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Abstract—One of the most promising emerging technologies,
Internet-of-Things, refers to the interconnection of thousands (or
even millions) of smart objects, supporting a large number of
applications like environmental monitoring, smart agriculture, e-
health, etc. Research groups in both the academia and industry,
have proposed and/or developed a significant number of IoT
architectures and platforms, however not focusing on platform
management-related issues. Furthermore, the vast amount of the
sensory data and the rapid proliferation of the smart devices (i.e.
sensors) make a new approach regarding efficient data collection
and storage inevitable. Fog Computing (FC) is an environment
where data are stored and pre-processed before transmitting
them to the cloud, having a number of advantages like scalable
real-time services, fault detection and isolation, enhanced security
and privacy, etc. In this work, we present a fog-enabled IoT
platform used for sensory data collection, presenting several
metrics that can be used as the basis for a Management-Platform-
as-a-Service, able to efficiently monitor the IoT platform and
predict potential failures.

I. INTRODUCTION

Internet-of-things (IoT) generally refers to the interconnec-

tion of things (e.g. sensors, smart phones, home appliances,

etc.). Several IoT platforms like IoT-A [1], BUTLER [2],

iCORE [3], etc., have been proposed addressing issues like

security, performance, energy-efficiency, etc. The evolution

of these platforms, however, created isolated systems with

limited inter-operability. A new generation of IoT projects

(i.e RERUM [4], [5], FIESTA [6], INTER-IoT [7]) provided

solutions to security-by-design, inter-operability, and several

as-a-service capabilities like platform-as-a-service, testbed-as-

a-service, etc.

Despite these advances, and by considering the rapid pro-

liferation of the IoT platforms and the smart devices, there

is the need for proper storage and processing of vast amount

of data generated and collected by distributed IoT networks.

Fog Computing (FC) is an environment where data are stored

and pre-processed before transmitting them to the cloud, so

that computation, storage and networking services can be

performed locally. FC has a number of advantages, within the

IoT concept, like scalable real-time services, fault detection

and isolation, enhanced security and privacy, mobility support,

geo-distribution, location awareness, low latency, etc.

In this paper, we present a three-layer IoT architecture that

employs fog-enabled gateways (GWs). More specifically, the

presented architecture consists of: (i) sensor nodes (SNs) that

lie on the network edge, (ii) fog-enabled GWs that aggregate

sensory data and perform several other operations like SN

registration, etc., and (iii) an IoT middleware used as back-

end cloud. The proposed architecture is capable of collecting

not only sensory data but management data as well, like

the device uptime, the energy consumption of the SNs, etc.

This can be used as the first step towards the implementation

of a Management-Platform-as-a-Service with inter-operability

capabilities. This service will support the collection of var-

ious management-related data like network statistics, energy

consumption, health status of the SNs, aiming to detect and

predict potential failures at all layers of the infrastructure, thus

making feasible a self-healing IoT platform.

Although cloud computing and storage has been used as a

solution to support dynamic scalability in several IoT appli-

cations, the deployment of a large number of nodes in future

smart cities needs among others, location-awareness and low

latency, requirements that can be satisfactorily met with FC.

In [8], the importance of fog-cloud interplay and the role

of FC in the context of IoT is highlighted, while in [9], a

programming model to support large-scale IoT applications

through mobile FC is proposed, built with an eye on service

provisioning to geographically distributed, latency-sensitive

applications. Furthermore, the authors in [10] explore the

suitability of FC to serve applications in the IoT context

and perform a comparative analysis between fog and cloud

computing in terms of resource consumption metrics. All these

works are mainly focused on the principles and basic notions

of FC. On the contrary, in this work we are presenting a real

implementation and deployment of a fog-enabled IoT system.

In [11], a hierarchical distributed FC architecture for big data

analysis in smart cities, along with a prototype for smart

pipeline monitoring, is presented. Other extensive deployments

that focus on service provisioning and experimentation infras-

tructures for smart-cities applications are described in [12],

[13], [14]. Although sharing common ground with them, we

are also focusing on metrics that can be used as the basis for

a Management-Platform as-a-Service.

The rest of the paper is organised as follows. In Section II

we provide an overview of the IoT platform describing its main



software and hardware components. The evaluation metrics

and the corresponding results are presented in Section III.

Finally, conclusions and further work appear in Section IV.

II. SYSTEM OVERVIEW

Conceptually the IoT system presented here follows a

three-tier hierarchical architecture comprising of three distinct

components. These are: (i) the resource-constraint IoT SNs

that lie on the network’s edge, equipped with various sensors

that produce data characterised by locality, (ii) the GW that

plays the role of the fog layer, positioned in proximity to

the SNs and autonomously processes data aggregated by the

nearby network edge, and (iii) the MW that plays the role of

the back-end cloud responsible for virtualisation, data storage

and service provisioning. Next, we describe in more detail the

components lying in all three tiers.

A. IoT Sensor Nodes

The IoT Sensor Nodes used here are resource-constraint

devices (in terms of processing power, memory and storage)

responsible for real-time sensor sampling and measurements

communication. They are built around a Zolertia Re-Mote

platform [15] that hosts an ARM M3-Cortex running at 32

MHz, 32 KB RAM and 512 MB of Flash Memory and can

operate in two frequency bands, namely ISM 2.4 GHz and

ISM 863-950 MHz under the IEEE 802.15.4 standard. A

number of analog and digital sensors is attached to the Re-

Mote platform and is able to sense variables describing e.g.

weather conditions (ambient temperature, relative humidity,

ambient light), air quality (PM10 and gases concentration),

noise, etc. An example of a physical device can be seen in

Figure 1.
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Figure 1: Sensor device

Regarding the software part, the SNs host the Contiki

OS that is tailored to networked, resource-constrained and

low-power wireless IoT devices. On the application layer,

the Constrained Application Protocol (CoAP) [16] is used

for communication with the GW. CoAP is a constrained

web protocol specialised to M2M requirements based on the

request-response model and supporting UDP transport with

application layer reliable unicast. Thus, the measurements

collected through the sensor drivers are exposed as CoAP

resources by a CoAP server running on the SN. Apart from the

sensory measurements, self-monitoring resources that report

network statistics, device hardware/software info and power

consumption, are also exposed.

B. IoT Gateway

The IoT Gateway (GW) plays the role of the bridge between

the SNs and the MW and is responsible for offering func-

tionalities, such as SN registration and management, network

and protocol translation, measurements aggregation and for-

warding to the MW. Essentially, it hosts two different network

interfaces. On the one side, there is an IEEE 802.15.4 interface

offered by a Zolertia Re-Mote that acts as a border router and

enables connectivity to the SNs. On the other side, connectivity

to the MW is provided by the Ethernet or WiFi interface of a

Raspberry-Pi 3 running Raspbian OS.

The GW has fog characteristics as it is used to register/re-

register SNs and also collects and aggregates data from the

SNs. More specifically, it ensures that the registration of

the devices to the MW is performed in an easy, transparent

and adaptive way. In particular, a CoAP server running at

the GW plays the role of the registrar that handles reg-

istration messages received from the SNs, stores necessary

identity information (eg. ID, IPv6, etc.) in a local database

and forwards registration messages to the MW. Further-

more, the GW implements a mechanism for per device data

collection activation/de-activation by translating appropriate

HTTP requests received from MW into CoAP requests for

registration/de-registration to CoAP asynchronous notifica-

tions’ mechanism (OBSERVE). Additional security and relia-

bility enhancing techniques include connectivity between the

MW and the GW realised using a VPN connection, as well as

local logging and monitoring that ensures the data transmission

the MW is not disrupted by i.e. a reset of the GW or a reset

of the devices.

C. IoT Middleware

The IoT Middelware (MW) acts as the back-end where ser-

vices are invoked, and data streams are managed. Specifically,

it performs functionalities for virtualisation, data processing

and service provisioning, along with additional security and

privacy related ones. The implementation of the MW is based

on the middleware developed as part of the EU-FP7 project

OpenIoT [17], leveraging its open-source nature and design

choices that follow the IoT-A architecture. Its functional com-

ponents include: (i) the Service Manager that is responsible

for handling the service requests from the applications by

identifying the Virtual Entities (VEs) that are of interest for the

application and matches them to predefined templates existing



in a local registry, (ii) the Generic Virtual Object (GVO)

manager that creates and manages the digital representations of

the Sensor Devices, (iii) the Federation Manager that creates

and manages federations of SNs, which provides advanced

services to the end-users, i.e. for enabling devices to cooperate

by performing service composition and orchestration, and (iv)

the Data and Context manager that handles and processes data

gathered from the SNs in order to send them to the applications

by tailoring them to their needs (i.e. performing averages,

filtering data, etc.).

III. DEPLOYMENT EVALUATION

The IoT system described in Section II was deployed in

several geographically distinct installation sites in the city of

Heraklion, Crete, Greece. The installations were performed

in both indoor and outdoor spaces (municipal buildings, parks

and squares). In each site, a set of SNs along with a GW were

installed and the measurement types depicted in Table I were

collected with the reported rate. Here, we present results on

the evaluation of the system in terms of the device availability,

secure transmissions and energy efficiency.

Measurement type Rate (secs)

Current 30

Humidity 120

Ambient light 30

PM10 60

Power consumption 10

Barometric pressure 120

Gas 30

Weather 30

Noise 30

TABLE I: Measurement types and their corresponding rates

A. Availability of the devices

1) Uptime: The uptime of an SN is defined as the time

since it has started operating, expressed in seconds. The uptime

is made available through a COAP resource, and here it

is leveraged to monitor SNs availability. By availability we

consider the time SN is up and running, and not necessarily if

the SN is properly functioning or if it is transmitting data. The

uptime can be affected only by: (i) shortage of power supply

in case of battery depletion or power outage, (ii) hardware

reset when there is a bug in SN’s firmware, and (iii) software

reset requested by the GW for proper network initialisation.

If any of the above happens, the uptime resets to zero, and

then starts counting again. Figure 2 shows an example of the

uptime collected by one of the SNs.

Observe that there are periods of time when no observations

exist. This is because the client that issues the COAP requests

for the uptime collection operated periodically. Furthermore,

observe that the uptime is not increasing as expected because

two software resets were issued by the GW. In general, if the
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Figure 2: SN uptime when two software resets are issued

SN has not rebooted, then the uptime increases monotonically,

thus when no reboot has taken place, the availability of an SN

can be computed using the expected uptime Upexp, defined as

follows:

Upexp(i) = Upi−1 + (Ti − Ti−1), (1)

where Upi−1 is the uptime provided by the SN during ob-

servation i − 1, Ti is the current timestamp, and Ti−1 the

timestamp referred to the previous observation.

Now assume that the COAP observations arrive at times

Ti, with i ∈ [1, N ], and M is a subgroup of consecutive

observations. To define SN’s availability, we compute within

each subgroup, the difference between the reported uptime and

the expected one:

∆i = Upi − α× Upexp(i), (2)

where α is the constant that defines a tolerance on the expected

uptime, to compensate for delays due to congestion in the

network or overloading of the SN. The availability of the SN

after M consecutive observations is now defined as follows:

AvM = 100×

(

1−
f(∆ > 0)

M

)

, (3)

where f(·) is a decision function that counts the number of

times ∆ is greater than zero. Referring again to the SN with the

two reset requests, its availability for M = 10 and α = 0.8
is shown in Figure 3. When the SN reboots, its availability

drops from 100% to 90%.
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Figure 3: Uptime-based SN availability with two resets and

M = 10



2) Inter-arrival time of measurements: As stated before,

by using the device uptime as an evidence of availability

cannot guarantee that the SN is properly functioning and that

it is transmitting data. In order to overcome this limitation,

we investigate the availability of the devices based on the

inter-arrival time (IAT) of the collected measurements (e.g.

ambient temperature, light, gas, etc.). During the measure-

ments collection, one would expect that the IAT of each

measurement would be equal to its expected rate. This is

not always true because packet collisions and delays (which

are highly possible in wireless environments with significant

interference) can significantly increase IAT.

Assume that IATe is the expected IAT for a single type of

measurement. If IATr denotes the IAT measured during an

experiment, then d = IATr−IATe

IATr

gives the difference between

IATr and IATe. A small d denotes that the specific measure-

ment suffers no high delays or packet losses. At this point, we

define the device availability (DA) as Av = 100×(1−d). Next,

we report DA for measurement traces collected from the GWs

in one indoor (IN-1) and one outdoor (OUT-1) installation.

We note here that DA is computed at GW level, meaning that

we first compute the DA for each separate measurement, and

then we aggregate them into a single vector for computing an

aggregate empirical cumulative density function (CDF).
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Figure 4: CDF of data availability in IN-1
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Figure 5: CDF of data availability in OUT-1

Figure 4 shows the data availability for ten SNs deployed in

the IN-1 installation. All data from the devices, except those

from SN8 and SN13, have a very high availability (over 90%).

Data from SN8 and SN13 have a lower availability because

they are located in rooms where multi-hop connections with

the GW are created, so the delay increases. The data availabil-

ity in OUT-1 installation is depicted in Figure 5. In this case,

observe that for all SNs, the availability stays over 90%.

B. Compression and encryption using Compressive Sensing

Compressive Sensing (CS) acts as a lightweight mechanism

for simultaneously compressing and encrypting a block of

sensory samples collected by an SN. Specifically, it computes a

reduced dimensionality set of linear projections of the sampled

data vector on a random subspace, through the multiplication

of the data vector with a random matrix, known as sensing

matrix. This set of random projections is further transmitted to

the GW, where the original samples are recovered by solving

an appropriate `1-norm minimization problem. As a result, it

is possible to: (i) decrease the number of packets transmitted

by the SN that is further translated to savings in transmission

energy and (ii) achieve confidentiality of transmitted data that

is based on the random nature of the sensing matrix and that

comes at limited extra cost [18].

Here, we evaluate the performance of CS with regards to the

energy savings in two different installations. Like before, we

report results of one indoor (IN-2) and one outdoor (OUT-2)

installation. At each site, we use four SNs to measure ambient

temperature and power consumption values (as reported by the

powertrace power profiler [19]) that are exposed as resources

by the CoAP server of each device. The first device (SN1)

provides uncompressed samples of ambient temperature (de-

noted as NON-CS) while the other three (SN2, SN3, SN4)

employ CS with compression rate (CR) of 50%, 75% and

87.5%, respectively. The temperature sensor is sampled every

30 seconds and the CS-enabled SNs use a Bernoulli sensing

matrix for encrypting the acquired data (in blocks of 64

samples), and transmit them to the GW. The decryption of

the CS measurements is performed at the GW, by using the

OMP algorithm [20] that is proven fast and computationally

efficient. The acquisition of all data covers a period of 24

hours, during which approximately 2900 samples of ambient

temperature and 8600 of power consumption were collected.
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Figure 6: Total transmission energy in IN-2

Figure 6 and Figure 7 illustrate the total transmission energy

of each device, for installation IN-2 and OUT-2, respectively.

As expected for both sites, the employment of the CS scheme

reduces the required transmission energy, compared to the
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Figure 7: Total transmission energy in OUT-2

NON-CS case. Additionally, by increasing the CR, leads to an

increased energy benefit, since as CR increases, less packets

are transmitted from the SN, thus its RF transceiver is draining

less energy. After 24 hours, transmission energy savings of

almost 12% and 18% are achieved at best (SN4) for IN-2 and

OUT-2, respectively. It is noted that, although considerable, we

would expect the energy savings to be more pronounced in the

absence or limitation of background traffic, which here exists

in the form of power consumption reporting packets. Finally,

the difference in the total energy consumption between the

two installations is easily explained by considering the corre-

sponding difference in the data rates. The indoor installations

operate at 250 Kbps, while outdoor ones at nominally five

times smaller rate, namely 50 Kbps. In the second case, since

the RF transceiver remains active for a longer time in order to

transmit the same data volume, it is normal to consume more

energy, compared to the faster first case.

C. Network security using DTLS

Datagram Transport Layer Security (DTLS) [21] is used

for securing network traffic in a way that does not depend on

reliable message transfer. By incorporating a mechanism that

allows packet retransmissions and reordering, whenever it is

necessary, it can be used with unreliable datagram transport,

like UDP. Thus, it can be bound to CoAP and act as a security

protocol for authentication, automatic key management and

data encryption between IoT devices, in a transparent way for

end applications. CoAP over DTLS is termed as secure CoAP

(CoAPs).

Here, we evaluate the energy efficiency of DTLS protocol

by using two SNs to measure ambient temperature values

exposed as CoAP resources by each device. The first device

(SN1) sends measurements over the non-secure CoAP proto-

col, while the second one (SN2) sends measurements using

CoAPs. A client running at the GW observes the temperature

resource for both devices and logs measurements every 30

seconds. TinyDTLS [22] implementation (an optimized imple-

mentation of DTLS v1.2 for embedded devices) is leveraged

at the SN side, providing the necessary DTLS functionality on

the server side. The cipher suite selected uses a pre-shared key

(PSK) with AES operating in CCM mode with 8-byte long

authentication tags (TLS_PSK_WITH_AES_128_CCM_8),

since this is the most efficient in terms of the operational

cost. The gathering of the measurements was performed over a

period of 14 hours. Like before, we measure the transmission

power consumption of each device using powertrace. The

power consumption is exposed as a CoAP/CoAPs resource by

the SN, which the client software running at the GW observes

with an interval of 10 seconds. Thus, a total number of around

5000 traces is logged.
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Figure 8: Cumsum of transmission energy (CoAPs - SN1)
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Figure 9: Cumsum of transmission energy (CoAPs - SN2)

In Figure 8 and Figure 9 we present the cumulative sum

(cumsum) of energy consumption for transmission of the

acquired measurements over CoAP and CoAPs, respectively.

It is noted that the cumulative values are computed after

the transmission energy, for each hour of the day, by the

summation of the aggregated powertrace values that refer to

the Transmit operation. Thus, each bar in the plot refers to

the total amount of energy spent for transmission till the end

of the corresponding hour. By comparison of the figures, we

conclude that, the data encryption provided by DTLS comes at

a cost in the energy consumption. This is obvious during the

entirety of the acquisition period. In particular, after 14 hours,

SN1 that transmits unencrypted measurements has consumed

15.6 J, while SN2 that sends measurements over CoAPs has

consumed 20.1 J, which translates to an increase of almost

29%.

Next, we investigate the overhead DTLS creates over an

insecure CoAP connection in terms of the round-trip time

(RTT). We assume that a secure connection is already estab-

lished by a handshake and the communicating parts execute

the DTLS record protocol to ensure the confidentiality and

integrity of the application data. It is noted that although the



DTLS handshake essentially adds to the total overhead, it is

only executed at the beginning of a DTLS session that can

remain active for a long time (several hours). Thus, in this

analysis, we do not consider handshake latency and quantify

the DTLS overhead by measuring and comparing the RTT of

a CoAP request for the secure and the insecure connections.

In particular, for each device (SN1 and SN2) we repeatedly

transmit, every ten seconds, a confirmable CoAP POST request

with a size equal to 59 bytes, and report the minimum, average

and standard deviation of the request RTT after 500 repetitions.

We execute the experiment for both frequency bands the SNs

are able to utilize, namely the 868 MHz and 2.4 GHz.

868 MHz 2.4 GHz

min average st. deviation min average st. deviation

CoAP 52 1199 730 26 1196 739

CoAPs 213 1237 799 130 1261 725

TABLE II: Round-trip time (ms) for CoAP and CoAPs

Observe in Table II that the overhead of CoAPs compared

to that of CoAP, is by average only 38 ms for the sub-GHz

band and 65 ms for the 2.4 GHz band. Interestingly though,

in the minimum numbers of the RTT the difference between

CoAP and CoAPs is much higher. Nevertheless, these results

show that adding security to the connection is not costly once

an active session has been established, hence a session should

be kept alive as long as possible to avoid repeated handshakes.

IV. CONCLUSIONS

In this paper we presented a fog-enabled three-layer IoT

platform, capable of collecting not only sensory data but

management data as well, like the device uptime, the energy

consumption of the SNs, etc. This can be used as the first

step towards the implementation of a Management-Platform-

as-a-Service with inter-operability capabilities. The evaluation

results, based on the data collected from the SNs, show that

the uptime metric can be efficiently use for characterising the

availability of the SNs, that can be further used to detect poten-

tial failures, misconfigurations and network-related problems

like bandwidth limitations and interference. In addition, the

data availability measurements that are computed based on

the inter-arrival time of the collected measurements can reveal

similar inefficiencies.

The energy consumption measurements show that a signifi-

cant amount of energy can be saved when CS is used as fewer

packets are sent due to compression. These measurements can

be used to compute the remaining energy of the SNs and take

necessary actions for prolonging network’s lifetime. This can

be done using various methods, like replacing SN’s battery as

soon as a remaining threshold has been reached, or by adding

more intelligence in the network, as for example to perform

routing based on the SNs’ remaining energy.

The secure COAP measurements reveal that the overhead of

COAPs is not significant, given that the sensory data are not

collected very often. These results show that adding security

to the connection is not costly once an active session has been

established, hence a session should be kept alive as long as

possible to avoid repeated handshakes.
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