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Abstract— In this paper a new method to calculate the 
five parameters of the single-diode model of a 
photovoltaic cell or panel is presented. This new method 
takes into account the intrinsic properties of the model 
equation and the technique of linear least-squares fitting, 
so, the computational complexity and costs are very low. 
Moreover, the proposed method, named Two-Step Linear 
Least-Squares (TSLLS) method, is able to work absolutely 
blindly with any kind of I-V curve. It does not need initial 
guesses at all and, consequently, it is not necessary to 
know previously any information of any parameter. The 
proposed method provides the parameters of the single-
diode model just using the coordinates of N points (N≥5) 
of the I-V curve. The results provided by this method in a 
first stage have the same order of accuracy of the best 
documented methods in the field of parameters extraction, 
but, furthermore, in a second stage the best accuracy 
documented until now is obtained in two important case 
studies usually used in the literature as well as in a large-
scale I-V curve repository with more than one million of 
curves. 

Index Terms— Solar Cell Parameters; Characteristic I-V 
Curve; Single-Diode Model; Photovoltaic Energy. 

I. INTRODUCTION 
URING the last decades, the photovoltaic (PV) single-
diode model has been one of the most used. It has been 

widely demonstrated that this model, also called five-
parameter model, generates a theoretical curve that reproduces 
the real I-V characteristic of most of the PV cells and panels 
with very good accuracy under a minimum of illumination [1-
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3]. For this reason, researchers have attempted to extract the 
model parameters and companies have tried to use these 
parameters to deeply know the behavior of their PV cells or 
panels in order to optimize their performance. Furthermore, 
the knowledge of the model parameters has been also used for 
some new maximum power point tracking techniques (MPPT) 
[4,5]. For all these reasons, extraction of the model parameters 
is definitely a key tool in the field of solar energy production. 

Many methodologies have been suggested in the literature 
for extraction of the model parameters. These methodologies 
can be divided into three groups: those that try to extract the 
parameters throughout the manufacturer datasheet [3, 6-12], 
those that attempt to obtain the parameters with a collection of 
experimental current-voltage points [13-28], and finally that 
ones that use both, the datasheet and also experimental data 
[29-31]. Among all these methods, there are some [11, 29] that 
extract the parameters as functions of the irradiance and the 
temperature. This allows, once the parameters are extracted, to 
extrapolate the parameters for different working conditions. It 
is worth noting that the method presented in this paper does 
obtain the parameters from a set of experimental current-
voltage points but it does not provide any physical meaning of 
the parameters so, it must be executed every time 
environmental conditions change.  

Recently, two papers, [21, 23], have provided the best 
solutions ever for two case studies proposed in [24] and also 
used in many papers [18-20, 25-28] to check the effectiveness 
of the proposed single-diode model extraction methods. Both 
papers, [21] and [23], use a common idea, suggested for the 
first time in [21], that consists in reducing the dimension of 
the parameter search space from 5 to 2 by expressing three of 
the parameters as a function of the other two. Specifically, 
[21] provides two reduced forms whose accuracy strongly 
depends of the precision of some needed operating data, 
namely, the short circuit current (Isc), the open circuit voltage 
(Voc), and the maximum power point (MPP). Moreover, the 
optimization process in [23] performs a least-squares fitting 
based in the two unknown parameters which clearly needs to 
start from a guess very near to the optimal solution to ensure, 
not only its convergence, but also a reduced number of 
iterations. In the case of [23], the method is based in 
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performing an educated approximation of the original 
minimization problem depending on five parameters, then, 
through a generalized Benders-like decomposition, the 
problem is reduced to solve two problems in a nested form. 
After some approximations, they are able to provide a closed-
form expression to express three parameters as a function of 
the other two. Finally, a least-squares fitting depending on the 
two unknown parameters is performed to obtain the optimal 
parameters but, as in the case of [21], it clearly needs to start 
from a guess very near to the optimal solution to ensure, not 
only its convergence, but also a reduced number of iterations. 
Although this last method does not depend on any operating 
data, Isc, Voc, and MPP, the approximations used in the 
construction of the method enclose some small deviations and 
induce some numerical problems that must be overcome with 
a casuistic procedure.  

The method proposed in this paper, named Two-Step Linear 
Least-Squares (TSLLS) method, does not need any kind of 
extra information to work, just the coordinates of N points 
(N≥5) of the I-V curve and nothing else is required. The 
TSLLS method does not depend on the accuracy of any 
operating data, Isc, Voc, and MPP, and it does not need to know 
any good approximate solution of the parameters to use as 
initial guess. This method converges completely blindly to an 
optimal solution, which, in the case studies proposed in [24] 
has the same order of accuracy as the best documented 
provided by [21] and [23]. Besides, in a second stage, using 
the curve fitting technique, and only with the parameters 
obtained in the first stage as initial guess, it is obtained a slight 
improvement of the best results documented given in [21] and 
[23]. It is worth noting that the TSLLS method needs at least 
five points to work, so it cannot be applied if only datasheet 
information is available, experimental measurements are a 
must. 

Finally, the methodology proposed in this paper allows to 
identify some properties of the I-V curves. Specifically, it is 
able to identify the most significant linear and exponential 
parts of the curve. These parts are closely related with the 
status of the PV panel and it could provide valuable 
information about the behavior of the panel in real conditions 
and also during the manufacturing process. It is worth 
mentioning that the TSLLS method works with almost any 
kind of I-V curve, even with those provided by panels with a 
large degradation. 

The structure of the paper is as follows: In section II the 
theory of the TSLLS method and the procedure to extract the 
optimal parameters are presented. Experimental results of 
applying the TSLLS method to a solar cell and a solar panel 
commonly used in the literature and their comparison with 
some of the best parameters extraction methods is presented in 
section III. In section IV the experimental results coming from 
the application of the proposed method to a publicly repository 
of I-V curves is presented. Finally, section V presents the main 
conclusions of the work.  

II. TWO STEP LINEAR LEAST-SQUARES METHOD

The single-diode model electrical circuit of a solar cell can 
be extrapolated to a PV module with 𝑛" cells in parallel and 𝑛# 
cells in series, see figure 1. At a given illumination, the 
relationship between the current and the voltage is given by 
the model equation (1): 

𝐼 = 𝑛"𝐼"& 	− 𝑛"𝐼#)* 𝑒

,
-.
/01.-2
-,3 − 1 − 𝑛"

,
-.
501.-2

6.7
       (1) 

where Iph is the photocurrent, Isat is the diode saturation 
current, n is the diode ideality factor, VT=kT/q, being T the 
temperature of the cell, k the Boltzmann's constant 
(1.3806503E-23J/K) and, q the electron charge (1.602E-19C), 
Rs is the series resistance of a cell and, Rsh is the shunt 
resistance of a cell. 

Fig. 1. PV Module single-diode model electrical circuit 

Just making a simple change of variables (see, for instance, 
[16]), the PV model equation (1) can be rewritten in a 
simplified way as: 

𝐼 = 𝐴	– 𝐵 𝐶<𝐷> − 1 − 𝐸𝑉    (2) 
where 
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The original parameters can be straightforwardly recovered 
from the new ones as: 
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The model equation (2) can be rewritten as: 

𝐼 = 𝐴 + 𝐵 − 𝐸𝑉
OPBQ)R	")R*
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   (5) 
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In (5), two very well distinguishable functional parts can be 
seen, a linear part 𝐴 + 𝐵 − 𝐸𝑉, which corresponds with the 
oblique asymptote of the single-diode model [15], and an 
exponential part 𝐵𝐶<𝐷>. Obviously, these two parts are not 
independent of each other although their particular influence 
over the generated I-V curve can be easily perceived as figure 
2 shows. 

Fig. 2. Linear and exponential parts of the I-V Curve 

TSLLS method tries to obtain separately, not independently, 
these two functional parts in a very simple way, although in a 
second stage it is optimized the identification of these two 
parts together with the extraction of the optimal parameters of 
the model. Let us assume we have a set of 𝑁 points with 
coordinates (𝑉V, 𝐼V), 𝑗 = 1, … , 𝑁, from a given I-V curve. It is 
needed at least five points to apply the TSLLS method, that is, 
𝑁 ≥ 5. As the name of the method indicates, it consists in the 
following two steps. 

First Step 
The linear part of the model equation is going to be 

extracted, that is, 𝐴 + 𝐵 − 𝐸𝑉. It is assumed, without loss of 
generality, that the given I-V curve from the first point (𝑉C, 𝐼C) 
(i.e. the point with the smallest voltage) to a certain point 
(𝑉\, 𝐼\) is essentially a line, in other words, it is assumed that 
the exponential part 𝐵𝐶<𝐷> is practically negligible in this 
first part of the curve and, so,  

𝐼 ≈ 𝐴 + 𝐵 − 𝐸𝑉    (6) 

The point 𝑉\^2, 𝐼\^2 that better determines the most 
significant linear part of the curve will be obtained a 
posteriori, when the optimal parameters are extracted. To start 
with the mathematical development, 𝐿 points (𝐿 ≥ 2) of the 
given curve, 𝑉C, 𝐼C , … , (𝑉\, 𝐼\), are selected. The objective is 
to find the line 𝐼 = 𝐾 − 𝐸𝑉, where 𝐾 = 𝐴 + 𝐵, that best 
adjusts these points in the sense of least-squares errors. 
Specifically, it is wanted to obtain the least-squares solution 
(K, E) of the system (7) 

1 −𝑉C
⋮ ⋮
1 −𝑉\

𝐾
𝐸 =

𝐼C
⋮
𝐼\

   (7) 

that is, the (pseudo-)solution with lowest Euclidean norm. It is 
well-known that this solution is given by  

𝐾
𝐸 = L\

LL\
IC
L\
L
𝐼C
⋮
𝐼\

  (8) 

where 

L\ =
1 −𝑉C
⋮ ⋮
1 −𝑉\

(9) 

L\
L is the transpose matrix of L\, and L\

LL\
IC

 is the inverse
matrix of L\

LL\ which is a second order square matrix called 
the Moore-Penrose pseudoinverse of L\. It is also well-known 
that the solution attained by this technique is unique when 
𝑟𝑎𝑛𝑘 L\ = 2, which is indeed our case since 𝑉V ≠ 𝑉g for 
𝑗 ≠ 𝑘. Observe that, this first step also reduces the dimension 
of the search space as in [21] and [23] but with other 
parameters and different methodology. 

Second Step 
Once the parameters 𝐾 = 𝐴 + 𝐵 and 𝐸 have been obtained 

in the first step, the parameters 𝐵, 𝐶, and 𝐷 of the exponential 
part can be extracted. The model equation (2) can be rewritten 
as: 

𝐵𝐶<𝐷> = 𝐾 − 𝐸𝑉 − 𝐼   (10) 

and, taking logarithms on the previous expression 

ln 𝐵 + 𝑉𝑙𝑛 𝐶 + 𝐼𝑙𝑛 𝐷 = ln	 𝐾 − 𝐼 − 𝐸𝑉  (11) 

After this elementary algebraic manipulation, the desired 
parameters can be obtained throughout a linear least-squares 
fitting, but now, using 𝑀 points (𝑀 ≥ 3) starting from the last 
one (𝑉m, 𝐼m) to a certain (𝑉mIn5C, 𝐼mIn5C). Now, the point 
𝑉mIn^25C, 𝐼mIn^25C that better determines the most 

significant exponential part of the curve will be obtained a 
posteriori, when the optimal parameters are extracted. It is 
important to mention that this point does not necessarily 
coincide with 𝑉\^2, 𝐼\^2 . 

The mathematical details of this second step are as follows. 
Select 𝑀 points (𝑀 ≥ 3) of the given curve, 
𝑉mIn5C, 𝐼mIn5C , … , (𝑉m, 𝐼m). The parameters ln 𝐵 , ln 𝐶 , 

and 𝑙𝑛 𝐷  which provide the best fitting of the function 
ln 𝐵 + 𝑉𝑙𝑛 𝐶 + 𝐼𝑙𝑛 𝐷 = ln	 𝐾 − 𝐼 − 𝐸𝑉  over the 
selected points have to be obtained. Specifically, the (pseudo-) 
solution with minimum Euclidean norm of the system (12) has 
to be obtained. 

1 𝑉mIn5C 𝐼mIn5C
⋮ ⋮ ⋮
1 𝑉m 𝐼m

ln(𝐵)
ln(𝐶)
ln(𝐷)

=
ln 𝐾 − 𝐼mIn5C − 𝐸𝑉mIn5C

⋮
ln 𝐾 − 𝐼m − 𝐸𝑉m

         (12) 

Analogously to Step 1, the least-squares solution for this 
system is given by (13): 

Linear part: I≃A+B-EV

Exponential part: 
BCVDI
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ln	(𝐵)
ln	(𝐶)
ln	(𝐷)

= Wn
L Wn

IC
Wn
L
ln	 𝐾 − 𝐼mIn5C − 𝐸𝑉mIn5C

⋮
ln	 𝐾 − 𝐼m − 𝐸𝑉m

    (13) 

where 

 Wn =
1 𝑉mIn5C 𝐼mIn5C
⋮ ⋮ ⋮
1 𝑉m 𝐼m

     (14) 

Wn
L  is the transpose matrix of Wn, and Wn

L Wn
IC

 is the
inverse matrix of Wn

L Wn which is simply a square matrix of 
order 3. As commented before, the solution of the system is 
unique when 𝑟𝑎𝑛𝑘 Wn = 3 which always occurs in practice 
because of the shape of the I-V curves. Obviously, the desired 
parameters 𝐵, 𝐶, and 𝐷 straightforwardly come from taking 
exponentials on ln	(𝐵), ln 𝐶 , and ln	(𝐷), respectively, and 
finally	𝐴 = 𝐾 − 𝐵. 

An immediate first approximation of the parameters can be 
obtained by a suitable selection of 𝐿 points for the first step 
and 𝑀 points for the second one, and it can be done just from 
a simple examination of the given curve, for instance, taking 
the first 𝐿 points from the visual linear part of the curve, and 
the final 𝑀 points from the elbow of the curve until the final. 
In this sense, the TSLLS method, until this stage, can be 
considered an analytical method since only with five data, in 
particular with only five points, provides the five parameters 
of the model. In the next stage, it is proposed a way to find the 
best data (in some sense) to apply this analytical method. Due 
to the simplicity of the previous two steps, the new stage can 
be programmed to work completely autonomously from a 
given set of I-V experimental points. 

Blind Optimization Process 
The optimization process consists on finding the subset of I-

V experimental points that provides the parameters 𝐴, 𝐵, 𝐶, 𝐷, 
and 𝐸 which minimizes the current Root Mean Square Error 
(RMSE) given by 

𝑅𝑀𝑆𝐸 = C
m

𝐼Vp − 𝐼V
qm

VrC      (15) 

where 𝐼V	is the measured current of the PV module, 𝐼Vp is the 
estimated current from the method, for certain set of 
parameters 𝑃 = (𝐴, 𝐵, 𝐶, 𝐷, 𝐸), corresponding to the voltage 
𝑉V, and N is the total number of available points. The 
minimum is searched between all the possible combinations of 
steps one and two described previously. This process is 
summarized in the algorithm shown in figure 3. 

Fig. 3 Blind Optimization Algorithm 

Although the current RMSE is the most widely used in the 
literature, other objective functions to minimize could be also 
interesting to consider. For example, changing intensities by 
power in the RMSE equation [32, 33] can be very useful if the 
resolution of the model is used for MPPT. Nevertheless, there 
are lot of possibilities depending on the magnitude to 
minimize [14], some of them are voltages (lateral 
optimization), areas, distances, conductances, etc. The optimal 
solution will be different for each objective function and each 
one will be appropriate for a particular application. 

The proposed optimization algorithm provides the 
parameters 𝑃T"* = 𝐴, 𝐵, 𝐶, 𝐷, 𝐸  associated to the minimum 
Root Mean Square Error, 𝑅𝑀𝑆𝐸T"*, as well as the shape limit 

points, 𝑉m^2t, 𝐼m^2t  and 𝑉mIn^2t5C, 𝐼mIn^2t5C . These two 
points mark off on the curve the most significant linear part 
and the most significant exponential one. 

It is important to note that, if the number of experimental 
points (N) is very high, a huge amount of iterations would be 
needed for this optimization process. In order to overcome this 
potential problem and to upper bound the number of iterations, 
the maximum number of points used in each curve has been 
set to 100, uniformly distributed in percentage of number of 
points. It has been experimentally proven that the difference 
between the accuracy obtained considering all the points or 
only taking 100 points is insignificant. So, if the curve has 
more than 100 points, it is reduced to 100 before the 
optimization process is applied. Therefore, since the number 
of iterations is 𝑁 − 3 · (𝑁 − 4)/2, if 𝑁 ≤ 100 the 
maximum number of iterations is 4656.  

The great advantage of the proposed method is to achieve 
the objective working completely blindly from the 
experimental data, so, this methodology can provide an 
optimal solution, near to the global one, just using 
experimental data and without any extra information.  

Once obtained the optimal parameters in this first stage, it is 
possible to refine the solution by performing a curve fitting 

Set 𝑅𝑀𝑆𝐸T"* = +∞ 
For 𝐿 = 2 to 𝑁 − 3 

  Obtain 𝐾 and 𝐸 as in First Step (eq. 8) 
   For 𝑀 = 3 to 𝐿 + 1 

Obtain 𝐵, 𝐶, 𝐷, and 𝐴 as in Second Step 
(eq.13) 

  Compute 𝑅𝑀𝑆𝐸  (eq. 15) 
  If 𝑅𝑀𝑆𝐸 < 𝑅𝑀𝑆𝐸T"*  then  

  𝑅𝑀𝑆𝐸T"* = 𝑅𝑀𝑆𝐸  
  𝑃T"* = (𝐴, 𝐵, 𝐶, 𝐷, 𝐸) 
  𝑁T"* = 𝐿	and 𝑀T"* = 𝑀 

  End 
 End 

End 
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with the experimental data, taking as starting point the 
parameters already obtained. This methodology is the same 
used in [21] and [23]. The success of this procedure will 
depend on whether the parameters of the first stage are close 
to the global optimum. This fitting is performed in Matlab 
using the function lsqcurvefit of the Matlab Optimization 
Toolbox. Due to the different order of magnitude of the 
involved parameters, the function lsqcurvefit does not directly 
provide the best possible solutions, but this issue can be 
overcome normalizing all the parameters (A,B,C,D and E) to 1 
and, consequently, changing the objective function to accept 
the normalized parameters.  The Matlab solver iterates to find 
an optimum (steps). At any step, intermediate calculation may 
involve evaluations of the objective function (Function 
Evaluations (FEs)). As the objective function in [21], [23] and 
in the proposed method is the same, the number of steps and 
FEs can be used to measure the computational cost of the 
Matlab Optimization Toolbox functions independently of the 
computer specifications. 

III. EXPERIMENTAL RESULTS: CASE STUDIES

With the aim to test the accuracy of the TSLLS method and 
to compare the results with other methods, two case studies 
commonly used in the literature have been modeled. These 
two cases were proposed in [24] and have been used in [17, 
19-21, 23, 25-28] to test the corresponding proposed methods. 
It will be named “Case Study 1” the data (26 I-V points) 
provided in [24] referred to a solar module (Photowatt-PWP 
201, 1000W/m2, 45 °C) composed by 36 cells connected in 
series, and “Case Study 2” the data (26 I-V points) referred to 
a 57mm diameter silicon solar cell (RTC France, 1000W/m2, 
33 °C). The TSLLS algorithm was implemented in Matlab and, 
from the first stage results, a refinement is performed using the 
fitting function lsqcurvefit of the Matlab Optimization 
Toolbox. As explained in [23], a lower value of RMSE (15) 
corresponds to a better fitting of the experimental data in 
terms of Least-Squares Error (LSE). In [21] it is already 
presented a comparison of all the results obtained in the 
literature for these case studies and in [23] it is only presented 
a comparison of their proposed method with the best 
documented until then that is [21]. In this paper, the TSLLS 
method results will be compared with the best accuracy 
methods documented up to now, that has been provided by 
[21] and [23]. Besides, since [21] performs a comparison with 
direct methods [27, 28] and different stochastic optimization 
methods [17, 19, 20, 26], the TSLLS method is actually being 
implicitly compared with all of them.  

In the comparison, the results have been used as they appear 
in the mentioned articles [21] and [23], only the RMSE (15) 
and the Mean Absolute Error (MAE) (16) values have been 

recomputed in order to obtain a higher number of digits. To be 
fair in the comparison, the results of the TSLLS method have 
been truncated to the same number of digits presented in 
[21] and the RMSE and MAE values have been calculated with 
the truncated values. 

𝑀𝐴𝐸 = C
m

𝐼Vp − 𝐼Vm
VrC      (16) 

Case Study 1 – PV Module 
The parameters obtained are reported in Table I, the RMSE 

and the MAE values, the number of steps and the number of 
function evaluations (FEs). The solutions in the row named 
TSLLS are the ones obtained with the proposed method. The 
solutions in the row named TSLLS with Refinement are 
obtained doing a fitting of the data to minimize the RMSE over 
all the parameters near to the obtained by the TSLLS method. 
Both results are compared with the best documented in the 
literature. It is worth remarking that the TSLLS method is the 
only one that works completely blindly from the experimental 
data. The RMSE obtained by the TSLLS method before 
refinement is very low and has the same order of accuracy as 
the best documented. Furthermore, after the refinement, the 
RMSE obtained is the best documented until now and also the 
computational cost of the refinement is lower than in the other 
proposed methods since the algorithm converges in just 6 
steps. It is important to highlight that, as in [21] and [23], 
these metrics only correspond to the refinement stage where 
an improvement of results is obtained by using the five 
parameters returned by a previous stage as initial guesses. 

It is also important to observe that all the methods 
compared try to minimize the RMSE not the MAE. The RMSE 
is minimized instead of the MAE error because in RMSE the 
errors are squared before they are averaged and this penalizes 
large errors in any point, what deals in a better fitting. 

TABLE I 
RESULTS FOR CASE STUDY 1 - PV MODULE (36 SOLAR CELLS, T=45ºC) 

Laudani et al. 
Solution 1.D 
[21]  

Cardenas et al.  
Solution 1.b 
[23] 

TSLLS TSLLS With 
Refinement 

Iph(A) 1.0323759 1.032377 1.0335685 1.0323823 
Isat(µA) 2.5188848 2.517957 2.2709763 2.5129059 
ns·Rs (Ω) 1.2390187 1.239060 1.2599674 1.3001512 
ns·Rsh (Ω) 745.6431 745.7122 687.87337 744.71302 
n 1.3174002 1.3173635 1.3069558 1.3171591 
RMSE 2.0465409E-3 2.0465456E-3 2.1722792E-3 2.0465347E-3 

MAE 1.6917202E-3 1.6925284E-3 1.7242989E-3 1.6923215E-3 

Number of 
steps 28 27 - 6 

Number of 
FEs 204 141 - 42 
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In figure 4, the upper graph shows the experimental data 
and the I-V curve modeled by the TSLLS method (without 
refinement). In this graph is also shown the optimal points 
(Nopt and Mopt) provided by the TSLLS method. The middle 
graph shows the error between all the 26 available 
experimental data points and the modeled points. As can be 
seen, the error is very low, less than 4.5mA in the worst case. 
The lower graph shows the same errors but after the 
refinement, it can be seen that the fitting in this case is slightly 
better with errors lower tan 4mA in the worst case. These 
results demonstrate that the assumption in [21] about the 
uniqueness of the solution attained is no longer true because 
the parameters obtained by the TSLLS method are different 
and provide a smaller RMSE. 

Fig. 4. Case Study 1 TSLLS Results

Case Study 2 – Solar Cell 
The parameters obtained for the Case Study 2 are reported in 
Table II, the nomenclature is the same used in Table I. The 
results show again that the TSLLS method has the best 
accuracy documented until now. The RMSE obtained by the 
TSLLS before refinement is very low and has the same order 
of accuracy as the best documented. After refinement, the 
RMSE obtained is again the best documented until now and 
the algorithm converges in just 3 steps. 

In figure 5, the upper graph shows the experimental data 
and the I-V curve modeled by TSLLS method (without 
refinement). In this graph is also shown the optimal points 
(Nopt and Mopt) provided by the TSLLS method. The middle 
graph shows the error between all experimental data points 
and the model, in this case the error is less than 2mA in the 
worst case. The bottom graph shows the same errors but after 
the refinement with errors lower than 1.6mA in the worst case. 

Fig. 5. Case Study 2 TSLLS Result 

IV. EXPERIMENTAL RESULTS: NREL CURVE REPOSITORY

Once the accuracy of the TSLLS method has been 
demonstrated, the method has been applied to model a 
publicly repository of I-V curves available through the 
National Renewable Energy Laboratory (NREL) [34]. This 
repository includes 1025599 I–V curves from 22 PV modules, 
of eight different technologies, collected every five minutes 
for one year periods at three climatically diverse locations 
(Cocoa, Eugene and Golden). In order to apply the TSLLS 
method to these huge number of curves, the process has been 
automated with a python script running in a twenty-machines 
computer cluster. In Table III it is shown, for each different 
PV module and its location, the average RMSE and MAE 
obtained with the TSLLS method. Although the curves have 
been reduced to 100 points, to apply the blind optimization 
process the RMSE and MAE values have been computed using 
all the points of each curve. In Table IV the same values are 
shown but using the TSLLS method with refinement. 
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TABLE II 
RESULTS FOR CASE STUDY 2 - SOLAR CELL (T=33ºC) 

Laudani et al. 
Solution 1.D 
 [21] 

Cardenas et al. 
Solution 1.b 
 [23] 

TSLLS TSLLS With 
Refinement 

Iph(A) 0.7607884 0.760788 0.76074014 0.76078797 
Isat(µA) 0.3102482 0.3106847 0.31285196 0.31068485 
Rs (Ω) 0.03655304 0.036547 0.036615485 0.036546942 
Rsh (Ω) 52.859056 52.890468 55.907380 52.889804 
n 1.4769641 1.4771051 1.4777295 1.4771052 
RMSE 7.73009395E-4 7.730062729E-4 7.943924087E-4 7.730062726E-4 
MAE 6.7807111E-4 6.7817233E-4 6.6795463E-4 6.7819422E-4 
Number 
of steps 16 8 - 3 

Number 
of FEs 138 36 - 24 
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These results include curves measured under partial shading 
conditions and also curves measured with low irradiance. In 
theory, these curves cannot be correctly modeled with the 
single-diode model. Nevertheless, the maximum RMSE error 
obtained for all the curves is 8.90E-03 without refinement and 
8.44E-03 with refinement. The average RMSE and MAE 
values without refinement are 3.07E-03 and 2.45E-03 and 
with refinement 2.46E-03 and 1.99E-03. Compared with the 
results presented in [23] (Average RMSE 3.32E-03 and 
Average MAE 2.68E-03, both results with refinement), the 
results obtained with the TSLLS method (with and without 
refinement) are better. This is because in [23] the method 
needs initial guesses to work and, so, in order to process all 
the curves automatically without intervention, they had to fix 
the same initial guesses for all the curves of the repository. 
Nevertheless, the TSLLS method works absolutely blindly 
from the data. These results again demonstrate the accuracy 
and the robustness of the proposed method and its ability to 
work completely blindly. 

It is worth noting that although, the single-diode model is 
valid at illuminations above one-half AM1 [2], using the 
TSLLS method curves at lower illuminations have been 
modeled with very low errors, but in this case the solution 
gives non-physical parameter values, like negatives series 
resistances.  

V. CONCLUSIONS 
In this paper, a new method to identify the five parameters 

of the single-diode model of a photovoltaic cell or panel is 
presented. This new method, named TSLLS, makes use of the 
specific geometrical properties of the I-V curve to directly 
extract the parameters from a set of I-V points. At least five 
points are needed to apply the method but, in general, more 
accurate results are obtained when more points are used. The 
great advantage of the TSLLS method, in comparison with 
other methods available in the literature, is its ability to work 
absolutely blindly. It does not need initial guesses at all and it 
is not necessary the knowledge of any information of any 
parameter (like MPP, Isc or Voc), for this reason it can be fully 
automated to work with any I-V curve. 

The results provided by the TSLLS method have the same 
order of accuracy of the most accurate methods proposed in 
the literature, but, furthermore, in a second stage applying a 
refinement to the solutions obtained by the TSLLS method, the 
best accuracy documented until now in the literature has been 
obtained in two important case studies usually used in the 
literature. 

The potential of the TSLLS method has been also 
demonstrated modeling 1025599 I-V curves from the NREL 

TABLE III 
AVERAGE RMSE AND MAE OBTAINED WITH TSLLS METHOD 

PV module - Location Curves 𝑅𝑀𝑆𝐸||||||||  𝑀𝐴𝐸||||||| 

aSiMicro03036-Cocoa 39037 7.88E-04 6.46E-04 
aSiMicro03036-Eugene  43343 7.14E-04 5.91E-04 
aSiMicro03038-Golden  12148 4.40E-04 3.62E-04 
aSiTandem72-46-Cocoa  39186 1.11E-03 9.62E-04 
aSiTandem72-46-Eugene  43266 9.38E-04 8.08E-04 
aSiTandem90-31-Golden  12070 1.59E-03 1.35E-03 
aSiTriple28324-Cocoa  38485 3.92E-03 3.31E-03 
aSiTriple28324-Eugene  42705  3.18E-03 2.67E-03 
aSiTriple28325-Golden 11445 4.13E-03 3.47E-03 

CdTe75638-Cocoa  39080 7.85E-03 6.62E-03 
CdTe75638-Eugene  42248 6.86E-04 5.78E-04 
CdTe75669-Golden  11953 9.98E-04 8.28E-04 
CIGS8-001-Cocoa  38939 3.62E-03 3.10E-03 
CIGS8-001-Eugene  43146 2.21E-03 1.90E-03 
CIGS1-001-Golden  12011 2.21E-03 1.90E-03 
CIGS39017-Cocoa  34775 6.52E-03 5.37E-03 
CIGS39017-Eugene  42674 5.10E-03 4.30E-03 
CIGS39013-Golden  11437 6.38E-03 5.37E-03 
HIT05667-Cocoa  38377 3.60E-03 1.91E-03 
HIT05667-Eugene  43271 6.41E-03 4.96E-03 
HIT05662-Golden  11876 3.60E-03 1.91E-03 
mSi0166-Cocoa  36765 2.37E-03 1.94E-03 
mSi0166-Eugene  43268 1.92E-03 1.55E-03 
mSi0247-Golden  11912 2.49E-03 2.08E-03 
mSi0188-Cocoa  39102 1.83E-03 1.49E-03 
mSi0188-Eugene  43127 1.54E-03 1.23E-03 
mSi0251-Golden  11887 1.91E-03 1.57E-03 
mSi460A8-Cocoa  38929 3.57E-03 2.58E-03 
mSi460A8-Eugene  43115 2.30E-03 1.70E-03 
mSi460BB-Golden  11919 8.90E-03 7.20E-03 
xSi12922-Cocoa  38989 2.73E-03 2.06E-03 
xSi12922-Eugene  43185 2.25E-03 1.72E-03 
xSi11246-Golden  11929 2.29E-03 1.71E-03 

AVERAGE 31079 3.07E-03 2.45E-03 
MAXIMUM 43343 8.90E-03 7.20E-03 

TABLE IV 
AVERAGE RMSE AND MAE OBTAINED WITH TSLLS WITH REFINEMENT  

PV module - Location Curves 𝑅𝑀𝑆𝐸||||||||  𝑀𝐴𝐸||||||| 

aSiMicro03036-Cocoa 39037 2.81E-04 2.08E-04 
aSiMicro03036-Eugene  43343 2.35E-04 1.60E-04 
aSiMicro03038-Golden  12148 2.16E-04 1.79E-04 
aSiTandem72-46-Cocoa  39186 1.01E-03 8.85E-04 
aSiTandem72-46-Eugene  43266 8.36E-04 7.33E-04 
aSiTandem90-31-Golden  12070 1.38E-03 1.20E-03 
aSiTriple28324-Cocoa  38485 3.69E-03 3.14E-03 
aSiTriple28324-Eugene  42705  2.97E-03 2.51E-03 
aSiTriple28325-Golden 11445 3.79E-03 3.12E-03 

CdTe75638-Cocoa  39080 7.34E-04 6.31E-04 
CdTe75638-Eugene  42248 6.26E-04 5.39E-04 
CdTe75669-Golden  11953 9.25E-04 7.84E-04 
CIGS8-001-Cocoa  38939 3.01E-03 2.64E-03 
CIGS8-001-Eugene  43146 2.87E-03 2.51E-03 
CIGS1-001-Golden  12011 2.06E-03 1.79E-03 
CIGS39017-Cocoa  34775 4.95E-03 4.01E-03 
CIGS39017-Eugene  42674 3.67E-03 3.05E-03 
CIGS39013-Golden  11437 4.17E-03 3.44E-03 
HIT05667-Cocoa  38377 3.49E-03 1.83E-03 
HIT05667-Eugene  43271 5.91E-03 4.96E-03 
HIT05662-Golden  11876 3.49E-03 1.83E-03 
mSi0166-Cocoa  36765 2.18E-03 1.82E-03 
mSi0166-Eugene  43268 1.74E-03 1.43E-03 
mSi0247-Golden  11912 2.30E-03 1.95E-03 
mSi0188-Cocoa  39102 1.68E-03 1.39E-03 
mSi0188-Eugene  43127 1.40E-03 1.14E-03 
mSi0251-Golden  11887 1.72E-03 1.44E-03 
mSi460A8-Cocoa  38929 2.83E-03 2.37E-03 
mSi460A8-Eugene  43115 1.96E-03 1.62E-03 
mSi460BB-Golden  11919 8.44E-03 7.19E-03 
xSi12922-Cocoa  38989 2.36E-03 1.97E-03 
xSi12922-Eugene  43185 2.04E-03 1.69E-03 
xSi11246-Golden  11929 2.21E-03 1.57E-03 

AVERAGE 31079 2.46E-03 1.99E-03 
MAXIMUM 43343 8.44E-03 7.19E-03 
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repository with the best precision documented until now and 
working completely blindly from the data. 

In order that any interested researchers can test the TSLLS 
method with their own curves, a webpage has been developed 
(pvmodel.umh.es) where the method can be directly tested 
online. 
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