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• We propose a mathematical model to estimate pricing barrier option.
• We extend a previous approach to a more complex framework.
• We use data and information in real-time within the IoT scenario.
• We show a real case study to assess the proposed approach.
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a b s t r a c t

IoT systems are able to manage very great amount of different types of data. In our paper we propose a
mobile app which uses data processed by an IoT framework to estimate the price of a European barrier
price. This software is based on an algorithm: in input it receives the values of maturity, strike price,
interest rate, barrier level and in output it gives the value of the price. The algorithm implements a
mathematical procedure involving numerical and statistical issues, as quadrature formulas and statistical
tests. The validity of our methodology is verified by applying it to a real case.
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1. Introduction

In this paper we extend the methodology of [1] to the case
of European barrier options. More precisely, we consider an IoT
scenario1 extracting and managing very huge data and describe
a mobile app which makes use of this information to estimate
the no-arbitrage price of this kind of option. In IoT scenarios very
sophisticated and efficient tools are able to infer, classify and store
data coming from different types of sources (an example of a IoT
financial data flow is presented in [3]). The advantages of this kind
of approach is investors are updated about the conditions of the
financial world and of new markets (for IoT we refer to [4,5]).

Iot frameworks already find applications in different sectors:
(i) monitoring of drivers’ performance in insurance (see [6]);
(ii) creation of apps to improve trades, as Mobile Location Confir-
mation, Alfa-Bank Sense, Groceries by MasterCard; (iii) management
of data in cultural heritage (see [7–9]).

European barrier options are a very old and simple example
of exotic options, and they can be defined as a vanilla (or basic)
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option to which some mathematical constraints, named barriers,
are added. More precisely, as basic options, an investor is provided
with the right to buy (Call) or to sell (Put) a quantity of a good
(underlying) in a future date (maturity) by paying a further amount
(strike price): the great difference consists in the presence of the
barriers, which determines the beginning of the option (knock-in)
or the end (knock-out). From a classification point of view, we dis-
tinguish different kinds of barrier options: (i) up (the initial value
of the underlying is below the barriers) or down (the initial value
of the underlying is above the barriers); (ii) discrete (the barriers
are represented by a numerable set of values) or continuous (the
barriers are a real regular function); (iii) single (the barrier is a real
half-line) or double (the barrier is a delimited real interval). In this
paper we focus our attention on single discrete down knock-out
barrier options.

Pricing a barrier option is a very complex, involving many
sophisticated mathematical tool. In simple cases it is possible to
achieve a closed for barrier option price: in the case of barrier
options with continuous monitoring of the barrier (see [10]), or in
the case of discrete barrier options by using the continuous barrier
formulas with a correction (see [11]). In general, this topic can only
be analyzed by using numerical techniques, in particular binomial
and trinomial lattices [12], finite differences schemes [13] and
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integration [14], or statistical methodologies, in particular Monte
Carlo methods [15,16].

The paper is organized in the following way. In Section 3 we in-
troduce the analytical model we focus our attention on numerical
issues and we present a numerical example; in Section 4 we draw
the conclusions.

2. Collecting financial data from an IoT framework

The Internet of Things has been on themind of financial services
industry for a while now. There are several ways IoT frameworks
can help and support financial services, which tend to deal with
intangible assets, especially in the world of on-line finance. IoT is
able to sense and gather data in the physical world converting the
data into digital and actionable output. In this scenario, financial
institutes can retrieve amore clear picture of the consumer, under-
standing how they move and where they spend money, allowing
them tomake accurate lending decisions. Customerswill be able to
make transactions and inquiries using different devices. Financial
institutes will also be able to collect information and monitor
behavior patterns to provide better and sound financial advice and
services.

Recent studies have highlighted that the quantity of available
data has increased because of not only the development of internet
technologies, but also of interactions among different markets and
the growth of financial transitions of banks. At the moment IT
systems are partially able to take advantage from these data, but,
as stated by the authors in [17], thanks to the power of IoT, this
situation will improve: banking and financial institutes will offer
their customers a truly bespoke experience, with insight, advice
and offers that reflect real-time events and situations taking place
in their customers’ lives.

Application of IoT in financial services is no longer limited to
human imagination. In fact, its application opportunities are as
limitless as human imagination. IoT powered customer informa-
tion used in insurance sector can unlock a world of possibilities for
financial institutes.

The rise of the pervasive IoT Technology has revolutionized
the way how the financial advisor, stock brokers, and other pro-
fessionals embrace the IoT adoption for better decision-making
capabilities.2

Adopting IoT brings opportunities in parallel with some chal-
lenges to Finance Services, for example:

1. Customer Experience: The Personalization, which means
offering potential solutions by collecting and analyzing data
from customer behaviors,

2. RiskManagement: The opportunitiesmostly lie in the insur-
ance sector.

3. Investment: Investment banks can benefit with the help of
the data aggregated by insurance companies.

We remark that IoT cannot be considered as a simple extension
of traditional IT world, but it introduces a novel technology that
connects objects and people to a network in order to give informa-
tion about the objects state, movement, position and so on. Several
financial transactions and services are based on information from
intangible sources while the IoT is fundamentally about gathering,
processing and creating value from data about tangible objects.

From a financial point of view, it is essential to understand how
IoT-generated data create value for companies and/or consumers.
In this paper we discuss an IoT framework (illustrated in Fig. 1),
which relies on a smart mobile application able to retrieve and
collect data about a particular feature (for example the volatility
of the underlying) from the whole IoT environment.

The proposed IoT framework is composed by three layers:

2 https://www.linkedin.com/pulse/internet-things-iot-financial-services-
industry-fsi-introduction-rao.

• Data Collection layer: this layer is responsible of the col-
lection of data coming frommultiple sources (e.g. database,
web-site, sensors, actuators, people, mobile devices, etc.).

• Computing layer: This layer is characterized by a software
engine responsible for computing the volatility estimation
of a financial option. It receives all necessary data coming
from the Data Collection layer as input. The mathematical
model described in the next section is implemented here.

• Visualization layer: This layer is responsible for the vi-
sualization of alerts, queries and results coming from the
Computing Layer. In details, a mobile application has been
developed to show the computed option price estimation
and the related volatility.

We can image the following scenario. A trader is going to invest
its money in an option, of which he knows the price established
by its financial institute. After he has selected the time interval,
the interest rate, the strike price and the underlying asset, he runs
our mobile application, which takes all the necessary information
in real-time and computes the price; he decides to compare this
value with the one received by its institute.

3. The model

In this sectionwe illustrate our analytical and numerical model.
We assume that the classical assumptions of the Black–Scholes
market (see [18]): (a) completeness; (b) absence of arbitrages;
(c) possibility of short selling; (d) absence of any frictions; (e) pres-
ence of two assets, a risky asset (with time-dependent volatility)
and a risk-free bond (with a constant interest rate). In the following
we adopt the following notations: (i) [0; T ] is the time interval;
(ii) (Ω; F , Ft;P) indicates a filtered probability space; (iii) Wt
denotes a standard Brownian motion; iv) St is the risky asset;
(v) r indicates the interest rate; vi) σt denotes the volatility of St ;
(vii) N(µ; v) is a Normal with mean µ and variance v; (viii) Φ()
indicates the standard Normal cumulative distribution function;
(ix) cov(X; Y ) is the covariance of the random variables X and Y .

The risky asset evolves according to the following risky-neutral
dynamics:

dSt = rStdt + σtStdWt . (1)

Assigned an initial value S0, the (1) states that St is a log-normal
process, given by3:

St = S0e
∫ t
0 (r−0,5σ2

s )ds+
∫ t
0 σsdWs

ln St ∼ N
(
ln S0 +

∫ t

0
(r − 0.5σ 2

s )ds;
∫ t

0
σ 2
s ds
)

.

3.1. Barrier option price

In our context we consider a particular kind of discrete barrier
option, knock-out down barrier option. We suppose that the un-
derlying can be monitored in a sequence of N instants {tn}Nn=1: in
symbols, for every n = 1, . . . ,N , in tn the value of the underlying
and the barrier are respectively Sn and Bn; the price of a down

3 We apply the Ito’s lemma to the process Yt = f (t, St ), where f (t, x) = ln x:

dYt =

(
∂ f (t, St )

∂t
+

1
2

σ 2
t S

2
t
∂2f (t, St )

∂x2

)
dt +

∂ f (t, St )
∂x

dSt =

=

(
r −

1
2

σ 2
t

)
dt + σtdWt .

.
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Fig. 1. An Internet of Things framework for financial data collecting and computation.

knock-out barrier option can be expressed in terms of expectation
respect to the risk-adjusted probability measure Q:

P = e−rTEQ

[
N∏

n=1

1] ln Bn;+∞[(ln Sn)H(ST )

]
, (2)

where H(ST ) is the pay-off function of a vanilla option with under-
lying St , maturity T and strike price K

H(ST ) =

{
max{ST − K , 0} if Call
max{K − ST , 0} if Put

(3)

In the case in which the sequence Sn tends to 0 for the input N , the
random variables 1] ln Bn;+∞[(ln Sn) and H(ST ) are not correlated:
the formula (2) can be rearranged as4

P = e−rT
N∏

n=1

EQ [1] ln Bn;+∞[(ln Sn)
]
EQ [H(ST )] . (4)

We conclude this subsection by deriving a numerical computation
of (4). For every n = 1, . . . ,N , let σ̃n be the value of the volatility
observed in tn; we set σn = σ̃n

√
tn and µn = ln S0 + rtn − (1/2)σ 2

n .
It results:

Pc = e−rT

(
N∏

n=1

1
√
2πσn

∫
+∞

ln B
e
−

(x−µn)2

2σ2
n dx

)
EQ

[H(ST )] =

. =
e−rT

(2π )N/2

(
N∏

n=1

∫
+∞

ln B−µn
σn

e−
y2
2 dy

)
EQ

[H(ST )] =

=

[
N∏

n=1

Φ

(
−

µn − ln B
σn

)] (
e−rTEQ

[H(ST )]
)
.

The value of the term R = e−rTEQ
[(ST −K )+] is computed by using

the Black–Scholes formula, and it depends on the kind of option. In
the case of a call, we have:

R = S0Φ(d1) − Ke−rTΦ(d2)
d1 =

[
ln(S0/K ) + (r + 0.5σ 2

N )T
]
/σN

√
T

d2 = d1 − σN
√
T

In the previous computations we have made use of the log-
normality of St . In conclusion, for a Call discrete knock-out down

4 We remark that for a Brownian motion we have:

cov(ln Sn; ln Sm) = min{tn; tm} n,m = 1, . . .,N n ̸= m.

.

barrier option Pc we have determined the following numerical
estimator:

Pc =

[
N∏

n=1

Φ

(
ln B − µn

σn

)]
[S0Φ(d1) − Ke−rTΦ(d2)]. (5)

The price of a Put Pp can be obtained by applying the Put–Call
parity:

Pp = Pc + Ke−rT
− S0. (6)

In the next subsection we deal with the numerical issues concern-
ing the formula (5).

3.2. Numerical and statistical issues

As it has been remarked in the previous subsection, the step
described in (5) rely on the log-normality of the underlying (for
numerical methods we refer to [19]). We test this property by
applying the Jarque–Berra test [20] to a Z-dimensional sample of
observations of underlying {Sz}Zz=1, available in 0.

The function Φ() is evaluated by means of a Laguerre
quadrature.5

The value of the cumulative distribution function of the stan-
dard Normal in a generic real number a can be rewritten, by setting
y + a, as:

Φ(a) =
1

√
2π

∫
+∞

−a
e

x2
2 dx =

=
1

√
2π

∫
+∞

0
e−yeye

(y−a)2
2 dy =

=
1

√
2π

∫
+∞

0
ω(y)f (y; a) dy ∀a ∈ R.

ω(y) = e−y

f (y; a) = eye
(y−a)2

2 .

5 The choice of a Gaussian formula is due to a classical theorem of numerical
calculus, which ensures that this class of numerical methods have the highest
precision degree. The main Gaussian formulas in unbounded intervals are Laguerre
and Hermite: we have preferred the first one because, as it will be evident, is more
suitable for our situation.
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We obtain the following approximation for (4):

Pc =

[
N∏

n=1

(
M∑

m=1

Am(an)

)]

×

[
M∑

m=1

(S0Am(d1) − Ke−rTAm(d2))

]
(7)

Am(a) =
1

√
2π

wmf (ym; a); an = (µn − ln B)/σn.

m = 1, . . . ,M n = 1, . . . ,N.

The terms ym and wm are respectively the nodes and the coeffi-
cients of Laguerre formula. Since they depend on the observations
of the volatility, which is generally an endogenous variable: this
implies that a procedure to achieve them is necessary. In our
context we simplify this point by assuming that the volatility is
constant and exogenous.

We summarize our numerical and statistical procedure. It is
composed of the following steps: (i) testing the log-normality of
the underlying; (ii) determination of coefficients and param-
eters of Laguerre polynomials; (iii) calculation of weights and
nodes of Laguerre–Gauss formula; (iv) approximation of stan-
dard normals evaluations by mean of a Gaussian quadrature
formula. The input variables are: (i) thematurity T ; (ii) the interest
rate r; (iii) the volatility σ ; (iv) the value of the underlying in 0 S0;
(v) the set of barrier Bn; (vi) the strike price K ; (vii) the number
of time subintervals N; (ix) the dimension of the sample Z; (x) the
number of the nodesM; (xi) observations of the underlying Sm. The
output variable are the estimation of the barrier call price c0 and
put price p0.

Algorithm 1 Estimation of barrier option prices

Require: T , r, σ , S0,N, Bn, K ,N, Z,M, Sm
Ensure: c0, p0 .

1: Initialization

ω(y) = e−y
; f (y; a) = eye

(y−a)2
2

σn = σ
√
tn; µn = ln S0 + rtn − 0.5σ 2

n .

n = 1, ...,N.

2: Jarque–Berra Statistic

JB =
Z
6

(
S2 +

1
4
(C − 3)2

)
.

S = [(1/Z)
Z∑

z=1

(ln Sz − µ)3]/v3/2
; C = [(1/Z)

Z∑
z=1

(ln Sz − µ)4]/v2

µ = (1/Z)
Z∑

z=1

ln Sz ; v = (1/Z)
Z∑

z=1

(ln Sz − µ)2.

3: Computation of the coefficients bm and cm of Laguerre polynomials Lm and
parameters an, d1 and d2

bm = 2(m − 1) + 1; cm = (m − 1)2 b1 = c1 = 1

d1 = [ln(S0/K ) + (r + 0.5σ 2
N )T ]/σN

√
T d2 = d1 − σN

√
T

an = (µn − ln B)/σn; n = 1, ...,N m = 1, ...,M.

4: Calculation of weights wm and nodes ym of Laguerre–Gauss formula

Lm(ym) = 0; wm = (M!)ym/[LM+1(ym)]2.
5: Evaluation of barrier option price

Pc =

[
N∏

n=1

(
M∑

m=1

Am(an)

)][
S0

M∑
m=1

Am(d1) − Ke−rT
M∑

m=1

Am(d2)

]
.

Table 1
Historical values of the underlying.

Date Value1 Value2 Value3 Value4 Value5

01/01/2018 79.22 76.15 73.27 70.57 68.07
02/01/2018 87.14 83.77 80.59 77.63 74.88
03/01/2018 95.0608 91.3853 87.9205 84.6837 81.6860
05/01/2018 87.14 83.77 80.59 77.63 74.88

The real value of the option Preal has been computed by means
of a Monte Carlo method (in the following we sketch the codex):

Monte Carlo estimation for barrier option

(1) Draw i × T numbers uit ∼ N(0, 1), i = 1, ..., I, t = 1, ..., T .

(2) Generate Sit = S0exp
[(

r −
σ2

2

)
tv + σ

√
tiuit

]
(3) Finding the minimumsmt , t = 1, ..., T of S(t)i , i = 1, ..., I .
(4) Computing the following quantity

P̃ =
1
T

T∑
t=1

1[B;+∞[(mt )H(SIt ).

3.3. Numerical example

In this subsectionwepresent a numerical example of our frame-
work. We have calculated the price of a European barrier call with
constant barrier B = 9, stock price S0 = 10, strike price K = 10,
starting date t0 = 05/01/2018, maturity 05/01/2022, interest
rate r = 0.05, the annual volatility σ = 0.1 (all the amounts are
expressed in Euro). The value Preal = 1.43 has been found with a
number of simulations I×T = 100×1000. The instants tn inwhich
the underlying is monitored are equidistant and time subintervals
have length equal to h = T/N or, equivalently, tn = nh, n =

1, . . . ,N .
The next figure illustrates the pop-up of our mobile app, imple-

menting our software in the IoT scenario (see Fig. 2).
We first have verified that the underlying satisfies the log-

normality hypothesis by means of Jarque–Berra test: we have
considered observations relative to the period from 01/01/2018 to
05/01/2018 andwe have reported some of these values in Table 1:
the first column is relative to the date of observations, the others
are relative to the available value. The result of the test is 0: this
means that our hypothesis cannot be rejected.

The Table 2 shows estimations of the call price. Our goal consists
in analyzing how the number of the instants in which the underly-
ing is monitored impacts our We have fixed the number of nodes
M = 20, while the value of the time subintervals N varies. The
table is structured in the following way: (i) the column N contains
the different values of subintervals; (ii) the column Price lists the
approximations of the call price relative to our procedure; (iii) in
the columns Err abs and Err rel the values of the absolute and
relative error have respectively been inserted. We observe that an
increase of N does not improve the accuracy (in fact both absolute
and relative errors are very low when N = 1): this is verified
especially when the order of magnitude of data is not very high.

4. Conclusions

In this paper we have presented a numerical and statistical
framework for the evaluation of European barrier option price in
a Black–Scholes model, characterized by the following assump-
tions: (i) completeness of the market; (b) absence of arbitrages;
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Fig. 2. Barrier option calculator.

Table 2
Call price estimations.

N Price Err abs Err rel

1 1.81 0.39 0.28
5 1.32 0,1 0.07

10 0.92 0.5 0.35
15 0.65 0.77 0.55
20 0.45 0.97 0,68
50 0.05 1.37 0.96

(c) possibility of short selling; (d) absence of any frictions; (e) risky
asset described by a log-normal process. This algorithm has been
implemented in a mobile app in an IoT scenario: this approach can
communicate and store large amounts of data and gives traders
updated information of different nature. Our procedure involves
mathematical tools, as quadrature formulas and statistical testing,
and it has been used for the resolution of a real case.

Our procedure has been applied to discuss the problem in a
very simple case, in which financial parameters are constant and
exogenous. In the future our are goals is the extension of our
methodology to the more complex options with stochastic and
time dependent volatility.
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