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Abstract

A statistical approach to abstract and predict turbine states in an online manner
has been developed. Online inference is performed on temperature measurement
residuals to predict the failure state ∆n steps ahead of time. In this framework
a case study is performed showing the ability to predict bearing failure 33 days,
on average, ahead of time. The approach is based on the separability of the suf-
ficient statistics and a hidden variable, namely the state length. The predictive
probability is conditioned on the data available, as well as the state variables.
It is shown that the predictive probability can be calculated by a model for
the samples and a hazard function describing the probability for undergoing a
state transition. This study is concerned with the prior training of the model, for
which run-to-failure time series of bearing measurements are used. For the sam-
ple model prediction is conditioned on prior information and predict the next
∆n samples from a feature space spanned by the prior samples. By assuming
that the feature space can be described by a multivariate Gaussian distribution,
the prediction is treated as a Gaussian process over the feature space.

Keywords: Fault Prediction, Bayesian Inference, Machine Learning, Data
Driven, Classification, Wind Turbines.

1. Introduction

The continuous growth of wind energy generating sources, especially in harsh
environments such as off-shore, has led to an increasing demand on more careful
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planning and control of operation and maintenance costs. This has made con-
dition monitoring and fault diagnosis of wind turbines an even higher priority5

[1, 2, 3, 4, 5].
In this work failure of a turbine or it’s components is defined as being the

state of non-operation of aforesaid turbine or components. A fault on the other
hand is associated with a defect, e.g. a crack in the bearings. As wind turbines
are composed of different systems, it is intuitive that there are sub-systems10

which are more vulnerable to failure than others: the rotor system including
the hub, has a more dominant failure rate than bearing and generator systems.
However, the generator, hydraulic and gearboxes anecdotally are considered
the bête noires of wind turbines, as, although not that frequent, the downtime
caused by failure in these systems is substantial [6, 3, 7].15

There are a wide variety of monitoring approaches available, ranging from
acoustic analysis to visual inspection. These have shown potential in early fault
detection, with prediction horizons ranging from seconds to months before a fail-
ure [8, 9, 10, 11, 12, 13, 14, 15, 3, 16]. Amongst these are approaches that specific
target bearing monitoring approaches [17, 18]. Common causes for bearing fail-20

ure are excessive load, fatigue, contamination, misalignments, overheating etc.,
latter will be addressed in the course of this paper. Additional common predic-
tion, operation, and condition monitoring approaches are summarized in Kusiak
et al. [19] and Márquez et al. [20].

As the proposed method in this work is a fault estimation (including pre-25

diction) approach, the comparison to other approaches in the field is essentially
the comparison between the structure of set approaches. In general, fault esti-
mation can be categorized into two groups: model based, and data-driven. In
case of the first group, a physical model (such as Vidal et al. [21]) or at least
an approximate state space model of the system (such as Gao et al. [22] and30

Liu et al. [23]) is necessary. Given initial information of the system and the
consistency between the real and estimated variables, these methods have shown
to be successful in providing robust fault estimation. The second group, on the
other hand, is solely based on the recorded data, particularly suited when no
system informations are available. Although some of the data-driven methods35

employ a system model to generate residuals (as it is the case of this work),
the employed models are unsupervised, such that no prior information of the
system is used. The proposed approach in this study is data-driven and aims
to predict baring fault based on the statistical features of residuals.

The work presented in this paper aims at achieving a high prediction horizon,40

but in contrast to other studies, emphasize the precision of the predictive model
in order to provide a predictive horizon and the time of failure within a specified
model accuracy. The prediction of a failure of a turbine or component is facili-
tated in predicting a specific fault. In the case study presented in this work, this
is equal to the prediction of the remaining lifetime until failure of the turbine, as45

run-to-failure time series are considered. This is achieved by abstracting turbine
states in a Bayesian framework [24]. The contribution of this work is to extend
the work of Herp et al. [24] by including a prediction horizon based on modelling
samples as part of a Gaussian process, associated with bearing failure. Further,
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training a predictive model by updating the hyper-parameters, on run-to-failure50

time series, is added in this work as well. Investigating faults beyond bearing
failure, and especially unsupervised fault identification and isolation, such as
benchmark models by Dey et al. and Odgaard et al. [25, 26, 15] will not be
addressed in this study. This challenge is left for consideration in future work.

The paper is organized as follows: In Section 2 the problem at hand is55

formulated and the terminology is introduced. Further, a brief description of the
data is made available. Section 3 introduces the state transition approach and
its extension considering Gaussian processes. Following the theory of Section 3
the state prediction is described in Section 4. The proposed approach is put to
use in a case study on bearing failures in Section 5. Finally, Section 6 concludes60

the outcome of this paper.

2. Formalizing the Motivation

Recent work has explored the idea of abstracting states from wind turbine
measurement residuals [24, 27]. Under the assumption that wind turbine states
can be characterized by changes in the mean and standard deviation of a time65

series, a recursive online algorithm was proposed. Motivated by this work, the
question when will a given state occur? will be addressed.

Although this study is concerned with run-to-failure residuals of bearing
temperature, the problem will be formulated in a general way to highlight the
universality of the algorithm. Consider Ek to be any any event which is linked70

to the operation of a wind turbine at time i, dependent on a hidden variable
s(i), representing the current state of the turbine as well as the data collected
up to time i. The question raised is, what is the probability of detecting Ek or a
set of events {Ek}, ∆n samples before its occurrence, P(∆n | {Ek}, s(i),x[1,i]),
conditioned on the prior samples and current state variable? Here, x[a,b] defines75

the discrete set of successive observations from time a to b. Assuming the
separability of the process {x1, . . . , xN} into S ≤ N states, s(i) will characterise
the length of the current state with samples x[SS ,i]. sm referrers to the hidden
variable of a wind turbine, defined by the separability of the process and will
also be used to label the states. The transition between those states are referred80

to as state transitions.
Consider {Ek′′} as the set of events associated with bearing temperature

failure, the scope of this work, is to show that P(∆n | {Ek′′}, s(i),x1,i) can
be calculated by extending the work of Herp et al. [24] to a wider range of
models. The model extension will focus on the principal of Gaussian processes85

(Rasmussen et al. [28]).

2.1. Run-to-failure Bearing Time Series
The data at hand can be divided into two different types: operational data,

in the form of preprocessed Supervised Control And Data Acquisition (SCADA)
data, and status data, referred to as event data as mentioned earlier.90
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Figure 1: Run-to-failure time series of bearing temperature for Turbine 1 (top), Turbine 2
(mid) and Turbine 3 (lower), including recorded events (·). Each row represents a different
type of event group.

2.1.1. Residuals of Bearing Temperature
Three time series of bearing temperature residuals, ∆T , are considered for

this study and presented in Figure 1. Summarizing from the work of Bach-
Andersen et al. [18], the underlying model generating the residuals is not meant
to resemble a physical model of the wind turbine’s thermal energy flow, hence95

an artificial neural network (ANN) is chosen for modelling the temperatures of
the main bearing component. The input for the model is chosen based on first
principle consideration of the energy diffusion in a wind turbine, subjected to
the bearing assembly. The gear box is considered the primary thermal source,
the diffusion follows through the main shaft and bearing assembly, before it100

is dissipated to the outside of the hub. The model inputs are SCADA data
sampled in 10min intervals, containing active power, generator speed, gear box
oil temperature, ambient temperature, and nacelle temperature. The model
output is re-sampled to hourly resolution. Furthermore, the ANN model is
trained on assumable fault-free data from the first year of operation for each105

turbine.
Besides the common behaviour explored in Figure 1, it is essential that the

time series under considerations show common statistics, in order to utilize
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Figure 2: Quantiles of the bearing residuals for the turbines under consideration compared to
the quantiles of a standard normal distribution.

machine learning concepts of training hyper-parameters for state prediction.
Plotting the quantiles of the time series against the quantiles of a normal dis-110

tribution, Figure 2, shows that the main part of all three time series follow a
normal distribution with zero mean and unit variance. Further, Figure 2 indi-
cates that the buildup in temperature follows a similar distribution in all time
series. As such, the assumption is made that we can train on one or more time
series and apply the obtained model on similar time series without adjusting115

the model.

2.1.2. Turbine Event Data
Event data consists of the recorded events experienced by a wind turbine,

e.g. failure, warning, status etc., and the associated timestamps. These events
can be mapped binary into any time frame matching the SCADA system as120

seen in Table 1. In order to give the reader an overview of how many events
occur, Figure 1 indicates, by red markers, all events experienced by the wind
turbines, ordered in groups. These events range from scheduled lubrications,
over untwisting cables, to bearing over-temperature. Remark, on average around
1000 occurrences per year of different events are under consideration in this125

study.
As failures of wind turbines develop over time, it is reasonable to assume

that event patterns might be abstracted in order to justify temporal correlations
amongst a turbine’s states. Considering a chain of successive and/or simulta-
neous events, the dependency between two sets of events is referred to as event
patterns and formulated as

El ⇒ El′ l 6= l′

El, El′ ⊆ E
El ∩ El′ 6= ∅

 , (1)
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Table 1: Binary Event Mapping: Mapping from recorded event data into a binary array for
the evaluation of dependency between events.

Event Start Time Stop Time

E1 Oct. 11, 2014, 12:42:12 Oct. 12, 2014, 16:02:22
E21 Oct. 12, 2014, 09:59:01 Oct. 13, 2014, 10:12:43
E1 Oct. 12, 2014, 15:39:06 Oct. 13, 2014, 10:22:43
...

...
...

E3 Oct. 19, 2014, 02:22:00 Oct. 19, 2014, 13:00:00
E12 Oct. 19, 2014, 03:01:52 Oct. 23, 2014, 13:00:00

⇓
Events

sample E1 E2 · · · Ek−1 Ek Ek+1 · · · EK

i− 2 0 0 · · · 0 1 0 · · · 1
i− 1 0 0 · · · 0 1 0 · · · 1
i 0 0 · · · 0 1 1 · · · 0

i+ 1 0 0 · · · 0 0 1 · · · 0
i+ 2 1 0 · · · 0 0 1 · · · 1

with support (relative number of a pattern), and confidence

conf(El ⇒ El′) =
supp(El ∪ El′)

supp(El)
. (2)

By this approach, normal and critical event patterns of bearing failure can be
abstracted from the turbines under consideration. For instance, with high confi-
dence, Bearing Over-Temperature warnings can lead to Bearing Over-Temperature
failures.130

3. State Transition

The state transition algorithm under consideration follows the work of Herp
et al.[24, 27] where the joint probability over the current state can be estimated
recursively by

P(s(i),x[1,i]) =
∑
s(i−1)

P(s(i) | s(i−1),x[1,i])︸ ︷︷ ︸
conditinal prior

× P(xi | s(i−1),x[1,i−1])︸ ︷︷ ︸
sample model

P(s(i−1),x[1,i−1]). (3)

Eq. (3) is referred to as the Dependent State Transition Model (DSTM). The
DSTM can be easily generalized to higher dimensions by portraying xi as a
vector xi ∈ Rd and x[1,i] as a matrix of of dimensions i × d. States are then
abstracted by considering the maximum likelihood of P(s(i),x[1,i]). Both the135
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conditional prior and sample model are implicitly depending on known hyper-
parameters β = (βc, βm), thus whenever one of them is considered it is referred
to as P(s(i) | s(i−1),x[1,i]) ≡ P(s(i) | s(i−1),x[1,i], βc) or P(xi | s(i−1),x[1,i−1]) ≡
P(xi | s(i−1),x[1,i−1], βm).

The probability of undergoing a state transition is based on the assump-
tion of dependencies between states. Referring to Herp et al. [24] for the
calculation of the DSTM the dependency on x[1,i] requires taking the previ-
ous state information into account. I.e. utilizing the knowledge of the number
of previous state transitions S, and their location in the sequence of states:
S0 = 0 < S1 < S2 < . . . < SS < i. The estimation of the conditional prior in
Eq. (3), will be based on the temporal distance between the occurrence of states,
∆S ≡ Sm − Sm−1. In other words, f(∆S) = P(Sm − Sm−1 = ∆S) ∼ {N1},
where 1 ≤ m < i. As the event dependencies do not contain temporal informa-
tion, the assumption that ∆S can be treated as an independent variable, with
the joint probability distribution, Eq (4), is implied.

P(S1, . . . , SS) =

( S∏
m=1

f(∆S)

)
(1− F (s(i))), (4)

here F denotes the cumulative distribution of f . When considering the ith140

sample, the dataset is divided into S + 1 sates, with the mth state containing
the observations x[Sm+1,Sm+1], up to m = S. For each state there then exists a
model specified by its statistical measures. For allm the probability distribution
over sm will depend on the location of the previous state transition and its
length, characterized by (Sm−1, Sm), and the statistical information in sm−1.145

Let P(s(i) | s(i−1),x[1,i]) be equal to H, the probability when undergoing a
state transition, 1 − H when staying in the same state, and 0 otherwise. The
probability when undergoing a state transition will be proportional to P(sm |
sm−1, Sm, Sm−1), and the statistical information in Sm−1. Remark, in this cases
common parameters across the states are possible. In order to initialize the first150

state, s0, the prior for this state needs to be picked beforehand, since no data
are available yet. Finally, the problem is reduced to selecting the proper set of
conjugated priors (as discussed in a wide range of textbooks such as Gelman et
al. [29]) for sm and Sm, that best resembles the data set.

The sample model in Eq. (3) describes the statistical measures of the differ-
ent states. The original state transition approach considered changes in mean
and variance to distinguish between states. A Student’s t-distribution can be
used for that purpose. Let Stν(µ, σ) denote the Student’s t-distribution with ν
degrees of freedom, mean µ, and variance σ, then

P(xi | s(i−1),x[1,i−1]) = St2α
(
µi,

γi
αi

κi + 1

κi

)
, (5)

7
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where

µi =
κ0µ0 + E[x[1,i]]

κ0 + i
, (6a)

κi =κ0 + i, (6b)
αi =α0 + i, (6c)

γi =γ0 +
1

2
ξi +

κ0i(E[x[1,i]]− µ0)2

2(κ0 + i)
, (6d)

with µ0, κ0, α0, γ0 being the previous statistics, and sum of standardised squared
error

ξi =

i∑
l=1

(xl − E[x])2. (7)

As seen in Section 2.1; time series under consideration might not show charac-155

teristics that can be described by simple changes in their mean or variance. In
contrast to the approach proposed by Herp et al. [24], this work considers more
elaborate models by the means of Gaussian processes as described in the next
section.

3.1. Gaussian Process - Extensions to the Existing Model160

Gaussian processes have been proven to be useful in machine learning, a
profound description is available in the textbook of Rasmussen et at. [28].
By definition, a Gaussian process is a collection of random variables of finite
number which have a Gaussian distribution. The Gaussian process will thus be
fully specified by a mean E[·] ∈ Rd → R and covariance σ(·, ·) ∈ Rd × Rd → R
function with known hyper-parameters λ and input space dimension d. In this
study, the sample model in Eq. (3) is described by a Gaussian process. Defining
the input space as the space of training sample data, and the feature space as
the space of sample data of the system under study, these spaces might have
different dimensions. Considering ω ∼ N (0,Σ) as weight to the input, φ(i) is
introduced as the function mapping from the d-dimensional input space into a
finite sized feature space of dimension D:

f(i) = φ(i)ω. (8)

Now f(i) can be specified by the mean and the covariance of the feature space:

xi = f(i) + εi, (9a)

fi ≡ f(i) ∼ GP(µf , σf ) ≡ N (µf , σf ), εi ∼N (0, Iσε2), (9b)

where

E[fi] =φ(i)>E[ω] =: µf , (10)

E[fi, fj ] =φ(i)>E[ωω>]φ(j) = φ(i)>Σφ(j) =: σf . (11)

8
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By construction of Eq. (3) the sample model is only dependent on the current
state, i.e. x[SS+1,i−1]. In the light of Gaussian process, the covariance between
the predicted sample, i.e. xi, and the current state, the prior can be written as:[

x[SS+1,i−1]

xi

]
=N

(
0,

[
σ(x[SS+1,i−1],x[SS+1,i−1]) + σ2

ε I σ(x[SS+1,i−1],xi)
σ(x[SS+1,i−1],xi)

> σ(xi,xi)

])
.

(12)

From Eq. (12) the sample model in Eq. (3) (in earlier work described by a
Student’s t-distribution) gives rise to the following one step predictive distribu-
tion, by simple matrix manipulation [30]:

P(xi | x[SS+1,i−1]) = N (µ, cov), (13)

where

µ =σ(x[SS+1,i−1],xi)
>

·
(
σ(x[SS+1,i−1],x[SS+1,i−1]) + σ2

ε I
)−1

x[SS+1,i−1], (14)

cov =σ(xi,xi)− σ(x[SS+1,i−1],xi)
>

·
(
σ(x[SS+1,i−1],x[SS+1,i−1]) + σ2

ε I
)−1

· σ(x[SS+1,i−1],xi). (15)

Consider again the signal plus noise model of the form xi = f(i) + εi, remark
that the additive noise is assumed to be independent, identical distributed with
variance σ2

ε . The prior on the noise part can be expressed as σ(xi,xj) + σ2
ε I.

The joint predictive distribution for the samples of some prior input x[SS+1,i−1]

and predictive output xi is specified by the prior:165

Is is assumed that the hyper-parameter of the sample model, namely βm,
is known and fixed. In the cases of multiple hyper-parameters γ for each state
transition, these need to be marginalized out

P(xi | x[SS+1,i−1], βm)

∝
∫

P(xi | x[SS+1,i−1], γ)P(xi | γ)P(γ | βm)dγ, (16)

with marginal log-likelihood

logP(x[SS+1,i−1] | γ) =− 1

2

[
x>[SS+1,i−1]

·
(
σ(x[SS+1,i−1],x[SS+1,i−1]) + σ2

ε I
)−1

x[SS+1,i−1]

+ log
(
|σ(x[SS+1,i−1],x[SS+1,i−1]) + σ2

ε I|
)

+ (SS + 1) log(2π)
]
. (17)

For this study d = 1, unless stated otherwise.

9
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Generating samples using the Gaussian process based sample model requires
the selection of specific sturctures for µ and cov, and estimating these structures
by obtaining the hyper-parameters on a training data set. While µ is assumed
to be fixed and zero, and the prior on the covariance function, cov, is chosen to
be a radial basic function [31] of the form

cov = σ(xi,xj) = σ2
ε exp

{
−1

2
(xi − xj)

>(xj − xi)

}
, (18)

generating infinitely differentiable functions.

4. State Prediction

Extending the Gaussian process detection of state transitions, as described
in Section 3, into prediction of state transition conditioned on a single event is170

based on two principles: (i) the common characteristics across the time series
such that one or more turbines can be utilized for model building purposes, i.e.
to learn of the underlying hyper-parameters and (ii) that the future samples,
xi+∆n can be extrapolated by the Gaussian process as described by Eq. (12).

(i) The hyper-parameters are obtained by considering one or more training175

time series and running the Gaussian process built around Eq. (3) such
that arg maxβ{L(P(s(i) | x[1,N ]))}, where x[1,N ] = [x[1,i],x[i+1,i+∆N ]]. In
order to assure model robustness and prevent over-fitting, the training
process can be done on more than one time series. In that case, multiple
time series are taken as an input to retrieve the hyper-parameters. The180

training time series are aligned at the time of failure and treated as a
multivariate input for each xi, i.e. following the approach outlined in
the Section 3 with d ≤ 2. Compared to the previous work on the state
abstraction of wind turbines [27, 24], where training was only performed
on a subset of a time series, training on a full time series now enables the185

prediction of specific states in other time series. This is due to the trained
model’s awareness of the possible states existence in the future.

(ii) As soon as the hyper-parameters are specified, time series can be predicted
∆n samples into the future. Intuitively speaking, the prediction can be
viewed as the extrapolation of the samples x[1,i−1] by the functions f(·)190

selected from the feature space. For any x[1,i−1] Eq. (12) returns the esti-
mated xi. Iteratively applying Eq. (12) leads to x[1,i],x[1,i+1], . . . ,x[1,i+∆n].
The hyper-parameters for the sample model, βm, or equivalently {γ}, dic-
tate the properties of the hidden state variable sm, i.e. ∆S, the length of
a state, and its location (Sm−1, Sm).195

Figure 3 illustrates the prediction of xi for simplified and idealized simu-
lated bearing temperature residuals with additive noise. The predictions
shown in panels a) - d) are based on Eq. (12), generating the prediction,
shown in gray-scale ( ), based on the previous samples. Early

10
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Figure 3: Concept of state, the Gaussian process predictive model and state prediction. Snap-
shots of the predictive model, forecasting samples according to the trained Gaussian process,
with variance indicated in gray-scale ( ).

prior to the buildup in temperature (panel a)), the prediction indicates200

no significant change in the upcoming residuals. As time progresses the
algorithm picks up the buildup in temperature, and predicts the rise of
the temperature as it looks further into the future (panel b)). Panel c)
shows how the precision decreases and the predictive distribution hardens
around the predictive values. Finally, as seen in panel d), the turbine205

undergoes downtime after a fault occurred, and the temperature falls to
normal levels again.

Being able to predict future samples, the prediction horizon, accuracy, and
precision can be addressed, under the assumption of monitoring a specific event
Ek′′ or set of events {Ek′′}. As βm, or equivalently {γ}, specify the state tran-
sitions, it is possible to evaluate P(∆n | {Ek′′}, s(i),x[1,i]). Figure 4, illustrates
that the idealized distribution P(∆n | {Ek′′}, s(i),x[1,i]) will have an empiri-

11
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Figure 4: Idealized ∆n-step prediction of an event. Illustrated are the probability density
function and cumulative distribution function from a Gaussian process prediction a specific
event.

cal probability density function (pdf(∆n)) and cumulative distribution function
(cdf(∆n)). The maximum likelihood of P(∆n | {Ek′′}, s(i),x[1,i]) defines the
predicted time, tn, of Ek′′ . The prediction horizon is defined as tn − ti, the
distance between the current time ti and the most likely time of the event tn
dictated by pdf(∆n). The accuracy is defined as

ACC = |tEk′′ − tn|, (19)

the absolute distance between the real time, tEk′′ , and the predicted time for the
considered event. The precision of predicting tEk

is defined as the symmetric
integral over P(∆n | {Ek′′}, s(i),x[1,i]):

PRC =

∫ tE
k′′

+∆

tE
k′′
−∆

pdf(∆n)dt→
tE

k′′
+∆∑

tE
k′′
−∆

P(∆n | Ek′′ , s(i),x[1,i]) (20)

where ∆ indicates the desired precision interval around tEk′′ , as illustrated by
the shaded area in Figure 4. The probability density function, pdf(∆n), in Fig-
ure 4 is best explained intuitively by considering a hard temperature threshold.210

In the case where the threshold cuts through the shaded area in Figure 3 it will
give raise to a distinction as shown shown in Figure 4.
{·}µ,covt is introduced as the short hand notation for the set of events asso-

ciated with the mean and variance of the predictive distribution N (µ, cov), as
defined by Eqs. (13) - (15). Assuming the events under consideration, {Ek′′},215

are fixed, states can be predicted under the premises of Eq. (1), such that
{·}µ,covt ⇒ {·}µ

′,cov′
t+∆n expresses the patterns of Eq. (1). Continuing the discussion

of the idealized bearing temperature residuals prediction of Figure 3, Figure 5
shows the abstracted state events and the prediction, conditioned on the mon-
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µ
′′,cov′′

i+∆n
{Ek}

µ,cov

c)

{Ek ′}
µ
′,cov′

i ⇒ {Ek ′′}
µ
′′,cov′′

i+∆n
{Ek}

µ,cov

d)

{Ek ′′}
µ
′′,cov′′

{Ek ′}
µ
′,cov′{Ek}

µ,cov

Time

Figure 5: Concept of state, the Gaussian process predictive model and state prediction. Pre-
dicted events based on the event pattern analysis, and cumulative distribution for observing
specific events {Ek′′}. Further, the diagonal lines indicate the abstracted states

itoring of {Ek′′}. Each row in Figure 5 is described separately and correspond220

to the panels a)-d) in Figure 3:

a) As the predicted samples are a linear extrapolation of the past interval,
the state detection algorithm does not identify any state transition at any
time in the future. This is expressed in the close to zero cdf(∆n). Further,
as µ and cov do not change, the predicted events ∆n samples ahead of i225

identical to the set of the current events, i.e. {Ek}µ,covi ⇒ {Ek}µ,covi+∆n.

b) As the predicted sample changes, a state transition is detected. The new
prediction generates samples that are associated with a temperature in-
crease. As such, the cumulative distribution of P(∆n | {E′′k}, s(i),x[1,i])
starts building up. The change of the Gaussian process, through µ and230

cov, identifies the current state as a pre-fault {Ek}µ
′,cov′
i , i.e. a state prior

to a failure, predicting the next state to contain events associated with the
turbine failure, {Ek}µ

′′,cov′′
i . The cumulative distribution indicates when
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the predictive algorithm expects the next state transition, tn, associated
with {Ek}µ

′′,cov′′
i . Notice that the previous state does not contribute to235

the prediction anymore and is completely specified by µ, cov and {Ek}.

c) This row describes the same situation as row b), including the same event
patterns. However, time is progressed and more samples are available.
In the snapshot presented, the distribution around the predicted values
has hardened, leading to a narrower pdf(∆n) and a more local cdf(∆n).240

This is equal to the state prediction is more certain of predicting a state
transition at a specific location in time. Remark, for the state predic-
tion approach it cannot be shown that the prediction will converge fully
towards the true failure, upon increasing sample size and decreasing dis-
tance to the failure. This is due to the highly complex data driven nature245

of the hyper-parameters involved across the states. The next Section will
provide the implementation of the proposed approach on the earlier men-
tioned residuals.

d) Finally the prediction of a state, subjected to {Ek}µ
′′,cov′′
i , has converged

toward a point in time and a new state transition is detected. The cumu-250

lative distribution at that point becomes a step function.

Summarizing the panels a) - d) of Figure 5, they show the convergences of the
state prediction towards the failure under consideration. Remark, the Figures 3
and 5 are idealized cases for illustrational purposes only. The computational
effort for estimating the probability of each possible state is in the order of255

O(n2), where n is the length of the time series.

5. Bearing Failure - A Case Study

The time series described in Section 2.1 will now be under investigation,
by applying the approach laid out in the Sections 3 and 4. Further, following
the notation of Section 4, {Ek′′} denotes the set of events which are associ-260

ated with Bearing Over-Temperature failure, and {·}µ,covt ⇒ {·}µ
′,cov′
t+∆n are the

patterns extracted under the premises of Eq. (1), exceeding the heuristic con-
fidence threshold of ≥ 0.75. When transitioning into a state associated with
bearing failure, i.e. {Ek′}µ

′,cov′
t ⇒ {Ek′′}µ

′′,cov′′
t+∆n , the averaged confidence over

all turbines is 0.79. Before evaluating the times series, the state detection and265

prediction approach is built on the characteristics of the remaining times series,
in accordance with the assumed similarity presented in the Figures 1 and 2. For
the remainder of this section one time series is under consideration at a time,
leaving the other two time series for the training objective. By permutation of
the training time series, the training input can be of dimension d = 1, 2. For270

example, evaluating the temperature residuals of Turbine 1, d = 1 for training
the model on the residuals of turbine 2 or 3, and d = 2 for the training on both 2
and 3 combined. Further, the latter is done to investigate the effects of possible
over-fitting.
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Figure 6: Close-up of the interval around December 1st, 2013, for the PRC and ACC chart in
the case of Turbine 1 trained on Turbine 2, as illustrated in Table 2.

The permutation of training and evaluation time series is shown in Table 2.275

Each figure shows the accuracy defined by Eq. (19) (ACC) where the time of the
failure indicated by the red shaded area, and the precision defined by Eq. (20)
(PRC) for selected values of ∆, as indicated by the color bar. Remark that the
axis for the ACC is located on the right hand side of the figures. In order to make
the figures of Table 2 more comprehensive, Figure 6 shows the case of Turbine280

1 trained on Turbine 2. The dash line highlights the time under consideration,
while the current time is approximative 2 month prior the failure, the accuracy
is in the order of 4 days. Better accuracy is achieved as the current time gets
closer to the time of failure. On the other hand, from the intersection of the
dashed line with the PRC curves, the precision spans from 0.5 to 1 for different285

values of ∆. For instance, while only 50% of the predictive density function for
the failure time is within a 6 hours interval around the real failure (PRC = 0.5
for ∆ = 6 hours), the precision for intervals higher than ∆ = 312 hours is 100%.
Like the accuracy, the precision improves as the current time converges to the
time of failure.290

Common for all combinations of turbines and training settings is the trend
of the ACC and PRC. The ACC can be separated into two domains: large
values far from the monitored failure, and convergences towards low ACC as
the failure is picked up by the state prediction. However, notice that only in
the case of Turbine 1 does the ACC converge towards zero (full convergence)295

prior to the fault. Similar domains can be identified for the PRC. For each ∆
the time of convergence is different. As ∆ specifies the time interval around
the failure time, the PRC fully converges when the prediction horizon is close
to true failure and in the same order of magnitude as ∆. Again, it is noticed
that full convergence is only observed for Turbine 1. Further, as the time to the300

failure decreases, the PRC associated with ∆ become denser, i.e. the predictive
distribution P(∆n | {Ek′′}, si,x[1,i]) hardens.
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Considering the contribution of each turbine during training, it appears that
either training on Turbine 2 or Turbine 3 results in a fully convergences of the
ACC and PRC for Turbine 1, while it is not observed the other way around.305

Especially in the case of Turbine 2 it appears that only large values of ∆ lead
to convergence at all. As the convergence of all turbines resembles the same
trend independent of the underlying training data, the conclusion implied is
that the rate of convergences is determined by the data under evaluation. From
visual inspection, it appears that when training on Turbine 3 more variance310

in the PRC can be expected. Notice also that the charts of Turbine 3 include
more variance overall compared to Turbines 1 and 2. As this is not observed
when evaluating Turbine 1 trained on Turbine 2 and vice versa, the increase in
variation is attributed to the hyper-parameters updated on Turbine 3.

Training on multiple turbines will increase the robustness of the state pre-315

diction but not necessarily increase the precision and accuracy. As the training
time series may be composed of trends that are not common for the time series
under evaluation, including multiple time series suppresses local variations that
will alter the outcome of the prediction. This is most clear when evaluating Tur-
bine 1. As shown in Figure 1, Turbines 1 and 2 express a dip in the temperature320

residuals prior to the fault. These dips are observed with different intensity and
at different times before the failure. In Table 2 an associated dip is observed
in the PRC with different intensity for Turbine 1. However, when combining
Turbine 2 and 3 into a training set, the evaluation is more robust against these
changes, as the dip in PRC is removed from the chart.325

These considerations point towards a strong model dependency on the hyper-
parameters, attributed to the data driven nature of the model.

Considering all evaluations subjected to ∆ such that PRC ≥ 0.9, an average
for the prediction horizon, accuracy, and precision is calculated. The interval
around the true occurrence of the fault, as illustrated by the shaded area in330

Figure 4, is ∆ ≈ 126 hours equivalent to ≈ 7 days, with PRC ≥ 0.9, as defined
by Eq. (20). The prediction horizon achieved at that point is ≈ 781 hours (≈ 33
days), with ACC ≈ 106 hours (≈ 4 days). In other words, on average, the fault
can be predicted 33 days ahead of its occurrence, with 90% of the predictive
distribution P(n | {Ek′′}, s(i),x[1,i]) being within the interval [tk′′ −∆, tk′′ + ∆],335

with ∆ = 7 days.

6. Conclusion

A state prediction approach has been presented based on the inference of
wind turbine bearing temperature residuals and Gaussian processes. Including
event data from the individual turbines, it has been shown that prediction of a340

selected failure event, namely Bearing Over-temperature, is possible. Although
evaluated on a limited set of time series, the approach has shown promising
results, with an averaged time of prediction a month before the actual time of
failure with high confidence, and an accuracy and precision in the order of days
and a week, respectively.345
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For the three time series under consideration, it was noticed that only one
out of three predictions converges to the true time of the fault. The others,
though close, do not fully converge, with one even showing lower confidence on
the partial convergence. Without including more time series, it is not possible
to draw certain conclusions. However, it is believed that the discrepancy in the350

performance can be attributed to the strong data driven nature of the model and
the underlying training data. The need to specify the hyper-parameters across
all possible states, while training, is a task that requires numerical solutions for
the global extrema of highly non-convex cost functions. As such, the calculations
become more time consuming when searching for the true optimum, so the model355

construction becomes a trade-off between computational efficiency and overall
model performance.

Exploring the ability of Bayesian inference to abstract and predict wind
turbine states conditioned on specific events in more general cases, e.g. using
multiple sensors inputs rather than residuals, is a great opportunity for further360

research.
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Table 2: Accuracy and confidence of selected presicions ∆, for ∆n-step predictions.
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Below are the highlights for "Bayesian State Prediction of Wind Turbine Bearing Failure"
{ Statistical abstraction of states from winds turbine time series based on Gaussian processes and

Bayesian inference.
{ Prediction of wind turbine states based on Gaussian processes and Bayesian inference.
{ State abstraction on residuals from bearing temperatures.
{ Prediction of bearing failure (up to one month) ahead of time, with high accuracy and precision.
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