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Abstract—Fog computing is a promising architecture to pro-
vide economical and low latency data services for future Internet
of Things (IoT)-based network systems. Fog computing relies
on a set of low-power fog nodes that are located close to the
end users to offload the services originally targeting at cloud
data centers. In this paper, we consider a specific fog computing
network consisting of a set of data service operators (DSOs)
each of which controls a set of fog nodes to provide the required
data service to a set of data service subscribers (DSSs). How to
allocate the limited computing resources of fog nodes (FNs) to
all the DSSs to achieve an optimal and stable performance is an
important problem. Therefore, we propose a joint optimization
framework for all FNs, DSOs and DSSs to achieve the optimal
resource allocation schemes in a distributed fashion. In the
framework, we first formulate a Stackelberg game to analyze the
pricing problem for the DSOs as well as the resource allocation
problem for the DSSs. Under the scenarios that the DSOs can
know the expected amount of resource purchased by the DSSs,
a many-to-many matching game is applied to investigate the
pairing problem between DSOs and FNs. Finally, within the
same DSO, we apply another layer of many-to-many matching
between each of the paired FNs and serving DSSs to solve the FN-
DSS pairing problem. Simulation results show that our proposed
framework can significantly improve the performance of the IoT-
based network systems.

Index Terms — Fog computing, Stackelberg game, match-
ing theory, Internet of things.

I. INTRODUCTION

With the rapid development of Internet of things (IoT), the
number of connected devices has increased at a unprecedented
speed [1]. It is known that analyzing the big data generated by
all kinds of IoT devices requires a large amount of computing
resources. In order to meet the demand of the data computing
services, a large number of large-scale data centers has been
deployed. In addition, cloud computing has been proposed
recently to provide flexible and efficient services to the data
service subscribers (DSSs). In cloud computing, the data
service operator (DSO) is able to organize a shared pool of
configurable computing resources (such as servers, storage,
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Fig. 1: System architecture

networks, applications and services), which can be easily
accessed by DSSs on demands.

Generally speaking, large-scale data centers or clouds are
typically built in remote areas far from the DSSs. This results
in high transmission cost, transmission congestions and service
latency, which can be intolerable for the applications that
require real-time interaction or mobility. Accordingly, it is
beneficial and necessary to pull the cloud closer to the users.
In wireless radio access network, the concept of mobile edge
computing is developed by ETSI (European Telecommunica-
tions Standards Institute), aiming to bring computation power
into mobile radio access network. In mobile edge computing,
the network edge is able to run in an isolated environment from
the rest of the network and creates access to resources in the
local neighborhood [5]. Moreover, in IoT, fog computing, put
forward by Cisco, is proposed as a promising solution. In fog
computing, multiple low-power computing devices, commonly
referred to as the fog nodes (FNs), at the edge of the networks
are deployed to offload the data computing services from the
cloud. With the property of small-scale, low construction cost
and mobility support, the FNs are generally deployed much
closer to the DSSs and therefore can provide low-latency, fast-
response and location-awareness service [6]. With different
purpose and preferences, the DSSs at the network edge are
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able to receive data services from the FNs in the neighborhood
or from remote data centers in remote areas.

In the fog computing network, the concept of network
virtualization is also applied. As the large number of FNs
and their computing resources are invisible for the DSSs,
the DSSs can only contact and purchase the data services
from the DSOs. Therefore, there is a virtualized network
between DSOs and DSSs. When receiving the service requests
from all DSSs, each DSO is able to collect the computing
resources from the FNs and provide virtual data services for
the DSSs. Based on the network requirements, each DSO is
able to allocate different amount of computing resources from
different FNs to different DSSs. Thus, the computing resource
can be efficiently and effectively utilized by the nearby DSSs.

Fog computing networks can consist of a large number
of FNs deployed by different DSOs at different locations to
provide various data services and applications to the DSSs.
When DSSs can choose their DSOs as well as the corre-
sponding FNs to further enhance their quality-of-experience,
how to allocate the limited computing resources of all the fog
nodes to the DSSs is still an open problem. In this paper,
we further extend our previous work [7] and focus on the
resource selection and allocation problem between the FNs,
DSOs and DSSs. We propose a joint optimization framework
for all FNs, DSOs and DSSs in a distributed fashion. In the
framework, we first formulate a Stackelberg game to model
the interaction between DSOs and DSSs, where the DSOs set
their service price first, and the DSSs purchase the optimal
number of computing resource blocks (CRBs). Once the prices
of DSOs and the purchased resources of DSSs have been
obtained, each DSS can know how many CRBs are required
and can then try to compete for the CRBs owned by the nearby
FNs. Thus, we propose a many-to-many matching game to
investigate the interaction between DSOs and FNs where each
DSO has a set of CRBs to offload, and each FN has many
vacant CRBs to sell. After all the DSOs decide their DSO-
FN pairs, FNs will compete with each other to allocate their
CRBs to the DSSs of the DSOs. We also adopt another layer
of many-to-many matching framework to solve the FN-DSS
pairing problem within the same DSO. Simulation results show
that our proposed framework can significantly improve the
performance of the fog computing networks.

The rest of this paper is organized as follows. We describe
the system model in Section II and formulate the problems in
Section III. Based on the formulated problem, we analyze the
system with the proposed framework in Section IV, where
the interaction between DSOs and DSSs is considered in
Section IV-A, the interaction between FNs and DSOs is
analyzed in Section IV-B, and the interaction between FNs
and DSSs is discussed in Section IV-C. Finally, we evaluate
the performance of our work in Section V, show related works
in Section VI and summarize the paper in Section VII.

II. SYSTEM MODEL

Consider a fog computing network where each DSS can
submit its data computing service to a set of neighboring
FNs deployed by a set of DSOs as illustrated in Figure 1.

TABLE I: List of Notations

Symbol Definition
M Total number of DSOs
N Total number of DSSs
K Total number of FNs
Ψ The set of DSOs
Υ The set of DSSs
Ω The set of FNs
µ Service rate of CRBs
λj Workload arrival rate for the DSS sj
ri Price of unit virtualized CRB set by the DCO oi
Ls
j The preference list of DSSs over DSOs

tj Total cost due to the delay of DSS sj
hj Cost due to network delay from the physical ser-

vice provider to DSS sj
oj Cost due to queuing delay at the servers
qj Total number of CRBs purchased by the DSS sj
lkj Distance between the FN fk and the DSS sj
W s

j Utility function of DSS sj
W d

i Utility function of DSO di
W f

k Utility function of FN fk
τij The boolean variable determining whether the DSO

di serves DSS sj or not.
αj , βj , γj Weight factors in the utility function of DSS sj

tth The maximum tolerance of service delay for DSS
sj

ckj Transmission cost for unit CRB from FN fk to
DSS sj

ei Increment of the energy cost in the massive data
center for DSO di

ηfki Normalized preference from the FN fk to the DSO
di

pk Rent of unit CRB set by the FN fk
rth Upper bound of total delay cost
qfskj Number of CRBs allocated from the FN fk to the

DSS sj
qfdik Number of CRBs allocated from the FN fk to the

DSO di
Ldf
i Preference list of DSO di on all FNs

Lsf
j Preference list of DSS sj on all FNs

Lfs
k Preference list of FN fk on all DSSs

Accordingly, we consider a three-tier fog network, where
the DSOs locate in the middle layer, managing the FNs
in the upper layer and serving DSSs in the bottom layer.
Without loss of generality, we assume there are M DSOs,
labeled as Ψ = {d1, d2, . . . , dM} and N DSSs, denoted
as Υ = {s1, s2, . . . , sN}. Let λj be the workload arrival
rate of DSS sj , ∀sj ∈ Υ. We assume each DSS has a
normalized preference list, denoted as Ls

j over all DSOs.
Moreover, K FNs, labeled as Ω = {f1, f2, . . . , fK}, locate
in the area of consideration. We define the unit amount of
computing resources that can be distributed by each FN as
the “computing resource block (CRB)” [7], each of which
can provide computing service at the rate of µ. The physical
data transmission network between FNs and DSSs satisfies
the SecondNet topology [8], where the network facilities can
provide the guaranteed quality-of-service (QoS) for the DSSs.
Accordingly, in order to reduce the risk of potential network
congestion and achieve real-time fast-response interaction,
each DSO tries to offload the data services submitted by the
DSSs to the large-scale data centers to the local FNs. However,
as the DSSs cannot have the authorization to access the
CRBs directly, the DSSs are required to receive the virtualized
services from the DSOs, and with the management of DSOs,
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the CRBs of the FNs can finally be allocated to the DSSs. We
assume that different DSOs offer data services with different
requirements. Based on the preference list Ls

j , the DSS sj ,
∀sj ∈ Υ is required to subscribe to at most one DSO. The
network architecture is illustrated in Fig. 1.

Assume the DSSs apply real-time interactive applications,
where QoS is measured by the service delay. In this paper, for
DSS sj , ∀sj ∈ Υ, we measure the cost of the service delay
as

tj = hj + oj , (1)

which consists of the cost incurred by the queuing delay oj at
the servers as well as the cost incurred by the network delay hj

from the sensors to the physical service provider and from the
physical service provider to DSS sj . We suppose the workload
of each DSS sj follows Poisson arrival process. According
to the M/G/1 queuing delay model, the mean response time
for unit transmitted data is 1

µ−
λj
qj

[9], [11]. Thus, the cost of

queuing delay when serving DSS sj is

oj =
λj

µ− λj

qj

, (2)

where qj is the number of CRBs purchased by DSS sj .
Moreover, as the network delay is related to the transmission
distance, traffic condition in the network and many other
unpredicted factors, in practice, we suppose the network delay
can be evaluated from training data periodically sent from
sensors to the physical service provider and from the physical
service provider to the DSS. In this paper, we set the distance
between the farthest sensor to the physical service provider
plus the distance between the physical service provider (e.g.,
FN fk) to DSS sj to be lkj . For simplicity, we assume the
network resource from the physical service provider to DSS sj
is always sufficient, and the cost incurred by the network delay
hj generally follows a linear function of the distance from the
sensor to the physical service provider plus the distance from
the physical service provider to the DSS sj , i.e., hj = θlkj ,
where θ is a scalar.

As the DSSs in the network pay DSOs for the service,
following the structure of [7], the utility of DSS sj , ∀j ∈ Υ,
can be denoted as the revenue received from the workload
data minus both the cost of service delay and payment to the
DSOs, which can be expressed as follows.

W s
j =

M∑
i=1

τij (αjλj − βjqjri − γjtj) , (3)

where αj denotes the revenue that DSS sj can obtain for
unit received data rate. αjλj indicates the total revenue for
receiving the data with workload rate λj . ri is the price set by
DSS di for each unit of the virtualized CRB. Thus, when the
DSS sj purchases qj CRBs from the DSO di, the total payment
from the DSS sj to the DSO di can be expressed as qjri. βj

is the weight factor indicating the importance of payment in
the utility function of DSS sj . γj is weight factor indicating
the importance of data service delay in the utility function of
DSS sj . We set τij to be the boolean variable determining

whether DSO di serves DSS sj or not. If τij = 1, DSS sj is
served by the DSO di. Otherwise, DSS sj prefers to be served
by the other DSO. The value of τij follows the preference list
Ls
j of DSS sj , and each DSS can at most choose one DSS,

i.e.,
M∑
i=1

τij = 1, ∀j ∈ Υ. For each DSS, we assume there is

an upper bound tth for the service delay. When the service
delay is larger than the threshold, the DSS will regard it as
an unsuccessful connection. Corresponding, we set qthj as the
lower bound of CRBs required for DSS sj to guarantee the
service delay within the acceptable thresholds.

Based on the number of virtualized CRB purchased by
serving DSSs, the utility of each DSO is the revenue received
from the DSSs minus the payment to the facilities that are
able to provide the physical CRBs. Here, each DSO prefers
to offload its services to the FNs nearby. However, if there
are not sufficient available CRBs from the FNs which can
meet the requirements of all DSSs. Some DSSs will be served
by the remote data centers, which are located far away from
the DSSs. We suppose the increment of the energy cost in
the remote data center is ei. Therefore, for the DSO di, if
qfdik CRBs are offloaded to the FN fk, and qoi CRBs are still
served by the remote data centers, the utility function of DSO
di, ∀i ∈ Ψ, can be denoted as

W d
i =

N∑
j=1

τij(riqj)−
K∑

k=1

pkq
fd
ik − eiq

o
i . (4)

where
N∑
j=1

τij(riqj) refers to the total revenue that DSO di

receives from DSSs for its data services. As pk is the price
set by the FN fk, which is determined by the cost and current

traffic of FN fk,
K∑

k=1

pkq
fd
ik denotes the total payment from the

DSO di to all FNs. eiqoi is the total cost for DSO di to serve
DSSs by itself.

For FN fk in the network, the utility is the payment received
from the DSOs minus the transmission cost. We set ckj
as the transmission cost for each unit CRB, which has a
linear relationship with the distance lkj . Moreover, we set
ηfki as the normalized preference to the DSO di. Accordingly,
considering the preference to different DSOs, the discounted
utility function for each DSO is

W f
k =

K∑
k=1

ηfki (pk − ckj) q
fs
kj , (5)

where
M∑
i=1

ηfkipkq
fs
kj is the expected rewards received from

DSOs, and
M∑
i=1

ηfkickjq
fs
kj is the expected costs for serving

DSSs in fog computing.

III. PROBLEM FORMULATION

According to the modeled architecture of fog network, with
tradings between FNs and DSOs and between DSOs and
DSSs, it is impossible to reach the maximum utilities for
all FNs, MDCOs and DSSs simultaneously. Accordingly, we
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consider a sequential decision making process. During the
process, the DSOs first predict the total number of CRBs
purchased from their servings DSSs and set their service
prices to their DSSs based on the prediction. Observing the
behaviors of the DSOs, each DSS determines the optimal
number of CRBs to purchase to achieve the maximum utility.
Furthermore, knowing the total amount of required CRBs, the
DSOs try to allocate CRBs to the FNs in the neighborhood.
Finally, all FNs selected by the same DSO competes for the
DSSs.

We can write the optimization problem can be formulated
as follows.

max
qj

W s
j (qj |r), ∀j ∈ Υ,

s.t.



M∑
i=1

τij = 1,

tj ≤ tth,
τijαjλj ≤ τij (βjqjri + γjtj),
qj ≥ 0,
τij ∈ {0, 1}, ∀i ∈ Ψ,

(6)

where r is the pricing profile of all DSOs observed by DSS
sj .

Predicting the behaviors of the DSSs, each DSO is required
to set the service price to each serving DSS and compete with
other DSOs to choose FNs in the neighborhood. Thus, the
formulated problem of the DSO is

max
ri

W d
i (ri|q∗,p, r∗−i), ∀i ∈ Ψ,

s.t.


N∑
j=1

τij(riqj) ≥
K∑

k=1

pkq
fd
ik + eiq

o
i ,

ri ≥ 0,

(7)

where q∗ denotes the optimal number of CRBs purchased by
all DSSs. p is the profile of rent for all FNs. r∗−i is the profile
of optimal service prices set by other DSOs.

Moreover, each FN in the network would like to choose its
preferred DSOs and serve its DSSs with low distance. Thus,
competing with other FNs, it is required to determine the
number of CRBs allocated to DSOs and its serving DSSs,
respectively. The optimization problem is denoted as

max
qfd
ik ,qfs

kj

W f
k (q

fd
ik , q

fs
kj |q

∗,qfd∗
i−k,q

fs∗
−kj ,p−k), ∀k ∈ Ω,

s.t.



M∑
i=1

qfdik ≤ qf−th
k ,

N∑
j=1

qfskj ≤ qf−th
k ,

K∑
k=1

qfdik ≤ qd−th
i , ∀i ∈ Ψ,

K∑
k=1

qfskj ≤ qs−th
j , ∀j ∈ Υ,

(8)
where qfd

i−k is the optimal number of CRBs rent to DSO di for
all other FNs, qfs∗

−kj is the optimal number of CRBs allocated
to DSS sj for all other FNs. During the service, the total
CRBs distributed to all DSOs or all DSSs cannot exceed its
total available CRBs qf−th

k for FN fk. Furthermore, the total
CRBs purchased from DSO di or DSS sj should not exceed
its demand qd−th

i or qs−th
j , respectively.

In summary, following the relationships among all FNs,
DSOs and DSSs, we focus on the following problems:

1) Resource purchasing problem for the DSSs: In the
network, as the DSSs can only access to the DSOs in
a virtualized fashion, they are required to purchase the
optimal number of CRBs from the DSOs. Following the
system model, as different DSSs have different tolerance
of service delay, when the upper bound of service delay
is high, the DSSs are able to purchase a small number
of CRBs to achieve satisfying services. However, when
the upper bound of service delay is low, the DSSs have
to purchase a large number of CRBs to guarantee the
service delay is within the tolerated region. Moreover,
the service price set by the DSOs also affects the
utility of DSSs. When the price is in high value, even
though the large number of CRBs is able to improve the
quality of data services, the DSSs have to make a large
payment to the DSOs for their services. The revenue
may not be satisfying. Therefore, considering both the
delay tolerance and setting prices of DSOs, the optimal
number of CRBs should be determined for high utilities.

2) Pricing problem for the DSOs: In the data service with
fog, the DSOs are required to provide virtualized CRBs
to the DSSs and try to rent the CRBs from the FNs to
serve DSSs in the physical network. Therefore, how to
do the pricing for the DSOs is a problem. Considering
the announced rent from all FNs, the DSOs need to set
a price which can bring profits for themselves. However,
if the price is set too high, the serving DSSs will not
purchase a large number of CRBs. Therefore, predicting
the reactions of CRBs and observing the rent of FNs,
the DSOs are required to determine its service price so
as to receive the maximum revenues.



2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2017.2688925, IEEE Internet of
Things Journal

5

3) DSO-FN pairing problem: As FNs may be private
computing devices, which are small-scale and unable to
communicate with DSSs directly, the FNs are accessible
to the DSOs only. In the multi-DSO scenario, as the FNs
are accessible to all DSOs, it is a problem for all DSOs
in the network to pair FNs distributedly so as to serve
their DSSs with low latency. With different relations and
trading history, each FN has different preference on all
DSOs. Observing the rent of all FNs, each DSO also
has a preferences on each FN. Based on the preferences
of all DSOs’ and FNs’, it is required to reach a stable
DSO-FN pairing results, where any DSO or FN is able
switch its current pairing result for a higher utility.

4) FN-DSS pairing problem: After the pairing between
DSOs and FNs, each FN has allocated its CRBs to all
DSOs. However, within one DSO, it is still a problem
for the FNs to allocate their CRBs to all DSSs. As the
distance between each FN and each DSS is various,
with a longer transmission distance, the FNs have to
pay more on the transmission cost. Thus, based on the
transmission distance, each FN has a preference over
all DSSs. Moreover, each DSS also have preference
over FNs based on the rent. Therefore, following the
preference of all FNs’ and DSSs’, a stable FN-DSS
pairing result should be achieved.

According to the formulated problems, all FNs, DSOs and
DSSs are rational and autonomous individuals, who observe
the behaviors of others and make decisions to improve their
own utilities. Therefore, in order to reach the optimal and
stable solutions for all FNs, DSOs and DSSs, we model a
three-stage joint optimization framework, as shown in Fig.
2. In the framework, we first model the Stackelberg games
to solve the pricing problem for the DSOs and resource
purchasing problem for the DSSs. When the DSOs know the
expected amount of resource purchased by the DSSs, a many-
to-many matching is proposed between the DSOs and the FNs
to deal with the DSO-FN pairing problem. Finally, within
the same DSO, we apply another many-to-many matching
between its paired FNs and serving the DSSs to solve the
FN-DSS pairing problem.

IV. SYSTEM ANALYSIS

In this section, we analyze the optimal strategies for FNs,
DSOs and DSSs. Based on the analysis of the formulated
framework, in the following sub-sections, we first investigate
the interactions between the DSOs and DSSs to determine
how many CRBs are required during the service. Given the
optimized behaviors of the DSOs and DSSs, we analyze the
interactions between the FNs and DSOs based on different
preferences. Finally, with the obtained results, we discuss the
interactions between the FNs and DSSs within the same DSO
for better services.

A. The Interaction between DSOs and DSSs

In the virtualized network, the DSOs provides CRBs for
the DSSs. Following the formulated problems for both DSOs
and DSSs, there is a Stackelberg game, where the DSOs act as

leaders and DSSs act as followers. In the game, when all DSSs
choose their serving DSOs with their preferences, the DSO
first sets the service price. Then, based on the price all DSSs
determine optimal number of CRBs to purchase. Accordingly,
considering the optimization problem of DSSs, we have the
following lemma.

Lemma 1. In the modeled Stackelberg game between DSO di
and DSS sj , when the DSO announces its service price ri, the
optimal number of CRBs qj purchased by the DSS is

q∗j =
λj

µ
√

ri
βj

γj

+
λj

µ
. (9)

Proof: According to the utility function of DSS sj 3, the
second derivative of W s

j with respect to qj is

∂2W s
j

∂q2j
= −

2λ2
jµ

(µqj − λj)
3 . (10)

As
∂2W s

j

∂q2j
< 0, W s

j is a quasi-concave function with respect
to qj . Furthermore, the first derivative of W s

j with respect to
qj is

∂W s
j

∂qj
=

(
λj

µbj − λj

)2

− ri
βj

γj
. (11)

We set the first derivative equal to zero and obtain the optimal
number of CRBs to purchase so as to achieve the maximum
utility, i.e,

q∗j =
λj

µ
√

ri
βj

γj

+
λj

µ
. (12)

Therefore, considering the reactions of the DSSs, we adjust
the optimization problem for the DSO di, ∀i ∈ Ψ, as follows.

max
ri

W̃ d
i (ri|q∗,p, r∗−i), ∀i ∈ Ψ,

s.t.


N∑
j=1

τij(
λj

µ

√
βj

γj
ri +

λj

µ

√
βj

γj
ri) ≥

K∑
k=1

pkq
fd
ik + eiq

o
i ,

ri ≥ 0,
(13)

where

W̃ d
i =

N∑
j=1

τij(
λj

µ

√
βj

γj
ri +

λj

µ

√
βj

γj
ri)−

K∑
k=1

pkq
fd
ik − eiq

o
i .

(14)
In the formulated problem (13), we take the first derivative

of W̃ d
i with respective to ri and discover it is a monotonous

increasing function with respective to ri. Furthermore, as the
service delay cannot surpass tth for the DSSs. The CRB
purchased by DSSs has the following low bound

qj ≥
λjtth

µtth − λj
. (15)

Thus, following the relation in (9), the maximum and optimal
price for the DSO di to DSS sj is, ∀i ∈ Ψ, ∀j ∈ Υ,
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ri =
γj
βj

(
µtth − λj

λj

)2

. (16)

B. The Interaction between FNs and DSOs

According to the predicted number of CRBs ordered by the
DSSs, the DSOs try to offload the services from the massive
data centers to the DSSs nearby. Observing the service prices
set by all FNs, DSO di, ∀i ∈ Ψ, has a preference list Ldf

i =[
Ldf
i1 , . . . , L

df
iK

]
on all FNs in the neighborhood. As the DSOs

prefer to choose the FNs with a low price, we set

Ldf
ik = −pk, ‘∀i ∈ Ψ, ∀k ∈ Ω. (17)

Furthermore, each FN also has different preferences over
DSOs. Thus, we set the preference list of FN fk, ∀k ∈ Ω,
on all DSOs as Lfd

k =
[
Lfd
1k , . . . , L

df
Mk

]
, satisfying,

Lfd
ik = ηfki, ‘∀i ∈ Ψ, ∀k ∈ Ω. (18)

Considering the preference lists of FNs and DSOs, i.e., Ldf
ik

and Lfd
ik , respectively, we design a many-to-many matching

algorithm for the DSO-FN pairing problem. As shown in
Algorithm 1, after the preference lists are constructed, we set
a pointer for each FN in its preference list. Initially, we set the
pointer at the first DSO in the list. During the each round of
matching, each FN first propose to the DSO in the pointer of
the preference list. Based on behaviors of the FNs, each DSO
chooses its most preferred FNs in its preference list until the
required CRBs are all supplied by the FNs. If the FNs supply
more CRBs than the DSO requires, the DSO will reject the
CRBs from less favourite FNs. If the FNs supplies less CRBs
than the DSO requires, the DSO will choose massive data
centers for the rest of the services. At the end of each round,
if all of the CRBs from the FN have been allocated to the
DSOs, the pointers of the FN will keep unchanged. Otherwise,
the pointers of the rejected FNs will move to the next DSO
in the preference list. In the next round, the FNs which still
have available CRBs will propose to the new DSOs according
to their pointers. Specifically, if the CRBs of FN are chosen
by the DSO in the last round, but discarded in the current
round, we suppose the pointer of the FN doesn’t change its
position, considering the pointed DSO in the current round
may need more CRBs from the FN. The matching repeats in
circulations until all the pointers of the FNs have moved out
their preference list. According to the algorithm, we have the
following lemmas.

Lemma 2. For each FN in the matching algorithm, the pointer
of the FN in its preference list moves in one direction. In other
words, when its pointer has moved to the next DSOs in the
preference list, whatever the matching results of other FNs,
the FN cannot achieve a higher utility by moving the pointer
back.

Proof: As shown in Algorithm 2, when the DSOs deter-
mines which FNs to choose, they choose the CRBs from the
most preferred amount. If some CRBs from FN fk is discarded
by DSO di, the current accepted CRBs belong to the FNs

Algorithm 1 Many-to-Many Matching Algorithm for DSO-
FN pairing problem.

1: for FN fk do
2: Construct the preference list Lfd

k on all DSOs according
to (18);

3: One pointer is set as the indicator pointing at the first
DSO in the preference list.

4: end for
5: for DSO di do
6: Construct the preference list Ldf

i on all FNs according
to (17);

7: end for
8: We set flagk, ∀k ∈ Ω, as the indicator to show if the

CRBs of FN fk were chosen by the DSO in the last round,
but discarded in the current round. Initially, flagk = 1;

9: while the pointers of all FNs have not scanned all the
DSOs in their preference list do

10: FNs propose to DSOs with their service price;
11: for FN fk who still have available FNs to purchase do
12: if flagk = 1 then
13: The pointer keep current position in the list;
14: else
15: The pointer moves to the next position in the list;
16: end if
17: The FN proposes to pointed DSO in its preference

list with its available FNs;
18: We set flagk = 0;
19: end for
20: DSOs determines which FNs to choose;
21: for DSO di do
22: if The total available number of CRBs proposed by

the FNs exceed the requirements then
23: The DSO di chooses the most preferred number

of CRBs from FNs, and rejects the rest;
24: For CRBs of the FN fk which is chosen by the

DSO in the last round, but rejected in the current
round, we set flagk = 1;

25: end if
26: end for
27: end while

which is more preferred than FN fk. In the future rounds, when
there are new FNs proposing to DSO di, if the DSO would
like to change its current accepted FNs, the DSO can only
choose the FNs that is even better than the FNs in the current
accepted list. Therefore, for FN fk which has been rejected
once from DSO di, it is impossible for it to be accepted by
the same DSO in the future rounds.

Lemma 3. Following the Algorithm 2, the DSO-FN pairing
problem will ultimately converge and achieve a stable match-
ing result.

Proof: As proved in the Lemma 2, the pointer of the FNs
can only move in one direction. Therefore, in the perspective
of the FNs, when the pointer of each FN has moved to the
end of the preference list, the FN has distributed its available
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CRBs to the DSOs in an optimized way. In other words, the FN
is unable to change its pairing results unilaterally for higher
utilities. Furthermore, in the perspective of the DSOs, when
the pointers of all FNs have moved to the end of the preference
lists, each DSO has evaluated all proposals from the available
FNs. Therefore, it also cannot unilaterally change its pairing
results, get accepted by the FNs and achieve a higher utility
for itself. Furthermore, according to [10], when every agents
preference list is substitutable, a pairwise stable matching
always exists. Based on the above, the DSO-FN pairing will
ultimately converge and achieve a stable matching result in
Algorithm 2.

C. The Interaction between FNs and DSSs
When the CRBs from FNs have been rent to all DSOs,

within each DSO, how to allocate the CRBs to all DSSs still
remains a problem. According to the rent of all FNs, DSS sj ,
∀j ∈ Υ, has a preference list Lsf

j =
[
Lsf
j1 , . . . , L

sf
jK

]
on all

FNs in the neighborhood, satisfying,

Lsf
kj = −pk, ∀j ∈ Υ, ∀k ∈ Ω. (19)

Furthermore, according to the utility function of the FN,
the distance between the FN and its serving DSS affect the
revenues the FN received. With a longer distance, the FN
has to pay more for the data transmission in the network.
Therefore, we set a preference list Lfs

i =
[
Lsf
j1 , . . . , L

sf
jK

]
for

FN fk, ∀k ∈ Ω, over all DSSs, i.e.,

Lfs
kj = −lkj , ∀k ∈ Ω, ∀j ∈ Υ. (20)

Considering the preference lists of DSSs and FNs, i.e., Lsf
kj

and Lfs
kj , respectively, we design a many-to-many matching

algorithm for the FN-DSS pairing problem within DSO di,
∀i ∈ Ψ. As shown in Algorithm 2, after the preference lists are
constructed, we set a pointer for each DSS in its preference list.
Initially, we set the pointer at the first FN in the list. During
the each round of matching, each DSS first proposes to the
FN in the pointer of the preference list. Based on behaviors
of the DSSs, each FN chooses its most preferred DSSs in its
preference list until the maximum CRBs available in the DSO
di are reached. If the DSSs request more CRBs than the FN
can supply, the FN will reject the less favourite DSSs. At the
end of each round, if the DSSs have been allocated all of its
requested CRBs from the FNs, the pointers of the DSS will
keep unchanged. Otherwise, the pointers of the rejected DSS
will move to the next FN in the preference list. In the next
round, the DSSs which require CRBs will propose to the new
FNs according to their pointers. Specifically, if some CRBs of
FN are allocated to the DSS in the last round, but changed
to other DSSs in the current round, we suppose the pointer
of the DSS in the next round doesn’t change its position,
considering the pointed FN in the current round may be able
to supply more CRBs to the DSS. The matching repeats in
circulations until all the pointers of the DSSs have moved
out their preference list. Following Lemma 2 and Lemma 3
in a similar way, the FN-DSS pairing problem can ultimately
achieve a stable matching result.

Algorithm 2 Many-to-Many Matching Algorithm for FN-DSS
pairing problem.

1: for DSS sj do
2: Construct the preference list Lsf

j on all DSOs according
to (19);

3: One pointer is set as the indicator pointing at the first
FN in the preference list.

4: end for
5: for FN fk do
6: Construct the preference list Lfs

k on all FNs according
to (20);

7: end for
8: We set flagj , ∀j ∈ Υ, as the indicator to show if the

FNs allocate CRBs to the DSS sj in the last round, but
adjusted in the current round. Initially, flagj = 1;

9: while the pointers of all DSSs have not scanned all the
FNs in their preference list do

10: DSSs propose to FNs for their services;
11: for DSS sj which has not been allocated required CRBs

do
12: if flagj = 1 then
13: The pointer keep current position in the list;
14: else
15: The pointer moves to the next position in the list;
16: end if
17: The DSS proposes to pointed FN in its preference

list for its data services;
18: We set flagj = 0;
19: end for
20: Each FN determines which DSSs to choose;
21: for FN fk do
22: if The total available CRBs requested by the DSSs

exceed the available volume then
23: The FN fk allocate the CRBs to the most preferred

DSSs, and rejects the rest;
24: For CRBs allocated to the DSS sj in the last round,

but adjusted in the current round, we set flagj =
1;

25: end if
26: end for
27: end while

Based on the above, the optimal strategy of each DSO, FN
or DSS is a function with respect to the network information,
e.g., channel state information and queue state information.
When the network information changes dynamically, based
on the function of optimal strategy, each DSO, FN or DSS
is able to adjust its strategy immediately to achieve optimal
utility. However, in practice, the sensing process for network
information may be performed periodically, while the time
within each period is very short and we can assume the
network information as constant. Accordingly, each DSO, FN
or DSS is able to iteratively update its optimal strategy to
achieve high utility based on the observed network information
within each period.
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Fig. 3: The utility of all FNs versus the number of DSSs

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present simulation results to evaluate
our proposed framework with MATLAB. In the simulated IoT
scenario, without specific explanation, there are 120 DSSs, 4
DSOs and 20 FNs allocated randomly in a circle district with
a diameter of 10 kilometers. As we focus on the IoT scenarios
where DSSs are closely located with its sensors, without loss
of generality for the methods in this paper, we suppose the
sensors of each DSS are located at the same position with the
DSS. We follow the settings in [11] and set the service rate of
each computing resource block is 0.1 (ms)−1. For each DSS,
the workload arriving rate is a random number averaged 0.5
(ms)−1. The data transmission speed is 50km/ms. The delay
tolerance of all DSSs is set to 60 ms. Furthermore, for each
FN, we set its preference to each DSO as a random number
satisfying the uniform distribution between [0, 1]. Based on the
usage of its computing resources and its service cost, we set
the announced rent as a random number satisfying the uniform
distribution between (0, 10), and the amount of available CRB
as a random number satisfying uniform distribution between
(0, 100). The weight factors α, β and γ are set as 50, 0.01
and 0.001, respectively.

As shown in Fig. 3, we evaluate the utility of all FNs when
the number of DSSs increases. When the number of FNs is
fixed, we discover with the number of DSSs increasing, the
utility of all FNs generally increases, and the increasing speed
first increases then gradually decreases to zero. The reason is
that when the number of DSSs increases, but the number of
FNs is fixed, the FNs will be able to serve more favourable
DSSs with a low transmission distance. However, when all of
the available CRBs of FNs are allocated to the DSSs nearby
and the number of DSS keep increasing, the DSS will be
allocated with CRBs from the massive data centers. Thus, the
total utility of the FNs stop increasing. Nevertheless, when
we increase the number of FNs, we discover that with more
FNs, the utility can converge to a higher bound ultimately.
Furthermore, because of the competition between FNs, when
the number of DSS is small, with more FNs, the increasing
speed is smaller.

In Fig. 4, we consider the utility of all DSSs with the
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number of DSSs increasing. In the simulation, we compare
the performance of the DSSs in our proposed framework with
the performance of the DSSs which is served by the massive
data centers only. With the same amount of workload, we
discover that when the number of DSSs increases, the utility
of DSS genrally increases, and the utility with FNs achieve a
higher value than the one without FNs. Furthermore, when the
number of DSSs is fixed and the average workload for each
DSS increases, the DSSs are able to receive more revenues
from the services. Thus, the utility of DSSs increases.

In Fig. 5, we analyze the relation between the utility of
FNs and average workload arrive rate for DSSs. As shown in
the figure, when the number of FNs is fixed and the average
value of workload λ increases, the utility of FNs first increases
then gradually converge to a fixed value. The reason is that
when the workload of all DSSs increases, the FNs are able
to allocate more of its CRBs to the DSSs nearby. However,
when all the available CRBs of FNs are allocated to the DSSs,
the utility of the FNs stops improving and converges to one
specific value. When the number of FNs increases, with the
same value of λ, as the FNs are able to provide more CRBs
to the DSSs, the converged value is higher.

In Fig. 6, we observe the utility of all DSOs when the value
of µ increases. As shown in the figure, when µ increases,
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each DSS is able to be served with a less number of CRBs.
Therefore, the DSO is able to set a higher price to the DSSs
and receive high revenues. Moreover, when the number of
DSSs increases, as the DSO is able to serve more DSSs at the
same time, the total utility of DSOs also increases.

In Fig. 7, we evaluate the relationship of utilities and the
tolerance service delay tth of DSSs. As shown in the Fig. 7a,
when the value of tth increases, each DSS is able to be served
with less CRBs. Thus, the FNs will supply less CRBs in the
network, and the utility of the FNs generally decreases. In Fig.
7a, as the DSO is able set a high price for its services, with the
value of tth increasing, the utility of DSO generally increases.
Moreover, in Fig. 7c, even though the DSS is able purchase
less CRBs with high tth, the price of CRBs set by the DSOs
also increases. Furthermore, as the DSS suffers a lot with high
delay, the utility of DSS generally decreases with the value of
tth increasing.

VI. RELATED WORKS

In the literature, fog computing has been advocated to be
the promising future of the cloud. The concept of pulling
the cloud closer to the users has been widely considered in
previous work. In [12], the authors put forward the concept of
mist computing, aiming to distribute the cloud and its benefits
deeply into the network. In [13], the deployment of edge cloud
was proposed. From the DSSs’ side, the edge cloud was able
to surrogate the requirements and simplify the management
of the network. From the servers’ side, the edge cloud can
exploit content and support service delivery in an efficient way.
Without deploying massive data centers with high cost and
latency, [14] on the other hand strengthened the importance of
small distributed data center designs. The authors took email
delivery as an example and showed the advantages of geo-
diversity characteristics of micro data centers. In [15], a novel
and distributed computing platform, called nano data centers
was proposed. The authors evaluated the energy consumption
of nano data centers and showed a significant improvement
on energy efficiency, compared with the traditional data cen-
ters. In [16], the authors propose an intermediary framework
where there exists an intermediary between multiple cloud

providers and users. The intermediary first rents the cloud
service from cloud providers and then provides streaming
processing service to users with low cost and delay. In [17],
the authors propose a deduplication-based energy efficiency
storage system for VM storage (EEVS) and implement it with
existing cloud platform. In the EEVS, an online-deduplication
mechanism is designed to decrease the redundant data without
service interruptions, and a deduplication selection algorithm
is introduced to minimize the storage energy consumption with
limited computing resources for deduplication. In [18], con-
sidering the existing telecommunication and Internet service
providers, the authors showed that it was required and benefi-
cial to leverage the existing infrastructure and provide value-
added services with FNs. In [19], the authors outlined the
vision of fog computing and overviewed the important features
of fog computing. In [20], the network optimization with fog
computing was considered. As the data centers were aware of
the locations of DSSs with fog computing, dynamic adaptation
of computing resources to the DSSs’ conditions was proposed.
In [21], the authors compared the cloud computing with the
fog computing and showed some significant characteristics of
fog, which was required for current data services. In [22], the
authors elaborated the role of fog computing in six important
scenarios and surveyed the security issues with fog computing.

Moreover, fog computing has been widely considered to
be beneficial for the IoT. In [23], the authors overview the
opportunities and challenges of fog, especially the applications
of fog computing in IoT. In [24], the authors devise the method
of MEdia FOg Resource Estimation (MeFoRE), to provide
resource estimation based on the service give-up ratio and
to enhance QoS based on the previous QoE. [25] addresses
the utility based pairing problem between the fog nodes and
IoT devices with the Irving’s matching algorithm. In [26], the
authors propose a distributed dataflow programming model
for IoT devices to optimize resource allocation on computing
infrastructures across the fog and the cloud. In [27], the authors
consider issues of resource prediction, customer type based
resource estimation and reservation, advance reservation, and
pricing in the fog computing for IoTs. [28] considers the
requirements of mobility, scalability, reliable control and ac-
tuation in some challenging scenarios of IoT to show the
benefits and significance of fog computing. Considering the
advantages of fog computing, the authors in [29] discuss and
propose a procedure to be implemented in smart phones for
UV measurement.

In order to solve the resource management problems in
a network system with a distributed fashion, game theory
has been shown as a powerful tool [30]. In the literature,
most of the cases, the network system is normally modeled
as a bipartite or a multi-tier graph. Based on this model,
in [31], a Stackelberg game theoretic model was shown for
dynamic bandwidth allocation between virtual networks. In
[32], the authors consider a Stackelberg game between data
center and buses in the smart city, where each buses collect
data along its route and compete with other buses for the
reward forwarding to the data center. In the game, following
the proposed heuristic algorithm, the Stackelberg equilibrium
is shown to be achieved where the data center and each bus are
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able to reach maximum utility. In [33], the authors formulate
a Stackelberg game for power allocation of data centers in the
cloud. In the game, the power grid controller acts as the leader
and sets prices of the provided energy based on the current
amount of renewable energy and costs. Observing the prices,
the cloud controller, i.e., the follower, determines the optimal
amount of enery to purchase and do resource allocation for
its data centers. With backward induction, the near-optimal
strategies of both players in the game can be achieved. In [34],
the authors model the interaction between the monopolistic
data center opertor and the customers as a Stackelberg game.
In the game, the pricing strategies of the monopolistic data
center operator the corresponding behavior of data service
customers is detailedly analyzed in both homogeneous and
heterogeneous customer scenarios. In [35], the authors adopted
the Stackelberg game to solve the problem of minimizing
energy consumption in the data center networks. In [36], the
authors proposed a multi-leader multi-follower Stackelberg
game to address and cooperation problems among Wi-Fi, small
cell and macrocell networks. In [37], the authors combined
the Stackelberg game and the bargaining to design a resource
allocation problem in a multi-tier LTE unlicensed network.
Furthermore, the auction mechanisms are also powerful tools
to solve the problem. In [38]–[40], the resource management
problem could be perfectly optimized, but it requires high
communication and computation overhead. In [41], the authors
adopted the generic game theoretic framework to identify
important edges in the context of k-edge connectivity between
certain pairs of nodes in a general given network. In [42],
the graphical game was put forward to analyze the optimized
behaviors of each node in a general graph.

VII. CONCLUSIONS

In this paper, we proposed a joint optimization framework
in the multi-FN, multi-DSO and multi-DSS scenario for IoT
fog computing. In the framework, we first modeled the Stack-
elberg games to solve the pricing problem of the DSOs and
resource purchasing problem of the DSSs. Then a many-to-
many matching was proposed between the DSOs and the FNs
to deal with the DSO-FN pairing problem. Finally, we applied
another many-to-many matching between its paired FNs and
serving DSSs to solve the FN-DSS pairing problem within

the same DSO. For each stage of the problem, all participants
were able to achieve the equilibrium or stable results where
no one was able to change its behavior unilaterally for a
higher utility. Simulation results showed that all FNs, DSOs
and DCOs were able to reach optimal utilities for themselves,
and high performance of the proposed framework could be
achieved compared with the data services without fog nodes.
For the future work, firstly the dynamic computing resource
allocation problem can be considered in the three-tier IoT
fog network with dynamic Stackelberg game, where each
DSO is able to predict its future demands and to rent the
computing resources of FNs in advance. Secondly, the analysis
of cooperative and competitive behaviors among FNs may
provide grouping strategies for FNs to achieve higher revenues.
Correspondingly, the effective strategies are required for each
DSO to prevent the severe competition for some FNs with
other DSOs.
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