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A B S T R A C T

Fatigue crack growth phenomenon in concrete is complex in nature and is characterised by
various parameters. Important crack growth characterizing parameters must be considered in the
analysis for accurate crack propagation and fatigue life prediction. In the present work, an
analytical formulation has been developed to predict the propagation of crack in plain concrete
members subjected to repetitive nature of loading. Dimensional analysis approach for fatigue
crack growth problems has been adopted in conjunction with the theory of intermediate
asymptotic for the development of the proposed model. The model has been derived considering
the effect of critical energy dissipation in fatigue called fatigue fracture energy which can capture
the observed size effect in concrete fatigue. Other important crack growth characterizing para-
meters considered in the present formulation are, change in energy release rate, maximum en-
ergy release rate, initial crack length, tensile strength, and ratio of maximum aggregate size to
characteristic size of the structure. Further, the influence of fracture process zone has been in-
corporated in the proposed formulation through the loading parameter. The developed closed
form expression has been calibrated with the available experimental results. The applicability of
the mathematical model has been verified using the existing experimental results following both
deterministic and statistical approach. The dependence of various governing parameters on fa-
tigue life has been demonstrated through sensitivity study.

1. Introduction

Fatigue phenomenon is prevalent in various concrete structures namely, airport runways, railway bridges, highway pavements,
offshore structures, etc. during the service period. Existence of pre-existing flaws triggers the initiation of cracks when subjected to
repetitive load cycles and leads subsequently to a sizeable crack, ultimately causing the final fracture. Concrete is a quasi-brittle
material and contains a large size inelastic zone called fracture process zone ahead of the crack tip. The formation of fracture process
zone (FPZ) in concrete is highly complicated due to the inherent heterogeneous nature. This inelastic zone controls the propagation of
cracks in concrete considerably in addition to the other material and geometrical parameters. Such a material behaviour has posed a
challenge for the accurate prediction of fatigue life and crack growth rate in concrete.

One of the earliest fracture mechanics based fatigue crack propagation model defining variation of crack growth rate with respect
to change in stress intensity factor has been developed by Paris and Erdogan [1]. Paris law can accurately predict the crack pro-
pagation behaviour in metallic structures. The existence of large size FPZ restricts the direct application of Paris law on concrete. In
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light of this, attempts have been made by various researchers to modify this law by incorporating additional crack growth influencing
parameters. Bazant and Xu [2] have combined the size effect law with the Paris law by manifesting size dependent equivalent fracture
toughness in place of fracture toughness. This law describes the increment of crack length per cycle as a power function of the
amplitude of a size-adjusted stress intensity factor, defined by the following equations.
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where fu denotes the tensile strength, =β d,d
d0

is specimen depth, d0 has a meaning of transitional size (dimension) of structure. The
applicability of above size adjusted Paris law to high strength concrete has been investigated by Bazant and Schell [3] by performing
experiments on high strength concrete. Further, it has been recommended that the size adjusted Paris law developed for plain
concrete can also be applied for high strength concrete provided the specimen sizes do not vary significantly. Slowik et al. [4] have
proposed a fracture mechanics based crack propagation model for plain concrete member under the action of variable amplitude
repetitive loading. The effect of load spike applied in between the constant load cycles has been studied by performing experiments
on wedge splitting test specimens. Sain and Chandra Kishen [5] have proposed an advanced fatigue crack propagation model for
plain and reinforced concrete beam by modifying the model proposed by Slowik et al.[4]. This model incorporates the effect of
loading frequency of applied load, loading history and the size effect parameters.

Researchers have attempted to develop analytical models for the prediction of crack propagation under the action of fatigue
loading using the fundamental principles of dimensional analysis and the theory of intermediate asymptotics. One of the most earliest
fatigue crack growth model using the above concept has been proposed by Barenblatt and Botvina [6]. On this line, various authors
[7–9] have derived the closed form expression of the mathematical model for the prediction of crack growth rate in metallic and
quasi-brittle materials. Ciavarella et al. [10] have proposed a unified fatigue crack propagation law using the concepts of dimensional
analysis. The correlation between the Paris law constants m and C for concrete like materials are found to be considerably different
than metals. Further, Carpinteri and Paggi [11] have used dimensional analysis approach and the concepts of complete and in-
complete self-similarity on the Paris curve and Wohler curve on the similar line as done by Barenblatt and Botvina [6]. The as-
sumptions of incomplete self-similarity in dimensionless quantities provide a unified description of fatigue. Paggi [12] has developed
a crack growth model to depict a clear picture of classical power law being used to predict fatigue behaviour of quasi-brittle materials
like concrete. Theoretically, it has been shown that the parameters used in Paris law are dependent on micro-structural size, crack-
size and size-scale. Ray and Chandra Kishen [13] have developed a dimensionally homogeneous mathematical equation to predict
fatigue crack propagation in plain concrete. This model incorporates different parameters such as, the tensile strength, fracture
energy, loading ratio, initial crack length and structural size. Further, this model has been improved in order to predict fatigue crack
propagation of plain concrete under the action of variable amplitude loading [14]. Le and Bazant [15] in their study, attempted to
explain the physical mechanisms in the Paris law by considering damage accumulation in the cyclic FPZ at the tip of the crack. Based
on this theory, it has been concluded that S-N curve must be size dependent for quasi-brittle structure. Further, a modified form of
Paris-Erdogan model for the estimation of crack growth rate under the action of fatigue loading for rocks has been proposed by Le
et al. [16]. Through experimental and theoretical investigations, the authors have concluded that observed size effect can be ex-
plained by incorporating critical energy dissipation for fatigue crack growth. The proposed expression for critical energy dissipation
rate for macro-crack fatigue to account for finite size specimen is given below.

⎜ ⎟= ⎛
⎝ +

⎞
⎠

∞U U D
D DC C

c
,

0 (4)

where ∞UC, is the critical energy dissipation per unit growth of the macro-crack in an infinitely large specimen. D C0 is the transitional
size for cyclic loading and D denotes the structural size.

According to the authors, a larger size fracture process zone is observed in the case of fatigue loading than the monotonic loading.

Nomenclature

GΔ I change in energy release rate
KΔ I stress intensity factor range

σt tensile strength of the material
a crack length
ac critical crack length
b thickness of beam
da dN/ crack growth rate

D depth of beam
dmax maximum aggregate size
E elastic modulus
GImax energy release rate corresponding to maximum

load
N number of load cycles
R loading ratio
S span of beam
UC fatigue fracture energy
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The model proposed by Le et al. [16] has been modified by Kirane and Bazant [17] for quasi-brittle materials using dimensional
analysis approach. Based on the evidences of experimental and numerical study, on contrary to the studies by Bazant and Xu [2] and
Le et al. [16] the authors have observed a smaller size fracture process zone under cyclic loading than the monotonic.

A series of studies on the effect of aggregate size has been carried out on the fracture and fatigue behaviour of concrete structures.
According to Nallathambi et al. [18], the size and shape of the aggregates considerably affect the crack propagation rate in concrete
structures. According to the authors, an increase in maximum size of the coarse aggregate enhances the resistance to crack growth,
thereby increasing the fracture toughness. Issa et al. [19] conducted numerous experiments in order to understand the influence of
maximum size of the aggregate on different crack growth characterising parameters namely, surface measured crack length, critical
energy release rate and fracture toughness. An increasing trend of fracture toughness with the increase in maximum size of the
aggregate has been observed in their research. In a study by Simon and Chandra Kishen [20], the effect of fracture process zone has
been considered by modelling the bridging force offered by the coarse aggregates in fatigue life estimation of concrete. Further, they
have proposed a crack growth model by considering such bridging action provided by the aggregate. In another study by the same
authors [21], a multi-scale based analytical model has been proposed utilizing the concepts of dimensional analysis and self similarity
in conjunction with the population growth model. In the model, the stress intensity factor has been calculated through multi-scale
approach considering both macro and micro-scale.

2. Methodology

To develop any mathematical equation for a given physical problem, the concepts of dimensional analysis in conjunction with the
theory of intermediate asymptotic has been found to be suitable and is utilized in the present study. Firstly, dimensional analysis
considers the variables those govern the physical phenomenon under consideration and then converts them into non-dimensional
form having physical dimension equal to unity. Use of dimensionless numbers is advantageous as it reduces the number of variables
which are needed to define a physical problem and provides physical meaning to the parameters if formed properly leading to a
better understanding of the phenomenon. Moreover, the use of dimensionless number can reduce the quantity of experimental data
required. Secondly, the application of theory of intermediate asymptotic to this dimensionless numbers can eliminate either too small
or large terms. However, depending on the physical problem considered, different self-similar solutions can be derived.

3. Mathematical formulation for crack growth rate

In this section, a fracture mechanics based mathematical equation for prediction of crack growth rate in plain concrete member
has been derived. The formulation incorporates various material, geometrical and loading parameters which govern the cracking
behaviour under repetitive loading. The closed form expression for the crack growth rate represented as da dN( / ) under the action of
fatigue loading is derived using the theory of dimensional analysis in conjunction with the theory of intermediate asymptotic. The
governing loading parameters which influence the fatigue phenomenon are the change in energy release rate G(Δ )I and energy
release corresponding to the upper fatigue load G( )Imax . The material properties considered are tensile strength σ( )t , critical energy
dissipation for fatigue U( )C . As described by Le et al. [16] and Kirane and Bazant [17], the critical energy dissipation for fatigue called
fatigue fracture energy is considered to be the energy dissipation associated with the growth of macro-crack in each load cycle which
is equal to the sum of energy dissipations in all nano-scale cracks inside the cyclic FPZ. The physical quantity, U( )C is defined as
critical energy required to propagate a fatigue crack of unit growth in a finite size specimen. Unlike the consideration of fracture
energy for the monotonic loading Gf in the existing analytical formulations for the prediction of fatigue crack growth rate, fatigue
fracture energy UC involves the effective size of cyclic FPZ and can capture size effect in concrete. The geometrical quantities
considered are crack length a and the ratio of maximum aggregate size to structural size ( )d

D
max of the member. According to various

researchers [18–21], the maximum size of the coarse aggregate dmax influences crack resistance and in turn affects the crack pro-
pagation behaviour.

The governing variables which affect the fatigue crack propagation are listed with their physical dimensions in Table 1.
The mathematical formulation for crack growth rate can be expressed in terms of the governing variables as below.

Table 1
Governing parameters with their dimensions.

Variables Description Dimension

GΔ I Change in energy release rate −FL 1

GImax Energy release rate
corresponding to maximum load −FL 1

D Structural size L
dmax Maximum size of the aggregate L

σt Tensile strength −FL 2

UC Fatigue fracture energy −FL 1

a Crack length L
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Considering fatigue fracture energyUC and tensile strength σt to have physically independent dimensions and applying Buckingham Π
theorem to Eq. (5), crack growth rate can be expressed in terms of non-dimensional parameters as given below,
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The expression in Eq. (6) can be further simplified by using the theory of intermediate asymptotic. Using this, the assumptions of
complete and incomplete self-similarity are made for various dimensionless parameters given in Eq. (6). The dimensionless parameter
Π1, is a function of energy release rate range and the critical energy dissipation. The assumption of complete self-similarity to this
parameter will make the crack growth rate independent of loading parameter GΔ I . The crack growth rate is strongly dependent on the
loading parameter GΔ I expressed in terms of energy and cannot be eliminated from the crack propagation model. Considering
incomplete self-similarity in Π1 the ratio can be expressed in power law form as below.
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The dimensionless number Π2 is a function of GImax . The parameter GImax corresponds to the upper limit of a load cycle and shows a
strong dependence on crack growth rate. Incomplete self-similarity assumption in dimensionless parameters Π2 and Π3 reduces Eq. (9)
to the following form.
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where, coefficients γ γ,1 2 and γ3 and the function Φ3 can be obtained using experimental results. In this study, error minimisation
technique has been used to obtain the coefficients introduced during the formulation.

The simplified form of the proposed fatigue crack propagation model derived in Eq. (10) is given below.
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Now using the relation = −G G RΔ /(1 )I max I
2, Eq. (11) can further re-written as:
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where R is the stress ratio.

4. Discussion on various non-dimensional parameters

The model expressed in Eq. (10) has been derived from Eq. (6) utilizing the theory of intermediate asymptotic. If a dimensionless
parameter Πi is too large or too small giving rise to a finite value of Φ, the quantity Πi becomes non-essential and can be neglected
(complete self-similarity). On contrary, if Φ also tends to zero or infinity with Πi tending to zero or infinity then the parameter cannot
be neglected no matter how small or large it is. However, depending on the behaviour of physical problem, sometimes the quantity
can be expressed in power law form.

In the proposed model (Eq. (10)), the assumption of incomplete self similarity has been made in the non-dimensional parameters
Π ,Π1 2 and Π3. The quantity Π1, is a function of energy release rate range G(Δ )I and the critical energy dissipation in fatigue U( )C .
Therefore, the non-dimensional quantity Π1 provides indication towards the intensity of crack propagation. A smaller value of GΔ I

thanUC is an indication of stable crack propagation. Further, with the increase in GΔ I a stage reaches when GΔ I tends toUC, indicating
a state of unstable crack propagation and fracture. In this work, the quantity Π1 ranges between 0.00003–0.009 based on the ex-
perimental results of Shah [22].

The non-dimensional parameter Π2 has a strong dependence on crack growth rate as it is a function of maximum value of energy
release rate G( )Imax which corresponds to the upper limit of a load cycle. The quantity Π2 considers and explains the effect of varying
load amplitude on crack growth rate and fatigue life. The assumption of incomplete self-similarity of the quantity Π2 has been made
for the values ranging between 0.0001–0.01 based on the experimental results of Shah [22].

Considering the dependence ofUC defined for fatigue loading on characteristic length lch has similar functional form as that of the
fracture energy defined for monotonic loading GF , the quantity lch can be expressed as =l EU σ/ch C t

2. Thus, the non-dimensional
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parameter Π3 turns out to be a function of ratio of crack length and characteristic length. Moreover, the characteristic length describes
the fracture process zone ahead of the crack tip and therefore the quantity Π3 gives an indication of the state of brittleness. Based on
the experimental results of Shah [22], the assumption of incomplete self-similarity for Π3 has been made for the values ranging
between 20 and 100.

The dimensionless parameter Π4 is a function of maximum size of the aggregate dmax . The maximum aggregate size has been
found to be dependent on characteristic length [23] which describes the fracture process zone ahead of the crack tip. According to
Elices and Rocco [23], the characteristic length increases with the increase in the maximum size of the aggregate. Therefore, the
parameter Π4 describes brittle-ductile failure mode depending on the maximum size of aggregate.

The assumption of incomplete self-similarity on various parameters is verified by plotting and analysing experimental results
against the non-dimensional parameters. Firstly, logarithm values of crack growth rate (da dN/ ) from experiments are plotted against
the logarithm values of various non-dimensional parameters namely, Π ,Π ,Π1 2 3. In the other case, Log(da dN/ ) is plotted against and

Fig. 1. Power law assessment in Π1 [22].
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the non-dimensional quantity. Fig. 1 shows the variation of both Log(da dN/ ) against Log Π1 and Log(da dN/ ) against Π1. Regression
coefficient R2 values based on the linear best fitting of the plots shown in Fig. 1 are 0.92 and 0.86 respectively. A higher regression
coefficient in Log(da dN/ ) versus Log(Π1) than Log(da dN/ ) versus Π1 gives an indication of validity of incomplete self-similarity
assumption. Similar plots have been made for Π2 and Π3 in Figs. 2 and 3 respectively. In Figs. 2 and 3 also, a higher value of regression
coefficient can be observed in Log(da dN/ ) versus Log(Π2) and Log(da dN/ ) versus Log(Π3).

5. Calibration study of the proposed model

The closed form expression of the proposed model described in Eq. (11) involves several unknown coefficients which have been
introduced during the formulation of the mathematical model. In this section, the unknown coefficients introduced in the proposed

Fig. 2. Power law assessment in Π2 [22].
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model are evaluated by using the experimental results of Shah [22] and Bazant and Xu [2]. Shah [22] has conducted three point
bending tests on three geometrically similar specimens under varying amplitude sinusoidal loading. The details of specimen geometry
are provided in Table 2. The values of modulus of elasticity and tensile strength for the material obtained by Shah are 30,000N/mm2

and 3.9N/mm2 respectively. Fatigue fracture energy called as critical energy dissipation described for fatigue loading UC [16] has
been calculated by using the experimental plots of Shah [22]. The load versus displacement plots for small, medium and large size
beam specimens have been used for the calculation of energy dissipation. Total fatigue fracture energy for each specimen size is
obtained by calculating the dissipated energy in each load cycles. The values of UC for small, medium and large beam specimens are
calculated to be 1.54N/mm, 3.89N/mm and 12.97N/mm respectively considering unit crack propagation. For determining the
unknown coefficients γ γ γ, ,1 2 3 and Φ3 the input parameters required are da dN/ , G G, ΔImax I , and a. The change in energy release rate and
maximum energy release rate are calculated using linear elastic approach incorporating the effect of fracture process zone through
cohesive force acting in the fictitious crack zone. This is done by following the approach developed by Kumar and Barai [25].

Fig. 3. Power law assessment in Π3 [22].
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According to Kumar and Barai [25], the total stress intensity factor KI is calculated by using the principle of superposition. The two
components of stress intensity factors are due to the applied load K( )I

P and the cohesive stress acting along the edge of the crack K( )I
C .

KI can be expressed as

= +K K KI I
P

I
C (13)

where, the value of KI
P can be calculated using linear elastic fracture mechanics. The value of KI

C is calculated using an analytical
expression of cohesive stress intensity factor proposed by Kumar and Barai [25]. The detailed procedure for this calculation has been
provided in Appendix A.

An optimization process based on least square error minimisation technique has been adopted to determine the values of the
unknown coefficients. The calibrated values of γ γ,1 2 and γ3 are 0.064, 1.316 and 1.303 respectively using the experimental results of
small beam specimen of Shah [22]. The quantity Φ3 is a function of d

D
max . In the experimental study of Shah, the maximum size of

aggregate used is 12.5 mm and constant for all the sizes. Based on the calibrated values of Φ3 and varying d
D

max , the empirical
expression for the quantity Φ3 is obtained through the best fitting procedure and is given by,
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Bazant and Xu [2] have conducted both monotonic and constant amplitude fatigue testing under flexure on three geometrically

Table 2
Specimen geometry of beams.

Size of the specimen Dimensions

Depth D( ) (mm) Span S( ) (mm) Thickness b( ) (mm) Notch size (a0) (mm)

Small [22] 76 190 50 15.2
Medium [22] 152 380 50 30.4
Large [22] 304 760 50 60.8
Small [2] 38.1 95.25 38.1 6.35

Medium [2] 76.2 190.5 38.1 12.7
Large [2] 152.4 381 38.1 25.4
Beam [24] 80 320 50 40

Fig. 4. Variation of crack growth rate (da dN/ ) as a function of stress intensity factor range ( KΔ I ) for medium size specimen [22].
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similar specimens. The dimension details of the specimens used in the experimental study are provided in Table 2. The reported
values of modulus of elasticity and tensile strength in their study are 27120N/mm2 and 2.86 N/mm2 respectively. The mathematical
model derived in Eq. (11) is used along with the calculated coefficients to demonstrate the applicability for other experimental results
in the following section.

6. Validation of developed model and discussions

The developed model has been verified with the experimental results of various researchers. Results of Shah [22], Bazant and Xu
[2] and Toumi et al. [24] have been used and the predictions of crack growth rate as a function of stress intensity factor range have
been made for the developed model. At first, the experimental data points of Shah [22] for medium and large beams have been used
for the prediction of the crack growth rate using the proposed model. The logarithm values of crack growth rate Log(da dN/ ) as a
function of stress intensity factor range Log( KΔ I) are plotted for both proposed model and the experimental results. The above
predictions have been made for medium and large size specimens and the results are shown in Figs. 4 and 5 respectively. It may be
noted that in the experimental study of Shah [22], the load amplitude is varying in nature and the model predictions shown in the
Figs. 4 and 5 are capable of predicting the growth rate with reasonably good accuracy in spite of large scatter in the experimental
data. To verify further, the prediction of critical crack length for different load cycles have been made for medium and large size
specimens and are plotted in Figs. 6 and 7 along with the experimentally observed values. It can be seen that the model predictions
are in good agreement with the experimental results. In summary, the model can predict the crack growth rate with reasonable
accuracy for the three specimens with varying structural size and hence, the model is able to capture the effect of fracture process
zone and size effect.

Secondly, the experimental results of Bazant and Xu [2] have been used for the comparison with the model predictions.UC values
for experimental data of Bazant and Xu [2] have been taken from the study by Pervaiz and Kishen [26]. The values of UC for small,
medium and large beam specimens are 1.88, 1.96 and 2.83N/mm respectively considering unit crack propagation. The coefficients
γ γ,1 2 and γ3 used are 6.35, 0.421 and 1.4 respectively. The crack growth rate has been evaluated as function of stress intensity factor
range for small, medium and large sizes using the derived model. The variation in crack growth rate has been plotted in Figs. 8–10
together with the experimentally observed values. The model predictions are found to agree well with the experimental results.

In order to examine further, the experimental study by Toumi et al. [24] has been considered in this section. Toumi et al. [24], in
their study have performed experiments on plain concrete beams under three point bending under the action of cyclic loading. The
geometry details of the specimen considered in their study has been provided in Table 2. In their study, experiments have been
performed with varying stress ratio R. The minimum value of load amplitude Pmin is kept constant for all the specimens and is taken as

Fig. 5. Variation of crack growth rate (da dN/ ) as a function of stress intensity factor range ( KΔ I ) for large specimen [22].
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Fig. 6. Variation of crack length (a) as a function of number of load cycles (N) for medium specimen [22].

Fig. 7. Variation of crack length (a) as a function of number of load cycles (N) for large specimen [22].
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Fig. 8. Variation of crack growth rate (da dN/ ) as a function of stress intensity factor range ( KΔ I ) for small specimen [2].

Fig. 9. Variation of crack growth rate (da dN/ ) as a function of stress intensity factor range ( KΔ I ) for medium specimen [2].
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Fig. 10. Variation of crack growth rate (da dN/ ) as a function of stress intensity factor range ( KΔ I ) for large specimen [2].

Fig. 11. Variation of crack growth rate (da dN/ ) as a function of stress intensity factor range ( KΔ I ) for varying stress ratio [24].
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0.23Pu, Pu being the static failure load. Experiments have been carried out with four different stress ratios keeping the maximum load
amplitude Pmax as 0.7Pu, 0.76Pu, 0.81Pu, 0.87Pu. Crack growth rate has been predicted using proposed analytical model for different
stress ratios. The logarithm plots of crack growth rate has been made against stress intensity factor range for both model and
experimental results in Fig. 11. The predicted results are found to be in agreement with the experimental results.

7. Statistical analysis

In this section, a statistical approach has been followed to measure the accuracy of the proposed analytical model. Statistical
method proposed by Long and Wysockey [27] has been adopted in this study. According to Long and Wysockey [27], the cumulative
probability of the ratio (Qm/Qe) can be used to measure the prediction exactness of any model. The quantity Qm denotes the variance
of the output parameters predicted from the proposed model and Qe is variance of the experimental values corresponding to the same
parameter. The individual values of the ratio (Qm/Qe) for the output quantity are arranged in the ascending order … …i n(1,2,3, , , , ). The
cumulative probability P of Qm/Qe is calculated using the equation provided below.

=
+

P i
n( 1) (15)

where i=order number given to the ratio Qm/Qe and n is the number of data points. Further, the cumulative probability values
corresponding to 50% (P50) and 90% (P90) are calculated to measure the accuracy of the proposed model. A value of P50 lesser than one
implies under prediction of the model and greater than one indicates over prediction. The model predictions are better if the values of
P50 are closer to unity and the range between P50 and P90 is smaller. The value of 90% cumulative probability represents the variation
for the total observation.

For the above study, the crack growth rate predictions made earlier using the proposed analytical formulation for small, medium
and large size specimens of the experimental work of Bazant and Xu [2] and Shah [22] have been considered. The cumulative
probability values ofQm/Qe for three beam specimens have been calculated using Eq. (15). The variation of cumulative distribution of
(Qm/Qe) versus the ratio (Qm/Qe) have been shown in Fig. 12 for small, medium and large size specimens of experimental work of
Bazant and Xu [2]. Similar plot has been made in Fig. 13 for the experimental data of Shah [22]. The cumulative distribution plots for
various sizes shown in Figs. 12 and 13 completely describe the distribution of (Qm/Qe) wherein, P50 and P90 values represent the
chances of a randomly selected (Qm/Qe) value exceeding the corresponding values are 50 and 90% respectively. Therefore, the values
of P50 and P90 closer to unity will have better model predictions.

Further, the cumulative distribution values corresponding to 50% and 90% have been marked in the Figures and the values have

Fig. 12. Cumulative probability plot of (Qm/Qe) for small, medium and large sized beam specimens [2].
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been summarized in Table 3. P50 and P90 values closer to unity and a smaller range between P50 and P90 demonstrate better model
predictions. It can be observed in Figs. 12 and 13 that the numerical values of P50 and P90 for various specimens are close to unity
confirming the accuracy of the proposed model.

8. Sensitivity analysis

The analytical model proposed for the prediction of crack propagation rate and fatigue life involves various governing parameters
which may be deterministic or random in nature. The randomness in different parameters may affect the overall fatigue life.
Therefore, in this section, the effect of various parameters involved in the proposed model on fatigue life is studied through sensitivity
analysis. A sensitivity study is performed in order to understand the variation in fatigue life Nf corresponding to critical crack length
with the randomness in the different input parameters. The sensitivity of an input parameter is measured by computing coefficient of
variation using the following equation provided below.

= ∗p
v
v

100i
yi

y

2

(16)

where vyi is defined as the coefficient of variation corresponding to the output quantity considering ith variable as random and
remaining as deterministic. vy is defined as the coefficient of variation corresponding to the output quantity considering all input
variables as random. A higher value of coefficient of variation indicates an increased correlation i.e. higher influence of input
parameter on the output [5]. The analysis is carried out by computing the fatigue life using the equation given below.

Fig. 13. Cumulative probability plot of (Qm/Qe) for small, medium and large sized beam specimens [22].

Table 3
Cumulative probability values for different quantities.

Specimen Qm/Qe at P50 Qm/Qe at P90

Beam (Small), Bazant and Xu [2] 0.52 0.99
Beam (Medium), Bazant and Xu [2] 0.78 1.21
Beam (Large), Bazant and Xu [2] 0.81 1.25

Beam (Small), Shah [22] 1.20 1.46
Beam (Medium), Shah [22] 1.24 1.40
Beam (Large), Shah [22] 1.15 1.52
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where Nf is the fatigue life, a and ac are the initial and critical crack lengths. The sensitivity coefficients are calculated using medium
sized beam of the experimental result of Shah [22]. The input parameters considered for the determination of coefficient of variation
are, crack length a, critical crack length ac, maximum aggregate size dmax , structural size D, fatigue fracture energy UC, change in
energy release rate GΔ I , maximum energy release rateGImax and tensile strength σt. The quantities of vyi and vy are computed using the
randomly generated values of each input variable. Various input quantities along with their statistical parameters and sensitivity
coefficients are provided in Table 4. It can be observed that the coefficient of variation for the parameter D is the highest indicating
the strongest dependence of structural size on fatigue life. Further, the parameter critical energy dissipation in fatigue, UC has very
less coefficient of variation indicating less sensitiveness towards the fatigue life estimation. Determination of value of UC from the
experimental results is a tedious process. The calculation is dependent on quantities like transition zone for cyclic loading if cal-
culated analytically [16]. A slight variation in the calculated value of UC will have negligible influence on the fatigue life.

To verify further, the above results are used for the prediction of probability distribution function. In Fig. 14, the ultimate fatigue
life NC has been plotted against the probability of calculated fatigue life Nf which is less than a particular NC. The parameter for which
the curve is steeper, provides an indication that the quantity is less sensitive in comparison to other parameters and can be considered
as a deterministic quantity. A similar trend as observed in Table 4 is depicted in Fig. 14 confirming the results.

9. Conclusions

In this study, a mathematical model has been derived for the prediction of crack growth under the action of fatigue loading. This
has been calibrated and validated with the available experimental results in the literature to demonstrate its applicability in plain
concrete members. The analytical formulation considers important parameters namely, critical energy dissipation in fatigue called
fatigue fracture energy U( )C and the ratio of maximum aggregate size to structural size along with the other conventional crack
growth characterizing parameters. According to Le et al. [15] and Kirane and Bazant [17], the parameter critical energy dissipation
defined for cyclic loading governs the fatigue crack propagation behaviour and different from critical energy dissipation for the
monotonic case Gf . Critical energy in fatigue has been evaluated for geometrically similar beams of different sizes and is incorporated
in the proposed model in non-dimensional form. Further, both deterministic and statistical analysis have been followed to verify the
performance of the developed model. The results of crack propagation predicted by the model have been compared with the existing

Table 4
Sensitivity coefficient for different variables.

Variables Mean Standard deviation Coefficient of variation

GΔ I 0.0035 0.00015 11.38
D 152 7.6 82.56

dmax 12.5 0.125 3.23
a 30.4 0.17 0.53

ac 60.93 0.6 1.99
UC 3.1897 0.031897 0.91
σt 3.9 0.39 3.05

GImax 0.0037 0.00023 20.61

Fig. 14. Probability distribution plots for fatigue life Nf [22].

S. Bhowmik, S. Ray Engineering Fracture Mechanics xxx (xxxx) xxx–xxx

15



experimental results and are observed to be in good agreement. The influence of each parameter incorporated in the developed model
namely, the structural size, fatigue fracture energy, crack length, change in energy release rate, maximum size of the aggregate and
tensile strength on fatigue life has been studied through sensitivity analysis. Structural size is found to be the most sensitive para-
meter to the fatigue life of concrete structures followed by the energy release rate corresponding to maximum load.

Appendix A

In this study, the parameter GΔ I incorporated in the developed model is calculated using the concept of linear elastic fracture
mechanics (LEFM). The relation between stress intensity factor range KΔ I and GΔ I is given by,

=G
K
E

Δ
Δ

I
I
2

(18)

Fig. 15. Superposition of stress intensity factor [25].

Table 5
Coefficients of weight function parameters M M,1 2 and M3.

i ai bi ci di ei fi

1 0.0572011 −0.8741603 4.0465668 −7.89441845 7.8549703 −3.18832479
2 0.4935455 4.43649375 – – – –
3 0.340417 −3.9534104 16.1903942 −16.0958507 14.6302472 −6.1306504
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where KΔ I is a function of applied load, specimen geometry and crack length. For concrete like quasi brittle materials, the stress
intensity factor consists of two components, stress intensity factor due to the applied load K( )I

P and that due to the cohesive stress
acting along the edge of the crack K( )I

C . Total stress intensity factor KI is given as follow.

= +K K KI I
P

I
C (19)

The value of KI
C has been computed by adopting the analytical method proposed by Kumar and Barai [25] expressed in the equation

provided below.
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(20)

Fig. 15 shows a beam subjected to an external load P which has a center crack in it. The two components of stress intensity factors are
stress intensity factor due to the applied load K( )I

P and the cohesive stress acting along the edge of the crack K( )I
C have been depicted

in Fig. 15. According to Kumar and Barai [25], the expression for KI
C using 3 terms weight function is given by,
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where = = −
−A σ CTOD A( ),c
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For =i 2.

= ⎡
⎣
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M a b a
Di i i (23)

Values of a b c d e, , , ,i i i i i and fi are given in Table 5. The values of A1 and A2 mentioned in Eq. (20) have been calculated using nonlinear
softening function proposed by Reinhardt et al. [28] and is provided below.
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where c c,1 2, and wc are the material constants for plain concrete. The values of these constants are c1 = c3, 2 = w6.93, and c =160 mm.
The crack opening w is calculated using the following expression proposed by Jenq and Shah [29].
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The values of KI
P have been caluculated using the existing experimental results of Shah [22].
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