Definition 8. �

4. Logic of Preventive Marketing

In this section we study the impact of preventive marketing on influence
in social networks. Our definition of a social network given in Definition 1
and the language Φ(A) remain the same. As it has been discussed in the
introduction, we only modify the meaning of the influence relation A �p B
to be “for any preventive marketing campaign with budget no greater than
p, the set of agents A is able to influence the set of agents B”. The latter is
formally captured in item 1 of Definition 13.

Definition 13. For any social network N with the set of agents A and any
formula φ ∈ Φ(A), we define the satisfiability relation N � φ as follows:

1. N � A�p B if B ⊆ A∗
s for each spending function s such that ‖s‖ ≤ p,

2. N � ¬ψ if N � ψ,
3. N � ψ → χ if N � ψ or N � χ.

Note the significant difference between the above definition and the sim-
ilar Definition 8 for promotional marketing. Item 1 of Definition 13 has a
universal quantifier over spending functions and corresponding part of Defi-
nition 8 has an existential quantifier over spending functions.
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4.1. Axioms

Let A be any fixed finite set of agents. Our logical system for influ-
ence with preventive marketing, in addition to propositional tautologies in
language Φ(A), contains the following axioms:

1. Reflexivity: A �p B, where B ⊆ A,

2. Augmentation: A �p B → A,C �p B,C,

3. Transitivity: A �p B → (B �p C → A �p C),

4. Monotonicity: A �p B → A �q B, where q ≤ p.

Just like in the case of promotional marketing, we write 
 φ if formula
φ ∈ Φ(A) is derivable in our logical system using Modus Ponens inference
rule. We write X 
 φ if formula φ is derivable using an additional set of
axioms X ⊆ Φ(A).

4.2. Example

The soundness and the completeness of our logical system will be shown
later. In this section we give two examples of formal proofs in our system.
First, we show a preventive marketing analogy of Lemma 8:

Lemma 24. 
 A �p B → (A �p C → A �p B,C).

Proof. By Augmentation axiom,


 A �p B → A �p A,B (10)

and

 A �p C → A,B �p B,C. (11)

By Transitivity axiom,


 A �p A,B → (A,B �p B,C → A �p B,C). (12)

The statement of the lemma follows from statements (10), (11), and (12) by
the laws of the propositional logic. �

Next, we show an auxiliary lemma that is used later in the proof of
completeness.

Lemma 25. If X 
 B �p c for each c ∈ C, then X 
 B �p C, where B and
C are subsets of A0 and p ≥ 0.
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Proof. We prove the lemma by induction on the size of set C.
Base Case: X 
 B �p ∅ by Reflexivity axiom.
Induction Step: Assume that X 
 B �p C. Let c be any element of A0 \ C
such that X 
 B �p c. We need to show that X 
 B �p C ∪ {c}. By
Augmentation axiom,

X 
 B ∪ {c} �p C ∪ {c}. (13)

Recall that X 
 B �p c. Again by Augmentation axiom, X 
 B �p B ∪ {c}.
Hence, X 
 B �p C ∪ {c}, due to (13) and Transitivity axiom. �

4.3. Soundness

In this section we prove the soundness of the logic for preventive market-
ing.

Theorem 3. For any finite set A and any φ ∈ Φ(A), if 
 φ, then N � φ
for each social network N = (A, w, λ, θ).

The soundness of propositional tautologies and of Modus Ponens inference
rule is straightforward. Below we show the soundness of each of the remaining
axioms as a separate lemma.

Lemma 26. N � A �p B, for any social network N = (A, w, λ, θ) and any
subsets A and B of A such that B ⊆ A.

Proof. Let s be any spending function. By Definition 13, it suffices to show
that B ⊆ A∗

s. Indeed, A ⊆ A∗
s by Corollary 2. Therefore, B ⊆ A∗

s due to the
assumption B ⊆ A of the lemma. �

Lemma 27. If N � A�pB, then N � A,C �pB,C, for each social network
N = (A, w, λ, θ) and all subsets A, B, and C of A.

Proof. Suppose that N � A �p B. Consider any spending function s such
that ‖s‖ ≤ p. It suffices to show that B ∪C ⊆ (A∪C)∗s. Indeed, assumption
N � A�pB implies that B ⊆ A∗

s by Definition 13. At the same time, C ⊆ C∗
s

by Corollary 2. Therefore, B ∪ C ⊆ A∗
s ∪ C∗

s ⊆ (A ∪ C)∗s, by Lemma 3. �
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Lemma 28. If N � A �p B and N � B �p C, then N � A �p C, for each
social network N = (A, w, λ, θ) and all subsets A, B, and C of A.

Proof. Suppose that N � A �p B and N � B �p C. Consider any spending
function s such that ‖s‖ ≤ p. By Definition 13, it suffices to show that
C ⊆ A∗

s.
Note that assumption N � A�p B, by Definition 13, imply that B ⊆ A∗

s.
Thus, B∗

s ⊆ (A∗
s)

∗
s by Corollary 4. At the same time, assumption N � B�pC

implies that C ⊆ B∗
s by Definition 13. Hence, C ⊆ (A∗

s)
∗
s. Therefore, C ⊆ A∗

s

by Lemma 1. �

Lemma 29. If N � A �p B, then N � A �q B, for each q ≤ p, each each
social network N = (A, w, λ, θ) and all subsets A and B of A.

Proof. Consider any spending function s such that ‖s‖ ≤ q. By Definition 13,
it suffices to show that B ⊆ A∗

s. To prove this, note that ‖s‖ ≤ q ≤ p.
Thus, B ⊆ A∗

s due to Definition 13 and the assumption N � A �p B of the
lemma. �

This concludes the proof of the soundness of our logical system for pre-
ventive marketing.

4.4. Completeness

The rest of this section contains the proof of the following result.

Theorem 4. If � φ, then there is a social network N = (A, w, λ, θ) such
that φ ∈ Φ(A) and N � φ.

Suppose that � φ. It suffices to construct a “canonical” social network
N = (A, w, λ, θ) such that N � φ. Define P ⊂ R to be the finite set of all
subscripts that appear in formula φ. Let ε > 0 be such that |p1 − p2| > ε
for all p1, p2 ∈ P where p1 = p2. Let A0 be the finite set of all agents
that appear in formula φ and X be a maximal consistent subset of Φ(A0)
containing formula ¬φ.

In Section 2, we have introduced closures Ak
s and A∗

s of a set of agents
A. Both of these closures are semantic in the sense that they are defined in
terms of a given social network. We are about to introduce another closure
A+

p that will be used to construct the canonical social network N . Unlike
closures Ak

s and A∗
s, closure the A

+
p is syntactic because it is defined in terms

of provability of certain statements in our logical system.
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Definition 14. A+
p = {a ∈ A0 | X 
 A �p a}, for any set of agents A ⊆ A0

and any p ≥ 0.

Lemma 30. X 
 A �p A
+
p , for any A ⊆ A0 and any p ≥ 0.

Proof. The statement of the lemma follows from Definition 14 and Lemma 25.
�

Generally speaking, it is possible that A+
p = A+

q for some p and q such
that p = q. In the construction of the canonical social network N it will be
convenient to distinguish closures A+

p for different values of parameter p. In
such situations, instead of closure A+

p we consider labeled closure, formally
defined as pair (A+

p , p).

Definition 15. Let L = {(A+
p , p) | A ⊆ A0, p ∈ P}.

Next we define the canonical network N = (A, w, λ, θ). Besides agents in
set A0, our social network also has two additional agents for each 
 ∈ L. By
analogy with the canonical social network NX from the proof of completeness
for promotional marking, we call these additional agents α(
) and β(
).

Definition 16. A = A0 ∪ {α(
), β(
) | 
 ∈ L}.

( ) ( )

A0\ A+
pA+

p

1

1

1

1

1

1
1

Figure 4: Towards the definition of the influence function in the canonical social network.

For any 
 = (A+
p , p), we assume that upon adopting the product agent

α(
) puts peer pressure on agent β(
), agent β(
) puts peer pressure on
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each agent in set A0 \ A+
p and each agent in set A0 \ A+

p , in turn, puts
peer pressure on agent β(
). The peer pressure structure is illustrated in
Figure 4. Note that the same agent a ∈ A0 can belong to set A0 \ A+

p for
several different values of p. Such agent a could experience (or put) peer
pressure from (on) several different agents β(
). The structure is formally
specified in Definition 17.

Definition 17. For any a, b ∈ A,

w(a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if a = α(
) and b = β(
) for some 
 ∈ L,

1, if a ∈ A0 \ A+
p , b = β(A+

p , p), and (A+
p , p) ∈ L,

1, if a = β(A+
p , p), (A

+
p , p) ∈ L, and b ∈ A0 \ A+

p ,

0, otherwise.

We assume that only agents {α(
) | 
 ∈ L} are responsive to preventive
marketing. This is formally captured in the definition of the receptivity
function below.

Definition 18. For any a ∈ A,

λ(a) =

{
−1, if a = α(
) for some 
 ∈ L,

0, otherwise.

To finish the definition of canonical social network N = (A, w, λ, θ), we
only need to define threshold function θ(a) for each a ∈ A. There are three
different cases to consider: a = α(
) for some 
 ∈ L, a = β(
) for some 
 ∈ L,
and a ∈ A0.

Recall that by Definition 17 and Definition 18, agent α(
) is not responsive
to peer pressure of any other agent. It is only responsive to the marketing
pressure with receptivity −1. We set the threshold value of this agent to
ε − p, where 
 = (A+

p , p). Thus, if an amount at least p is spent on the
preventive marketing to this agent, it will not adopt the product.

We set threshold value of agent β(
) to 1. Thus, for each 
 = (A+
p , p), if

either agent α(
) or any of the agents in the set A0 \A+
p adopts the product,

then agent β(
) will also adopt the product.
Finally, recall from Definition 17 that agent a ∈ A0 can experience peer

pressure from any agent β(A+
p , p) such that a ∈ A0 \ A+

p . There are exactly
|{(A+

p , p) ∈ L | a ∈ A0 \A+
p }| such β-agents. We set the threshold value θ(a)
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high enough so that it adopts the product only if all of these β-agents adopt
the product.

The next definition captures the three cases discussed above.

Definition 19. For any a ∈ A,

θ(a) =

⎧⎪⎨
⎪⎩
ε− p, if a = α(A+

p , p),

1, if a = β(A+
p , p),

|{(A+
p , p) ∈ L | a ∈ A0 \ A+

p }|, if a ∈ A0.

For any c ∈ A0, we have chosen θ(c) to be equal to the number of β(A+
p , p)

such that c ∈ A0 \ A+
p . Thus, if all such β-agents adopt the product, then

the total peer pressure on agent c would reach θ(c) and agent c also would
adopt the product. This observation is formalized by the next lemma.

Lemma 31. Let c be an agent in A0, set B be a subset of A0, and s be an
arbitrary spending function for the social network N . If for each (A+

p , p) ∈ L

at least one of the following is true: (i) c ∈ A+
p , (ii) β(A+

p , p) ∈ B∗
s , then

c ∈ B∗
s .

Proof. By Corollary 3, B∗
s = Bn

s for some n ≥ 0. Thus, by the assumption
of this lemma, for each (A+

p , p) ∈ L at least one of the following is true: (i)
c ∈ A+

p , (ii) β(A
+
p , p) ∈ Bn

s . In other words, {β(A+
p , p) | c ∈ A0 \ A+

p } ⊆ Bn
s .

Hence, ∑
b∈Bn

s

w(b, c) ≥
∑

�∈{(A+
p ,p)∈L | c∈A0\A+

p }
w(β(
), c).

Thus, by Definition 17,∑
b∈Bn

s

w(b, c) ≥
∑

�∈{(A+
p ,p)∈L | c∈A0\A+

p }
1 = |{(A+

p , p) ∈ L | c ∈ A0 \ A+
p }|.

At the same time λ(c) = 0 by Definition 18. Hence,

λ(c) · s(c) +
∑
b∈Bn

s

w(b, c) ≥ |{(A+
p , p) ∈ L | c ∈ A0 \ A+

p }|.

Then, by Definition 19,

λ(c) · s(c) +
∑
b∈Bn

s

w(b, c) ≥ θ(c).
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Thus, c ∈ Bn+1
s by Definition 4. Therefore, c ∈ B∗

s by Definition 5. �

Referring back to Figure 4, note that if an agent in set A0\A+
p adopts the

product, then it will put enough pressure on β(A+
p , p) so that agent β(A+

p , p)
also adopts the product. We formally state this observation as the lemma
below.

Lemma 32. If there is b0 ∈ B∗
s such that b0 ∈ A0 \A+

p , then β(A+
p , p) ∈ B∗

s ,
where (A+

p , p) ∈ L, set B is a subset of A0, and s is an arbitrary spending
function for the social network N .

Proof. By Corollary 3, B∗
s = Bn

s for some n ≥ 0. At the same time, by
Definition 17, assumption b0 ∈ A0 \ A+

p implies that w(b0, β(A
+
p , p)) = 1.

Thus, ∑
b∈Bn

s

w(b, β(A+
p , p)) ≥ w(b0, β(A

+
p , p)) = 1,

since b0 ∈ B∗
s = Bn

s . Note that λ(β(A+
p , p)) = 0 by Definition 18. Hence,

λ(β(A+
p , p)) · s(β(A+

p , p)) +
∑
b∈Bn

s

w(b, β(A+
p , p)) ≥ w(b0, β(A

+
p , p)) = 1.

Thus, by Definition 19,

λ(β(A+
p , p)) · s(β(A+

p , p)) +
∑
b∈Bn

s

w(b, β(A+
p , p)) ≥ θ(β(A+

p , p)).

Hence, β(A+
p , p) ∈ Bn+1

s by Definition 4. Therefore, β(A+
p , p) ∈ B∗

s by Defi-
nition 5. �

Recall that we have set the threshold value of agent α(A+
p , p) to be ε− p,

so that by spending at least p on preventive marketing one would prevent an
adoption of the product by agent α(A+

p , p). At the same time, spending no
greater than p− ε will result in α(A+

p , p) adopting the product. Once agent
α(A+

p , p) adopts the product, it will put enough pressure on agent β(A+
p , p)

to adopt the product as well. This observation is formally stated below.

Lemma 33. If s(α(A+
p , p)) ≤ p− ε, then β(A+

p , p) ∈ B∗
s , where (A+

p , p) ∈ L,
set B is a subset of A0, and s is an arbitrary spending function for the social
network N .
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Proof. Suppose that s(α(A+
p , p)) ≤ p − ε. Note that λ(α(A+

p , p)) = −1 by
Definition 18 and w(b, α(A+

p , p)) = 0 for each b ∈ A by Definition 17. Thus,

λ(α(A+
p , p)) · s(α(A+

p , p)) +
∑
b∈B0

s

w(b, α(A+
p , p))

= −1 · s(α(A+
p , p)) + 0 = −s(α(A+

p , p)) ≥ ε− p.

Thus, by Definition 19,

λ(α(A+
p , p)) · s(α(A+

p , p)) +
∑
b∈B0

s

w(b, α(A+
p , p)) ≥ θ(α(A+

p , p)).

Hence, α(A+
p , p) ∈ B1

s by Definition 4. Since w is a non-negative function,
by Definition 17,∑
b∈B1

s

w(b, β(A+
p , p)) = w(α(A+

p , p), β(A
+
p , p)) +

∑
b∈B1

s\{α(A+
p ,p)}

w(b, β(A+
p , p))

≥ w(α(A+
p , p), β(A

+
p , p)) = 1.

Note that λ(β(A+
p , p)) = 0 by Definition 18. Thus,

λ(β(A+
p , p)) · s(β(A+

p , p)) +
∑
b∈B1

s

w(b, β(A+
p , p)) ≥ 1.

Hence, by Definition 19,

λ(β(A+
p , p)) · s(β(A+

p , p)) +
∑
b∈B1

s

w(b, β(A+
p , p)) ≥ θ(β(A+

p , p)).

Thus, β(A+
p , p) ∈ B2

s by Definition 4. Therefore, β(A+
p , p) ∈ B∗

s by Defini-
tion 5. �

The next lemma states that if we do spend at least p on preventive mar-
keting to agent α(A+

p , p), then this agent will never adopt the product.

Lemma 34. For any (A+
p , p) ∈ L and any spending function s, if s(α(A+

p , p)) ≥
p, then α(A+

p , p) /∈ A∗
s.
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Proof. By Definition 5, it suffices to show that α(A+
p , p) /∈ Ak

s for each k ≥ 0.
We prove this statement by induction on k.
Base Case: By Definition 4, we have A0

s = A. At the same time, by Defi-
nition 15, (A+

p , p) ∈ L implies that A ⊆ A0. Hence, A0
s ⊆ A0. Therefore,

α(A+
p , p) /∈ A0

s by Definition 16.
Induction Step: Suppose that α(A+

p , p) /∈ Ak
s and α(A+

p , p) ∈ Ak+1
s . Thus, by

Definition 4,

λ(α(A+
p , p)) · s(α(A+

p , p)) +
∑
b∈Ak

s

w(b, α(A+
p , p)) ≥ θ(α(A+

p , p)).

Hence, by Definition 18, Definition 17, and Definition 19,

1 · s(α(A+
p , p)) + 0 ≥ ε− p.

Thus, s(α(A+
p , p)) ≤ p − ε. Therefore, s(α(A+

p , p)) < p since ε > 0. This
contradicts the assumption s(α(A+

p , p)) ≥ p of the lemma. �

As we have seen in the previous lemma, spending at least p on preventive
marketing to agent α(A+

p , p) prevents it from adopting the product. We now
show that spending at least p on agent α(A+

p , p) prevents all agents in set
A0 \ A+

p from adopting the product. See Figure 4.

Lemma 35. A∗
s∩A0 ⊆ A+

p , where (A
+
p , p) ∈ L and s is an arbitrary spending

function such that s(α(A+
p , p)) ≥ p.

Proof. Let (A+
p , p) ∈ L and s be an arbitrary spending function such that

s(α(A+
p , p)) ≥ p. By Definition 5, it suffices to show that Ak

s ∩ A0 ⊆ A+
p for

each k ≥ 0. Instead, we prove the following two statements simultaneously
by induction on k: {

Ak
s ∩ A0 ⊆ A+

p ,

β(A+
p , p) /∈ Ak

s .

Base Case: Suppose that a ∈ A0
s. Thus, a ∈ A by Definition 4. Hence,


 A�p a by Reflexivity axiom. Therefore, a ∈ A+
p by Definition 14. Assume

now that β(A+
p , p) ∈ A0

s. Thus, β(A+
p , p) ∈ A ⊆ A0 by Definition 4 and

Definition 15, which is a contradiction with β(A+
p , p) /∈ A0 by the choice of

α(
) and β(
).
Induction Step: Assume that
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{
Ak

s ∩ A0 ⊆ A+
p ,

β(A+
p , p) /∈ Ak

s .

We need to show that {
Ak+1

s ∩ A0 ⊆ A+
p ,

β(A+
p , p) /∈ Ak+1

s .
(14)

To prove the first statement, suppose that there is a ∈ A0 such that a ∈
Ak+1

s \ A+
p . Note that a /∈ Ak

s by the induction hypothesis. Thus, by Defini-
tion 4,

λ(a) · s(a) +
∑
b∈Ak

s

w(b, a) ≥ θ(a).

Hence, by Definition 18 and Definition 19,

0 · s(a) +
∑
b∈Ak

s

w(b, a) ≥ |{(A+
q , q) ∈ L | a ∈ A0 \ A+

q }|.

Therefore, by Definition 17,∑
�∈{(A+

q ,q)∈L | a∈A0\A+
q ,β(�)∈Ak

s}
w(β(
), a) ≥ |{(A+

q , q) ∈ L | a ∈ A0 \ A+
q }|.

Hence, again by Definition 17,∑
�∈{(A+

q ,q)∈L | a∈A0\A+
q ,β(�)∈Ak

s}
1 ≥ |{(A+

q , q) ∈ L | a ∈ A0 \ A+
q }|.

Thus,

|{(A+
q , q) ∈ L | a ∈ A0 \ A+

q , β(
) ∈ Ak
s}| ≥ |{(A+

q , q) ∈ L | a ∈ A0 \ A+
q }|.

At the same time,

{(A+
q , q) ∈ L | a ∈ A0 \ A+

q , β(
) ∈ Ak
s} ⊆ {(A+

q , q) ∈ L | a ∈ A0 \ A+
q }.

Then it must be the case that

{(A+
q , q) ∈ L | a ∈ A0 \ A+

q , β(
) ∈ Ak
s} = {(A+

q , q) ∈ L | a ∈ A0 \ A+
q }.
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Hence, β(
) ∈ Ak
s for all 
 ∈ {(A+

q , q) ∈ L | a ∈ A0 \ A+
q }. In particular,

β(A+
p , p) ∈ Ak

s , which is a contradiction to the induction hypothesis.
To prove the second statement from (14), suppose that β(A+

p , p) ∈ Ak+1
s .

Note that β(A+
p , p) /∈ Ak

s due to the induction hypothesis. Thus, by Defini-
tion 4,

λ(β(A+
p , p)) · s(β(A+

p , p)) +
∑
b∈Ak

s

w(b, β(A+
p , p)) ≥ θ(β(A+

p , p)).

Hence, by Definition 18 and Definition 19,

0 · s(β(A+
p , p)) +

∑
b∈Ak

s

w(b, β(A+
p , p)) ≥ 1.

Thus, there must exist at least one b ∈ Ak
s such that w(b, β(A+

p , p)) > 0. By
Definition 17 and Lemma 34, this implies that b ∈ A0 \ A+

p , which is a con-
tradiction to the first part of the induction hypothesis, i.e. Ak

s∩A0 ⊆ A+
p . �

Lemma 36. For each B,C ⊆ A0 and each q ∈ P , if B �q C ∈ X, then
N � B �q C.

Proof. Consider any spending function s such that ‖s‖ ≤ q. By Definition 13,
it suffices to show that C ⊆ B∗

s . Suppose that there is c0 ∈ C such that
c0 /∈ B∗

s .
Thus, by Lemma 31, there exists (A+

p , p) ∈ L such that c0 /∈ A+
p and

β(A+
p , p) /∈ B∗

s . The latter, by Lemma 32, implies that B∗
s ∩ (A0 \ A+

p ) = ∅.
Hence, (B∗

s ∩A0)\A+
p = ∅. Then, B∗

s ∩A0 ⊆ A+
p . Thus, B ⊆ B∗

s ∩A0 ⊆ A+
p

by Definition 4 and Definition 5. We next consider the following two cases:
Case I: p ≤ q. In this case, assumption B�qC ∈ X, by Monotonicity axiom,
implies that X 
 B �p C. At the same time, by Reflexivity axiom, B ⊆ A+

p

implies that 
 A+
p �pB. Thus, X 
 A+

p �pC by Transitivity axiom. Again by
Reflexivity axiom, we have 
 C �p c0. Hence, X 
 A+

p �p c0 by Transitivity
axiom. Thus, X 
 A�p c0 by Lemma 30 and Transitivity axiom. Therefore,
c0 ∈ A+

p , which is a contradiction with the choice of set A.
Case II: p > q. Then, p− ε > q by the choice of ε. Hence,

s(α(A+
p , p)) ≤ ‖s‖ ≤ q < p− ε.
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Therefore, β(A+
p , p) ∈ B∗

s by Lemma 33, which is a contradiction with the
choice of set A. �

Lemma 37. For each B,C ⊆ A0 and each q ∈ P , if N � B �q C, then
B �q C ∈ X.

Proof. Suppose that B �q C /∈ X. Thus, by Lemma 25 and the maximality
of set X, there is c0 ∈ C such that X � B �q c0. Hence, c0 /∈ B+

q by
Definition 14. Consider spending function s such that

s(a) =

{
q, if a = α(B+

q , q),

0, otherwise.

Note that ‖s‖ = q. Thus, C ⊆ B∗
s by the assumption N � B �q C of

the lemma. Hence, c0 ∈ B∗
s . This together with c0 /∈ B+

q contradicts with
Lemma 35 and c0 ∈ C ⊆ A0. �

Lemma 38. ψ ∈ X iff N � ψ, for each ψ ∈ Φ(A0).

Proof. We prove the lemma by induction on the structural complexity of
formula ψ. The base case follows from Lemma 36 and Lemma 37. The
induction step follows from Definition 13 and maximality and consistency of
set X in the standard way. �
To finish the proof of Theorem 4 note that ¬φ ∈ X due to the choice of
the set X. Thus, φ /∈ X due to consistency of set X. Therefore, N � φ by
Lemma 38.

5. Conclusion

In this article we have suggested a way of adding marketing to the stan-
dard threshold model of diffusion in social networks. The model is general
enough to simulate both promotional and preventive marketing. We have
also defined formal logical systems for reasoning about influence relation in
social networks with marketing of these two types. Both systems are based
on Armstrong’s axioms from the database theory. The main technical results
of the article are the completeness theorems for these two systems.
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As a possible extension of this work, marketing could be added to other
logical systems for social networks mentioned in the introduction. Another
possible extension of this work is an analysis of the computational complexity
of both the proposed model and the logical system. However, this would
probably require switching from the real numbers to the rational numbers
since the real numbers, generally speaking, can not be given as an input to
a Turing machine.
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