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A B S T R A C T

This work presents a new Reynolds equation for the slipper bearing in axial piston pumps which considers the
slipper spin. As an extension of this new Reynolds equation, some typical cases are derived for different velocity
boundary conditions. It is found that the present Reynolds equation is identical in form to that in the previous
literature, but they are entirely different from each other in the velocity boundary condition. The reasons for the
incorrect velocity boundary condition in the previous studies are analyzed, followed by a calculation of the
relative velocity error. It is concluded that the Reynolds equation in the present work is more capable of repre-
senting the lubrication model for the slipper bearing.
1. Introduction

Axial piston pumps are widely used in many applications because of
their advantages such as high working pressure, great power density,
convenient flow regulation, and long service life [1]. A typical axial
piston pump is shown in Fig. 1. The cylinder block containing nine pis-
tons rotates together with the shaft by a spline mechanism. The piston
connects itself with the slipper through a ball-and-socket joint. All the
pistons reciprocate within the cylinder bores and the slippers slide on the
inclined swash plate during the cylinder block rotation. A reasonable
contact between the slipper and swash plate is maintained using the
retainer. The displacement chambers in the cylinder block are commu-
nicated with the suction or discharge port by the kidney-shaped ports in
the valve plate. When the piston passes over the suction side, it is pulled
out of the cylinder bore and the low-pressure fluid flows into the cylinder
bore. When the piston passes over the discharge side, it is pushed into the
cylinder bore and the high-pressure fluid flows out of the cylinder bore.
The above reciprocating motion repeats itself for each revolution of the
shaft, accomplishing the basic task of converting the low-pressure fluid
into the high-pressure fluid.

The pump performance strongly depends on the lubricating interfaces
where the fluid film forms to separate heavily loaded relatively movable
parts from each other. There are three main lubricating interfaces within
an axial piston pump, the cylinder block/valve plate interface, the pis-
ton/cylinder block interface, and the slipper/swash plate interface. These
lubricating interfaces serve as sealing and bearing functions, which are
ust 2017; Accepted 24 September 20
one of the critical design issues for axial piston pumps. As for the slipper/
swash plate interface, it prevents the pressurized fluid in the displace-
ment chamber from leaking into the pump case through the slipper land.
Additionally, the fluid film within it fulfills the function of carrying the
pressure load exerted by the piston. Both the sealing and bearing func-
tions of the slipper/swash plate interface are determined by the lubri-
cation characteristics of the slipper bearing, which depend on the
slipper's motion on the swash plate. In addition to the macro motion
governed by the pump kinematics, the slipper also undergoes some micro
motions including tilting motion, squeezing motion, and spinning motion
due to the additional degrees of freedom on the micro scale. The per-
formance of the slipper bearing is often represented by its leakage flow,
load-carrying capacity, and power losses etc. These critical performance
parameters are related to the fluid film thickness and pressure across the
slipper bearing which require to be calculated by the Reynolds equation
for the slipper bearing.

Iboshi and Yamaguchi [2] derived the Reynolds equation for the
slipper bearing from the Navier-Stokes equation to evaluate the fluid
film parameters of slipper, including tilting angle, maximum tilting
angle azimuth and mean gap height. For mathematical expediency, they
simplified the pressure distribution across the slipper bearing as a power
series of the slipper's tilting angle. Hooke et al. [3–7] investigated the
tilting behavior and lubrication characteristics of the slipper bearing
with different slipper running surface profiles theoretically and experi-
mentally. They used the Reynolds equation to solve for the pressure
distribution under the slipper land and thus the fluid force and moment
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Fig. 1. General configuration of an axial piston pump.
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acting on the slipper. The fluid film thickness under the slipper land
could be predicted with a reasonable accuracy through solving the force
and moment equilibrium equations of the slipper. Wieczorek and
Ivantysynova [8,9] performed the pioneering work in the development
of the sophisticated simulation tool CASPAR (Calculation of Swash Plate
Type Axial Piston Pump/Motor) which was used to simulate the gap
flows of the three main lubricating interfaces. As an example, the Rey-
nolds equation for the piston/cylinder block interface was derived from
the Navier-Stokes equation and was integrated in the simulation pro-
gram to determine the gap pressure distribution. However, all the pump
components were assumed to be rigid bodies in the simulation program
and thus the elastohydrodynamic effects were not considered. Huang
[10] extended the CASPAR software and proposed a modified simula-
tion model for the slipper/swash plate interface, which considered the
pressure deformation of the slipper and swash plate for the first time. He
presented the Reynolds equation for the slipper bearing in cylindrical
coordinate systems, in which the velocity on the slipper sliding surface
at every grid point was given as the velocity boundary condition.
However, we would like to humbly point out that the expression for the
velocity on the slipper sliding surface was incorrect due to his misun-
derstanding of the slipper motion on the swash plate. Specifically, on a
macro scale, the slippers do experience curvilinear translation rather
than plane rotation on the swash plate. Similarly, Pelosi and Ivantysy-
nova [11] integrated the Reynolds equation into a fluid-structure
interaction model inside the simulation tool CASPAR to predict the
gap height between the slipper and swash plate. However, they did not
provide the velocity boundary condition of the Reynolds equation in
detail. Schenk and Ivantysynova [12,13] calculated the power losses
generated within the slipper/swash plate interface using the above fully
coupled fluid-structure model. Again, the velocity boundary condition
of the Reynolds equation was not presented although the same Reynolds
equation for the slipper bearing was adopted. Xu et al. [14] conducted
numerical and experimental studies on the slipper's partial abrasion
phenomenon. In their numerical simulation model for the slipper
bearing, they adopted the velocity boundary condition of the Reynolds
equation developed by Huang [10]. The slipper spin was not considered
in the Reynolds equation for the reason of insufficient theoretical and
experimental studies on it. However, in their subsequent work [15]
dealing with the effect of case drain pressure on the slipper performance,
the slipper spinning speed was included in the Reynolds equation in the
modified lubrication model for the slipper bearing. Borghi et al. [16]
conducted a numerical study on the dynamic behavior of the slipper
bearing, in which the slipper spinning motion was included in the
Reynolds equation and its influence on the slipper performance was
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numerically analyzed. A weakness of this study, however, can be seen in
the velocity boundary condition of the Reynolds equation which also
failed to describe the slipper motion on the swash plate correctly. Tang
et al. [17] developed a mathematical model for the slipper bearing
which considered the oil thermal effect to predict the fluid film thickness
and temperature within the slipper/swash plate interface under
different operating conditions. In their mathematical model they
adopted the Reynolds equation for the slipper bearing developed by
Borghi et al. [16], therefore their conclusions may remain uncertain. Lin
and Hu [18] employed a niche genetic algorithm method to solve their
proposed tribo-dynamic model of slipper in which the slipper spinning
speed was included in the Reynolds equation. Although the velocity
boundary condition of the Reynolds equation was not presented in their
paper, it seemed from their Reynolds equation for the slipper bearing
that the slipper might also be mistakenly considered to rotate on the
swash plate. Unfortunately, Tang et al. [19] used this Reynolds equation
for the slipper bearing developed by Lin and Hu [18] in their latest
prediction model for the thermoelastohydrodynamic lubrication char-
acteristics of slipper bearing. Bergada et al. [20–22] derived a detailed
set of analytical equations for the pressure distribution, leakage flow,
and fluid force and moment across the slipper bearing from the Reynolds
equation of lubrication. The slipper spinning speed was considered in
their analytical model, but further information about how to integrate
the slipper spinning speed in the Reynolds equation for the slipper
bearing was not provided.

From a thorough review of the literature, it appears that the Reynolds
equation for the slipper bearing plays a critical role in predicting the
slipper behavior since the performance parameters such as load-carrying
capacity, leakage flow, and fluid film thickness require to be calculated
by solving it. However, it seems that all the previously mentioned Rey-
nolds equations for the slipper bearing suffer from some serious draw-
backs. Firstly, few researchers have derived the Reynolds equation for the
slipper bearing in much detail, which leads to an insufficient under-
standing of it from the physical point of view. Secondly, the velocity
boundary condition of the Reynolds equation for the slipper bearing is
incorrect in many previous studies. The macro motion of slipper on the
swash plate was wrongly considered as plane rotation, but actually the
slipper purely translates on the swash plate on a macro scale. Thirdly,
many Reynolds equations for the slipper bearing do not take into account
the slipper spin for the consideration of insufficient knowledge of the
slipper spin. However, the slipper spinningmotion does exist within axial
piston pumps [23] and has a significant effect on the slipper performance
[16]. Therefore, the slipper spin should be included in the Reynolds
equations for the slipper bearing.

The goal of this paper is to derive the Reynolds equation for the
slipper bearing in cylindrical coordinate systems using the differential
analysis of fluid flow. The velocity boundary condition of the Reynolds
equation is evaluated based on the slipper kinematics on the swash plate,
which accounts for the influence of the slipper spin. Also, the difference
of the Reynolds equation for the slipper bearing between this work and
previous studies is examined to explain why the new Reynolds equation
is more able to represent the slipper bearing lubrication than those in the
previous studies.

2. Kinematics of the slipper

To determine the velocity boundary condition of the Reynolds
equation for the slipper bearing, an accurate description of the slipper
kinematics on the swash plate is required. Fig. 2 shows the schematic of
the slipper's macro motion on the swash plate, where two coordinate
systems are defined. The (X, Y, Z) system is a global coordinate system
which has its origin at the intersection between the centerline of the
cylinder block and the special plane passing through all piston head
centers. The Y-axis is chosen to be positive in the upward direction and
the Z-axis is consistent with the centerline of the cylinder block. The (XS,
YS, ZS) system is defined with respect to the swash plate and shares the



Fig. 2. Schematic of the slipper's macro trajectory on the swash plate.
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same origin as the (X, Y, Z) system. The XSYS plane is parallel to the
swash-plate surface and the ZS-axis is normal to and pointing away from
the swash-plate surface.

The slipper's macro position in the (X, Y, Z) system can be expressed
in matrix form as [24].

0
@X

Y
Z

1
A ¼ R

0
@ �sin φ

cos φ
�tan α cos φ

1
A (1)

where R is the piston pitch radius, φ is the angular displacement of the
slipper in the (X, Y, Z) system, and α is the swash-plate angle.

Pre-multiplying Eq. (1) by the transformation matrix.

Τ ¼
0
@ 1 0 0

0 cos α �sin α
0 sin α cos α

1
A (2)

yields the slipper's macro position on the swash plate described by Eq. (3)
in the (XS, YS, ZS) system.

0
@XS

YS

ZS

1
A ¼ R

0
BBB@

�sin φ

1
cos α

cos φ

0

1
CCCA (3)

It can be seen from Eq. (3) that the slipper's macro trajectory on the
swash plate is an elliptical path that can be represented by
Fig. 3. Comparison of the slippers wi
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X2
S
2
þ Y2

S
2 ¼ 1 (4)
R ðR=cos αÞ

whose major axis-length equals 2R/cosα and minor axis-length 2R.
The position of the slipper on the swash plate can be defined by co-

ordinates (RS, φS).

RS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

S þ Y2
S

q
¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 α cos2 φ

p
(5)

φS ¼ arctanð � XS=YSÞ ¼ arctanðcos α tan φÞ (6)

where RS is the distance of the slipper socket center from the origin of the
(XS, YS, ZS) system, and φS is the angular position of the slipper socket
center relative to the YS-axis.

Assuming the swash-plate is held at a fixed angle, the rotational speed
of the slipper socket center about the origin of the (XS, YS, ZS) system can
be obtained by taking the time derivative of Eq. (6).

ωS ¼ dφS

dt
¼ cos α

cos2 φþ cos2 α sin2 φ
ω (7)

where ω is the angular speed of the cylinder block in the (X, Y, Z) system.
It should be pointed out that the slipper purely translates in an

elliptical path rather than rotates on the swash plate from the perspective
of macro motion. That is to say, at any instant all points on the slipper
sliding surface move with the same velocity on the swash plate if the
micro motions are not considered. This specific curvilinear translation is
illustrated in Fig. 3(a), where an imagined arrow is fixed on the slipper.
thout and with spinning motion.
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Under the assumption of no slipper spin, the direction of the imagined
arrow will remain constant even though the slipper translates in an
elliptical manner on the swash plate. However, if the slipper has a
spinning motion, i.e., rotates about its own axis, the imagined arrow will
change its direction, as shown in Fig. 3(b). The time rate of change in the
direction of the imagined arrow is determined by the slipper spinning
speed ωSS. Therefore, if the spinning motion occurs, the slipper will have
an additional angular speed on the swash plate besides a macroscopic
translational velocity.

To obtain the velocity boundary condition of the Reynolds equation
for the slipper bearing, the velocity on the slipper land surface needs to be
calculated for both slippers without and with spinning motion. As shown
in Fig. 4, a local coordinate system (xS, yS, zS) is defined using a reference
slipper body. The origin of the (xS, yS, zS) system is located at the center of
the circular slipper land and lies in the elliptical path defined by Eq. (4).
The positive xS-axis remains tangential to the trajectory of the slipper's
slipper land center, while positive yS-axis is directed radially outwards.
The zS-axis is normal to the slipper land and points away from the slipper
socket according to the right-hand rule. An equivalent cylindrical coor-
dinate system (r, θ, zS) is also introduced, which shares a common origin
and zS-axis with the (xS, yS, zS) system. In the cylindrical coordinate
system, θ is measured from the yS-axis and the counterclockwise rotation
is supposed to be positive.

When the slipper slides on the swash plate without the spinning
Fig. 4. Comparison of the velocities on the slipp

Fig. 5. Surface forces actin
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motion, as shown in Fig. 4(a), all points on the slipper sliding surface
have the same translational velocity which can be expressed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 2
p

vT ¼ ωSRS ¼ cos α 1þ tan α cos φ

cos2 φþ cos2 α sin2 φ
ωR (8)

The above translational velocity can be divided into two components
in the radial and tangential directions.

vTr ¼ vT sin θ ¼ cos α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 α cos2 φ

p
cos2 φþ cos2 α sin2 φ

ωR sin θ (9)

vTθ ¼ vT cos θ ¼ cos α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 α cos2 φ

p
cos2 φþ cos2 α sin2 φ

ωR cos θ (10)

If the slipper translates with spinning motion on the swash plate, as
shown in Fig. 4(b), then an additional tangential velocity vSθ associated
with the spinning motion will be generated. The resulting tangential
velocity is given by

vTSθ ¼ vTθ þ vSθ ¼ vTθ þ ωSSr (11)

3. Differential analysis of fluid flow

Fig. 5(a) shows the fluid film under the slipper land. Note that the
er land without and with spinning motion.

g on a fluid element.
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fluid film thickness between the slipper and swash plate is exaggerated
for illustration purpose. Actually, the fluid film thickness is on the order
of microns for a typical slipper/swash plate interface. Besides the local
coordinate system (xS, yS, zS) associated with the slipper, another local
coordinate system (xF, yF, zF) associated with the fluid film is defined,
whose origin lies in the swash plate plane and is located at the center of
the boundary surface of the circular fluid film. The xF-axis and yF-axis are
parallel to the xS-axis and yS-axis, respectively, while the zF-axis is in the
opposite direction to the zS-axis. Similarly, an equivalent cylindrical co-
ordinate system (r, θ, zF) is also defined, whose origin coincides with that
of the (xF, yF, zF) system. Fig. 5(b) illustrates a fluid element from the fluid
film under the slipper land. For simplicity, only the surface forces in the
radial direction acting on the fluid element has been illustrated in
Fig. 5(b), but, in practice, there are also surface forces along the
circumferential direction. Before deriving the Reynolds equation for the
slipper bearing in terms of cylindrical coordinate systems, the following
assumptions regarding the fluid behavior within the slipper/swash plate
lubricating interface are imposed [10,12,13]:

(a) Fluid flowwithin the slipper bearing is steady and incompressible.
(b) Pressure in the gap height direction is considered constant.
(c) Inertial forces of the fluid are small when compared to the viscous

forces, and thus can be neglected.
(d) Body forces of the fluid are negligible.

Considering these assumptions, summing all the surface forces in the
radial direction yields the equilibrium equation for the fluid element in
the radial direction.

prdθdzþ 1
2

�
τ þ ∂τ

∂z
dz
��ðr þ drÞ2 � r2

�
dθ

¼
�
pþ ∂p

∂r
dr
�
ðr þ drÞdθdzþ 1

2
τ
�ðr þ drÞ2 � r2

�
dθ (12)

where τ is the shearing stress, and p is the pressure acting on the fluid
element. With τ ¼ μ ∂vor

∂z dr ≪ r, and dz ≪ r, Eq. (12) can be rear-
ranged to

μ
∂2vor
∂z2

¼ ∂p
∂r

(13)

where μ is the dynamic viscosity of the fluid, and vor is the fluid velocity
in the radial direction.

Similarly, the equilibrium equation for the fluid element in the
tangential direction is given by

μ
∂2voθ
∂z2

¼ 1
r
∂p
∂θ

(14)

where voθ is the fluid velocity in the tangential direction.
Integrating Eq. (13) twice over the fluid film thickness yields the

expression for the fluid velocity vor.

vor ¼ 1
μ

�
1
2
∂p
∂r
z2 þ c1zþ c2

�
(15)

where the two constants c1 and c2 can be determined from the velocity
boundary conditions: vor ¼ 0 for z ¼ 0, and vor ¼ vTr for z ¼ h. Thus, the
fluid velocity in the radial direction becomes

vor ¼ 1
2μ

∂p
∂r

�
z2 � hz

�þ vTr
z
h

(16)

Similarly, considering the velocity boundary conditions: voθ ¼ 0 for
z ¼ 0, and voθ ¼ vTθ þ ωSSr for z ¼ h, the tangential fluid velocity with the
slipper spin is
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voθ ¼ 1
2μr

∂p
∂θ

�
z2 � hz

�þ ðvTθ þ ωSSrÞ zh (17)
For steady, incompressible flow, the continuity equation in cylindri-
cal coordinate systems can be expressed as

1
r
∂ðrvorÞ
∂r

þ 1
r
∂voθ
∂θ

þ ∂voz
∂z

¼ 0 (18)

where voz is the fluid velocity in the fluid film thickness direction.
Substituting Eqs. (16) and (17) into Eq. (18), and then integrating Eq.

(18) over the fluid film thickness yields the Reynolds equation for the
slipper bearing with the spinning motion in cylindrical coordi-
nate systems.

1
r
∂
∂r

�
rh3

μ

∂p
∂r

�
þ 1
r2

∂
∂θ

�
h3

μ

∂p
∂θ

�
¼ 6

1
r
∂
∂r

ðrvTrhÞ þ 6
1
r

∂
∂θ

½ðvTθ þ ωSSrÞh�

þ 12
�
vozjz¼h � vozjz¼0

�
(19)

Recognizing that vozjz¼h � vozjz¼0 ¼ ∂h
∂t , Eq. (19) can be reduced to

1
r
∂
∂r

�
rh3

μ

∂p
∂r

�
þ 1
r2

∂
∂θ

�
h3

μ

∂p
∂θ

�
¼ 6

1
r
∂
∂r

ðrvTrhÞ þ 6
1
r

∂
∂θ

½ðvTθ þ ωSSrÞh�

þ 12
∂h
∂t

(20)

Considering1r
∂
∂r ðrvTrhÞ ¼ vTrh

r þ ∂
∂r ðvTrhÞand1r ∂

∂θ ½ðvTθ þ ωSSrÞh� ¼ h
r
∂vTθ
∂θ þ

vTθ
r

∂h
∂θ þ ωSS

∂h
∂θwith h≪ r, Eq. (20) can be reduced to

1
r
∂
∂r

�
rh3

μ

∂p
∂r

�
þ 1
r2

∂
∂θ

�
h3

μ

∂p
∂θ

�
¼ 6

∂
∂r

ðvTrhÞ þ 6
	vTθ
r

þ ωSS


 ∂h
∂θ

þ 12
∂h
∂t

(21)

On the other hand, the term ∂
∂r ðvTrhÞ in Eq. (21) is equivalent to vTr∂h∂r since

the radial velocity vTr is independent of the variable r, as presented in Eq.
(9). Thus, the final expression of the Reynolds equation for the slipper
bearing with the spinning motion becomes

1
r
∂
∂r

�
rh3

μ

∂p
∂r

�
þ 1
r2

∂
∂θ

�
h3

μ

∂p
∂θ

�
¼ 6vTr

∂h
∂r

þ 6
	vTθ
r

þ ωSS


 ∂h
∂θ

þ 12
∂h
∂t
(22)

The first two terms on the right-hand side of the Reynolds equation
stand for the hydrodynamic effect caused by the slipper's translational
motion and spinning motion. It can be seen that the slipper spinning
motion affects the hydrodynamic effect in relation with the tangential
velocity component. The third term on the right-hand side represents the
squeezing effect caused by the slipper's micro shifting motion with
respect to the swash plate.

If the slipper has no spinning motion, but has translational motion,
then ωSS ¼ 0 and Eq. (22) can be reduced to

1
r
∂
∂r

�
rh3

μ

∂p
∂r

�
þ 1
r2

∂
∂θ

�
h3

μ

∂p
∂θ

�
¼ 6vTr

∂h
∂r

þ 6
vTθ
r

∂h
∂θ

þ 12
∂h
∂t

(23)

If the slipper has no translational motion, but has spinning motion,
then vTr ¼ vTθ ¼ 0 and Eq. (22) can be reduced to

1
r
∂
∂r

�
rh3

μ

∂p
∂r

�
þ 1
r2

∂
∂θ

�
h3

μ

∂p
∂θ

�
¼ 6ωSS

∂h
∂θ

þ 12
∂h
∂t

(24)

Furthermore, if the slipper has neither spinning motion and trans-
lational motion, then ωSS ¼ vTr ¼ vTθ ¼ 0 and Eq. (22) can be further
simplified as
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1
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∂
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∂p
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þ 1
r2

∂
∂θ

h3

μ

∂p
∂θ

¼ 12
∂h
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� � � �

4. Comparison of Reynolds equation for the slipper bearing

Taking the slipper bearing without spinning motion for example, this
section will present the comparison of Reynolds equation for the slipper
bearing between this work and previous studies. Although the Reynolds
equation for the slipper bearing in this work has almost the same form as
that in the previous literature [10–19], it cannot be taken for granted that
they are identical to each other from the physical point of view. There is a
marked difference in the velocity boundary condition of the Reynolds
equation between this work and previous studies. The previous studies
often failed to evaluate the velocity boundary condition of the Reynolds
equation correctly. The previous calculation of the boundary velocity for
the slipper bearing could be mainly divided into two types.

First, the slipper was considered to slide in a circular path instead of
an elliptical one, as shown in Fig. 6(a). As a result, the distance RS of the
slipper socket center from the origin of the (XS, YS, ZS) system remained
equal to the piston pitch radius R [16–19]. Alternatively, the rotational
speed ωS of the slipper socket center about the origin of the (XS, YS, ZS)
system was supposed to be the same as the angular speed ω of the cyl-
inder block [10,16–19]. However, it can be seen from Eqs. (5) and (7)
that the above approximations are practically impossible unless the
swash-plate angle α equals zero.

Second, the previous studies [10,14–19] failed to correctly describe
the slipper's macro motion on the swash plate. Specifically, the slipper
motion on the swash plate was supposed to be subjected to plane rotation
rather than curvilinear translation. The assumption of the plane rotation
for the slipper would lead to a non-uniform velocity distribution on the
slipper face, as shown in Fig. 6(b). In other words, the velocity on the
slipper face in each grid point (r, θ) was expressed as

vT ¼ ωSRM ¼ ωS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2

S þ 2rRS cos θ
q

(26)

Eq. (26) suggests that the translational velocity vT of the slipper on the
swash plate is dependent on the radial coordinate r in the local cylindrical
coordinate system (r, θ, zS). However, in practice, the translational ve-
locity vT is independent of the radial coordinate r due to the curvilinear
translation of the slipper, as presented in Eq. (8).

5. Discussion

It is clear that neither the assumption of the slipper's macro motion in
Fig. 6. Boundary velocity for the slipp
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circular path nor of its plane rotation on the swash plate is practically
possible. Furthermore, if the slipper undergoes a plane rotation rather
than translation on the swash plate, then the velocity vT on the slipper
face is dependent on the radial coordinate r, as presented in Eq. (26). This
means that the term ∂

∂r ðvTrhÞis no longer equivalent to vTr∂h∂r, and the
Reynolds equation for the slipper bearing in the previous studies is
impossible to be the same in form as that in Eq. (23). Therefore, the
Reynolds equation for the slipper bearing in the previous studies is in
conflict with the assumption of the slipper's plane rotation on the
swash plate.

It is a meaningful attempt to investigate the effect of the previous
assumption of the slipper's plane rotation on the boundary velocity for
the slipper bearing. Making use of the Taylor series expansion, the ve-
locity on the slipper face in Eq. (26) can be rewritten as

vT ¼ ωSRS

�
1þ 1

2
ξ� 1

8
ξ2 þ R2ðξÞ

�
(27)

where R2(ξ) is the remainder term of the Taylor's formula, and ξ is
given by

ξ ¼ r2 þ 2rRS cos θ
R2
S

(28)

Then the velocity error due to the previous assumption of the slipper's
plane rotation can be expressed as

ΔvT ¼ ωSRS

�
1
2
ξ� 1

8
ξ2 þ R2ðξÞ

�
(29)

And the relative velocity error is defined as

ΔR ¼ ΔvT
ωSRS

¼ 1
2
ξ� 1

8
ξ2 þ R2ðξÞ (30)

Recognizing that ξ is much less than unity for the slipper bearing, the
higher-order terms of ξ in Eq. (30) can be neglected. Thus, for small ξ, the
relative velocity error may be approximately equal to

ΔR ¼ 1
2
ξ (31)

This equation shows that the relative velocity errorΔR depends on the
angular positions of the slipper both in the XSYS plane and the rθ plane,
and the geometrical features of axial piston machines, including piston
pitch radius, internal and external radii of the slipper land, and swash-
er bearing in the previous studies.
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plate angle. Table 1 lists the above geometrical features of a typical
commercial axial piston pump.

Fig. 7 shows the distribution of the relative velocity error on the
slipper land when the slipper slides on the swash plate. It can be observed
that the effect of the previous assumption of the slipper's plane rotation
on the relative velocity error mainly depends on the location (r, θ) of each
grid point in the local cylindrical coordinate system. For each angular
position of the slipper, the relative velocity error is positive for �90� �
θ � 90�, but negative for 90� � θ � 270�. The large absolute relative
velocity errors occur at the outer region of �45� � θ � 45� and 135� �
θ � 225� on the slipper land. This can be explained by the fact that the
velocity on the slipper face within these two areas is most likely to be
overestimated or underestimated according to Eq. (31). When the slipper
is located at the minor axis of the elliptical path, the relative velocity
error reaches the maximum of 0.37 at the intersection between the
external edge of the slipper land (i.e., r¼ Ro) and the positive yS-axis (i.e.,
θ ¼ 0). The minimum relative velocity error of �0.27 also takes place at
the minor axis of the elliptical path, but its corresponding position is
determined by the external edge of the slipper land and the negative yS-
axis (i.e., θ ¼ 180�). In addition, the distribution of the relative velocity
Table 1
Geometrical features of a typical commercial axial piston pump.

Description Value Description Value

Displacement Vg 71 mL/r Internal radius of the slipper
land Ri

6.55 mm

Maximum swash-plate
angle α

17.2 deg External radius of the slipper
land Ro

12.95 mm

Piston pitch radius R 40.5 mm

Fig. 7. Distribution of the relative velocity error fo
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error is almost symmetric about the yS-axis, this is because Eq. (31) be-
comes a cosine function of θ after neglecting the higher-order term of r/
RS, i.e., (r/RS)2.

6. Conclusions

The Reynolds equation is essential for the prediction of the slipper's
dynamic behavior. In this work, the Reynolds equation for the slipper
bearing is derived from the equilibrium equation and continuity equa-
tion, and its velocity boundary condition is clarified for the first time.
Also, the comparison of the Reynolds equation for the slipper bearing is
presented in detail between the present work and previous studies. Based
on the analytical results, the following conclusions may be drawn:

(1) The present Reynolds equation for the slipper bearing without the
spinning motion (see Eq. (23)) is identical in form to that in the
previous studies, but they are different from each other in the
velocity boundary condition.

(2) For the slipper bearing, the velocity boundary condition for the
Reynolds equation is determined by the slipper's macro motion
and spinning motion on the swash plate. The slipper does expe-
rience a translation in an elliptical manner rather than a plane
rotation on the swash plate.

(3) The assumption of the slipper's plane rotation on the swash plate
in the previous studies will cause a significant relative error of up
to 0.37 for the boundary velocity of the slipper bearing in a
commercial axial piston machine.

(4) The Reynolds equation for the slipper bearing with the spinning
motion is derived in this work (see Eq. (22)). It is found that the
spinning speed of the slipper only influences the hydrodynamic
r the slipper bearing without spinning motion.
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effect associated with the tangential velocity component in the
Reynolds equation.
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