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Abstract—Cooperation between primary and secondary networks offers significant benefits in data forwarding. But cost implication
in such cooperation is not well understood. In this paper, we explore cost incurred in both primary and secondary networks when
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over the entire range of possible values. The second application is to address different cost parameters in the primary and secondary
networks. We show how to obtain a new approximation curve by scaling the original ϵ-approximation curve with appropriate factors and
quantify its error bounds. The third application is to use the ϵ-approximation curve to study a single objective optimization problem with
a guaranteed error bound. The results in this paper offer some deep theoretical insights on potential costs incurred in both networks
when they are allowed to relay each other’s traffic cooperatively.
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1 INTRODUCTION

Efficient sharing of radio spectrum has been a central focus of
the wireless research community for some years [9], [11], [28],
[34]. Most research on spectrum sharing has followed the so-
called interweave paradigm [10], under which the secondary
users’ activities do not overlap with the primary users’ in time,
frequency, or spatial domains. Another implicit assumption
under the interweave paradigm is that there is minimal coop-
eration between the primary and secondary networks on both
the data and control planes.

Recently, there is a growing interest in exploring coopera-
tion between primary and secondary networks. For example,
in [2], [10], [13], [14], [20], [21], [25], [26], [29], [33], the
authors explored the benefits of unilateral cooperation, i.e.,
to have secondary users help relay traffic for the primary
users. To take cooperation one step further, in [31], [32], the
authors advocated a bilateral cooperation between primary
and secondary networks, where the two networks can help
relay each other’s traffic. Such bilateral cooperation allows
to pool together the resources from both networks so that
users in each network can access a much richer network
resources from the combined network. It was shown in [31],
[32] that such bilateral cooperation brings many potential
benefits and flexibilities on both the data and control planes
that are otherwise not possible. Note that although the two
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networks are combined into one at the node level, priority
or service guarantee to the primary network traffic can still
be enforced by implementing appropriate traffic engineering
rules.

From the current regulatory perspective, a complete bilateral
cooperation between the primary and secondary networks is
well ahead of its time. But this should not prevent us from
exploring its potential from a research perspective. The need
of this research can be well justified by some real-world
applications. As an example, for military communications,
suppose the underlying spectrum band is assigned to the
Navy’s network. Suppose the secondary network comes from
another branch of the armed forces (e.g., Army). To effi-
ciently relaying traffic, the secondary network may be granted
permission to use nodes in the Navy’s network to relay its
traffic. Likewise, the primary (Navy) network can use the
secondary network to help relaying its own traffic. There
are many potential benefits for cooperative relay between the
primary and secondary networks, which we summarize as
follows. From networking perspective, the improved network
connectivity, increased flexibility in power control, scheduling
and routing all translate into improved forwarding performance
for both primary and secondary users’ traffic. From spectrum-
sharing perspective, the ability to access other network infras-
tructure helps improve spatial diversity, thus allowing users
to tap unused spectrum in the spatial domain. From economic
perspective, sharing of two network infrastructures reduces the
cost of building each infrastructure separately (by allowing
tapping of another network’s resource), thus helping enable
traditionally underserved population and areas to benefit from
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current and future wireless-enabled services.
To bring the idea of this paradigm one step further, a

fundamental understanding of its cost implication is neces-
sary. Obviously, cost has many facets. In this paper, we are
interested in the cost incurred when a primary (secondary)
node is employed to relay traffic from a secondary (primary)
network. Such cost is absent in the interweave paradigm and
is only seen when cooperation is involved. There have been
some utility/cost related optimization studies on secondary
users offering unilateral cooperation for the primary network
[3], [5], [15], [18], [27], [30]. But for cost involved in
bilateral cooperation, there is hardly any result available in
the literature.

In this paper, we explore cost incurred in both primary
and secondary networks when they are allowed to relay each
other’s traffic in a cooperative manner. When a secondary
(primary) node is used to relay traffic from the primary
(secondary) network, a cost would occur (in proportional
to primary or secondary traffic’s flow rate). We consider
the two costs simultaneously by modeling the problem as
a multiobjective optimization problem to find the so-called
minimum cost curve, with each point on the curve representing
the minimum cost objective values for the primary and/or sec-
ondary network. Unfortunately, minimum cost curve requires
to find all (possibly infinite) Pareto-optimal points, which may
be infeasible. So we propose to find an ϵ-approximation to the
minimum cost curve, which only requires a subset of Pareto-
optimal points. We present a novel algorithm to construct an
ϵ-approximation curve and prove its approximation errors are
less than ϵ in both primary and secondary cost dimensions.

Interestingly, the ϵ-approximation curve has more appli-
cations beyond just solving the original multiobjective cost
optimization problem. The first important application is that it
shows the entire landscape of minimum cost value for a single
objective (between the two) or both objectives. The second
important application is that it allows to obtain a new approx-
imation curve by simply scaling the original ϵ-approximation
curve with appropriate factors. The third important application
is that it can serve as an approximate solution to a single
objective optimization problem.

The main contributions of this paper are summarized as
follows:

• We introduce a cost model for cooperative traffic relaying
in primary and secondary networks and formulate a mul-
tiobjective optimization problem that finds the minimum
cost curve, with each point on the curve representing the
minimum cost objective values for the primary and/or
secondary network. Each point on the curve represents
one optimal cooperation solution, i.e., optimal cooper-
ative scheduling, routing and interference management
between the primary and secondary networks. Comparing
to conventional single objective optimization for only
primary or secondary cost, the proposed multiobjective
optimization enables primary and secondary networks to
flexibly choose their scheduling, routing and interference
management to achieve their desired optimal cost objec-
tives. That is, a single objective optimization solution
only represents one point on the solution curve of the

proposed multiobjective optimization. To our knowledge,
this is the first paper that studies cost for cooperative traf-
fic relaying between the primary and secondary networks.

• For the multiobjective optimization problem, we propose
a two-phase iterative algorithm to find a subset of Pareto-
optimal points and construct the approximation curve.
We prove that the constructed approximation curve has
approximation errors less than ϵ in both primary and
secondary cost dimensions. The solution developed in this
paper is generic to the type of multiobjective problems
where the two objectives conflict with each other and
the problem formulation is in the form of Mixed Integer
Linear Program (MILP).

• We identify some important applications for the approx-
imated minimum cost curve. The first application is to
show the entire landscape of minimum cost value for a
single objective (between the two) or both objectives with
approximation performance guarantee. That is, using this
curve, for any given cost for the primary (secondary)
network, we can immediately find the minimum cost
that will incur in the secondary (primary) network with
approximation performance guarantee.

• The second application of the approximated minimum
cost curve is to derive the new approximated mini-
mum cost curve through simple scaling when the cost
parameters change. That is, once we have found the
approximated minimum cost curve for a given set of
primary and secondary cost parameters, then we can
easily find the new approximated minimum cost curve
(by scaling with appropriate factors) for a different set of
cost parameters. We show that the approximation errors
of the newly scaled curve (in both primary and secondary
cost dimensions) can be easily found by scaling the ap-
proximation errors of the original curve with appropriate
factors.

• The third application of the approximated minimum cost
curve is that it can be used to solve a single objective
optimization problem. We present an algorithm on how
to find an approximate solution to a single objective op-
timization problem based on the approximated minimum
cost curve. We also quantify the error bound for the
approximate solution to the single objective problem. Our
work is the first to show how to apply the approximated
minimum cost curve to solve the single objective opti-
mization problem.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related work. In Section 3, we present cost
models for cooperative traffic relaying between primary and
secondary networks and formulate a multiobjective optimiza-
tion problem that minimizes costs in both networks. In Sec-
tion 4, we present a two-phase iterative algorithm to find a
subset of Pareto-optimal points and show how to construct
an ϵ-approximation curve. Sections 5 and 6 show how the
ϵ-approximation curve can be extended for some important
applications. Specifically, in Section 5, we show how to find
a new approximate minimum cost curve for a different set
of cost parameters based on the original ϵ-approximation
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TABLE 1: Notation

Primary Network
N̂P The set of primary nodes
L̂P The set of primary sessions
f̂ij(l) The flow rate traversing on link (i, j) that is attributed to

primary session l ∈ L̂P, i, j ∈ N
ŝ(l) The source node of primary session l ∈ L̂P

d̂(l) The destination node of primary session l ∈ L̂P

R̂(l) The minimum data rate requirement of primary session
l ∈ L̂P

µ̂ The cost parameter for primary users
q̂P The cost for the primary nodes to relay all secondary flows

(also written as q̂ when where is no ambiguity)
Secondary Network

NS The set of secondary nodes
LS The set of secondary sessions
fij(m) The flow rate traversing on link (i, j) that is attributed to

secondary session m ∈ LS, i, j ∈ N
s(m) The source node of secondary session m ∈ LS

d(m) The destination node of secondary session m ∈ LS

R(m) The minimum data rate requirement of secondary session
m ∈ LS

µ The cost parameter for secondary users
qS The cost for the secondary nodes to relay all primary flows

(also written as q when where is no ambiguity)
Combined Network

N The set of all nodes in the network, N = N̂P
∪

NS

Cij The link capacity of link (i, j), i, j ∈ N
xij [t] = 1 if node i is transmitting data to node j in time slot t,

and is 0 otherwise
Tj The set of nodes that are located within the transmission

range of node j ∈ N
Ij The set of nodes that are located within the interference

range of node j ∈ N
T The number of time slots in a frame
QId The Ideal point
QNd The Nadir point
Q0 The initial Pareto-optimal point
QZ The final Pareto-optimal point
QK The Pareto-optimal point in the last iteration before the final

Pareto-optimal point QZ

QH The Pareto-optimal point in the last iteration before the initial
Pareto-optimal point Q0

Qk The Pareto-optimal point in k-th iteration, k = 1, 2, · · · ,K
for finding the first subset of Pareto-optimal points

QK+j The Pareto-optimal point in (K + j)-th iteration,
j = 1, 2, · · · , H
for finding the second subset of Pareto-optimal points

curve. In Section 6, we show the ϵ-approximation curve
can be exploited to solve a single objective optimization
problem. Section 7 presents numerical results to validate the
ϵ-approximation curve and its various applications. Section 8
concludes this paper.

2 RELATED WORK

Cooperation between primary and secondary networks.
There are different ways that primary and secondary networks
can cooperate. We focus on cooperative traffic relaying, which
is most relevant to this paper. In [2], [10], [13], [14], [20],
[21], [25], [26], [29], [33], the authors considered to have
secondary users to relay traffic for the primary users. In
return, the primary users offer to share (or lease) the spectrum
to the secondary users in the time domain [13], [25], [21],
[29], [33], frequency domain [2], [14], [21], [26], [33], or
spatial domain [13]. In these efforts, cooperation in traffic
relaying is unilateral, in the sense that only the secondary

network helps to relay traffic from the primary network but not
vice versa. On the other hand, the first bilateral cooperation
for traffic relaying was proposed in [31], where the primary
and secondary networks can help relay each other’s traffic.
As discussed, although the benefits and potential of such a
bilateral cooperation were explored in [31], [32], there was
no consideration of cost incurred in such cooperation. This
fundamental lack of understanding on mutual cost involved
in cooperative traffic relaying is the major motivation for our
work in this paper.
Cost optimization in primary and secondary networks.
Cost has been of concern even under the interweave paradigm
[7], [19], [24]. In [7], [19], the authors considered maintenance
cost incurred on the secondary networks for channel/link/route
switching so as to adapt to the random behavior of the
primary users. In [24], the authors considered cost on the
secondary users for their cooperative efforts in estimating the
distribution of the primary users’ activities. Since the primary
and secondary networks do not relay each other’s traffic under
the interweave paradigm, these studies on costs are orthogonal
to our work in this paper.

Recently, there have been some utility/cost related opti-
mization studies on secondary users helping relay the primary
traffic [3], [5], [15], [18], [27], [30]. In [3], the authors
considered cost on the primary users. They designed routing
strategies that provide trade-off between primary transmission
energy and primary end-to-end session throughput. In [5], [27],
[30], the authors considered cost on the secondary users. In
[5], the authors modeled the combined primary and secondary
networks as a monopoly market using contract theory, where
the contract includes spectrum accessing time and relaying
power for secondary users. They studied the optimal contract
design and proposed an approximate algorithm that achieved
a near-optimal contract. In [27], the authors modeled the
dynamic interaction between primary and secondary users as a
Markov decision process. They applied reinforcement learning
algorithm to find near-optimal performance for secondary
users while guaranteeing primary users’ performance. In [30],
the authors modeled the bargaining between the primary and
secondary users as a dynamic Bayesian game while assum-
ing that the primary users had incomplete information of
secondary transmission energy. They investigated sequential
equilibrium under both single-slot and multi-slot bargaining
models. In [15], [18], the authors considered cost on both the
primary and secondary users. In [15], the authors studied a
spectrum leasing model and employed Lyapunov optimization
to design a scheduling algorithm to achieve near-optimal
performance. In [18], the authors studied multi-hop relay (for
primary traffic) in the secondary network through network
formation game. The multi-hop relay path was computed via
performing the primary player’s strategies in the form of link
operations. They also devised a distributed dynamic algorithm
to obtain a global-path stable network. Note that although
some of these prior efforts considered objectives for both
primary and secondary users in their papers, the two objectives
typically are solved sequentially under separate optimization
problems. This is different from the multiobjective formulation
that we undertake in this paper.
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Primary node Secondary node

Fig. 1: Cooperation between primary and secondary nodes in traffic relaying.

3 MODELING AND FORMULATION

In this section, we develop a mathematical model for simulta-
neously minimizing the cost for both primary and secondary
networks. Table 1 lists notation in this paper.

Denote N as the combined set of nodes consisting of
both the set of primary nodes N̂P and the set of secondary
nodes NS, i.e., N = N̂P

∪
NS. For simplicity, we follow the

protocol interference model (a.k.a. disk model) to represent
the impact of transmission and interference ranges. In the
combined network (see Fig. 1), denote Tj as the set of nodes
(including both primary and secondary nodes) located within
nodes j’s transmission range, where j can be either a primary
or secondary node (i.e., j ∈ N ). Denote Ij as the set of nodes
(including both primary and secondary nodes) located within
a node j’s interference range, where j can be either a primary
or secondary node. Denote L̂P and LS as the set of active
primary and secondary sessions, respectively.

3.1 Interference Constraint

Scheduling can be done either in the time domain or frequency
domain. In this paper, we consider scheduling in the time
domain (with time slots). We assume that a time frame consists
of T time slots. Denote xij [t] as a binary variable to indicate
whether node i transmits data to node j in time slot t, i.e.,

xij [t] =

{
1 If node i transmits data to node j in time slot t;
0 otherwise.

For unicast communications, transmit node i can send data
to one other node in a time slot, i.e.,

j∈Ti∑
j

xij [t] ≤ 1 (i ∈ N , 1 ≤ t ≤ T ) . (1)

Mutual Interference Constraints. To avoid mutual interfer-
ence, receive node j can only receive successfully from one
active transmit node in a time slot, i.e.,

j∈Tk∑
k

xkj [t] ≤ 1 (j ∈ N , 1 ≤ t ≤ T ) . (2)

In general, any receive node j ∈ N shall not be interfered
by another (unintended) transmit node m (j ∈ Im) whose
interference range covers node j in the same time slot, i.e.,

xij [t] + xmk[t] ≤ 1 , (3)
where j ∈ Ti, j ∈ Im, k ∈ Tm, j ∈ N , j ̸= k, 1 ≤ t ≤ T .

The three constraints in (1), (2) and (3) can be replaced by
the following single and equivalent constraint.

j∈Ti∑
i

xij [t] +

k∈Tm∑
k

xmk[t] ≤ 1 , (4)

where j ∈ Im, j ∈ N , j ̸= k or i ̸= m, 1 ≤ t ≤ T .
Self-interference Constraints. We assume half-duplex
transceiver is employed at a node. To avoid self-interference,
a node i is refrained from transmitting and receiving in the
same time slot, i.e.,
xij [t] + xki[t] ≤ 1 (i ∈ N , j ∈ Ti, i ∈ Tk, 1 ≤ t ≤ T ) . (5)
Again, it can be shown that the three constraints in (1), (2)

and (5) can be replaced by the following single and equivalent
constraint:

j∈Ti∑
j

xij [t] +

i∈Tk∑
k

xki[t] ≤ 1 (i ∈ N , 1 ≤ t ≤ T ) . (6)

3.2 Rate Requirements and Link Flow Constraints
Primary Rate Requirements. Denote f̂ij(l) as the data rate
between nodes i and j that is attributed to primary session
l ∈ L̂P, where i ∈ N and j ∈ Ti. For primary session
l ∈ L̂P, denote ŝ(l) and d̂(l) as its source and destination
nodes, respectively. For each primary session l ∈ L̂P, denote
R̂(l) as its rate requirement, which is declared by the user. For
flexibility and load balancing, we allow flow splitting inside
the network. That is, the flow rate of a session may split
and merge inside the network in whatever loop-free manner
between its source and destination node. As a result, we have
the following flow balance constraints at each node that is
being traversed by a primary session:

• If node i is the source node of primary session l ∈ L̂P

(i.e., i = ŝ(l)), then∑
j:j∈Ti

f̂ij(l) = R̂(l) (l ∈ L̂P, i = ŝ(l)) . (7)

• If node i is an intermediate relay node for primary session
l (i.e., i ̸= ŝ(l) and i ̸= d̂(l)), then

j ̸=ŝ(l)∑
j:j∈Ti

f̂ij(l) =

k ̸=d̂(l)∑
k:i∈Tk

f̂ki(l) (l ∈ L̂P, i ∈ N ) . (8)

• If node i is the destination node of primary session l (i.e.,
i = d̂(l)), then

i∈Tk∑
k

f̂ki(l) = R̂(l) (l ∈ L̂P, i = d̂(l)) . (9)

Referring to [12], it can be easily verified that if (7) and
(8) are satisfied, then (9) must be satisfied. As a result, it is
sufficient to list only (7) and (8) in the formulation.
Secondary Rate Requirements. Denote fij(m) as the data
rate between nodes i and j that is attributed to secondary
session m ∈ LS, where i ∈ N and j ∈ Ti. For secondary
session m ∈ LS, denote s(m) and d(m) as the source and
destination nodes, respectively. For secondary session m ∈ LS,
denote R(m) as its rate requirement. Then following the same
token, we have the following flow balance constraints at each
node that is being traversed by a secondary session:

• If node i is the source node of secondary session m ∈ LS

(i.e., i = s(m)), then we have
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∑
j:j∈Ti

fij(m) = R(m) (m ∈ LS, i = s(m)) . (10)

• If node i is an intermediate relay node traversed by
secondary session m (i.e., i ̸= s(m) and i ̸= d(m)),
then
j ̸=s(m)∑
j:j∈Ti

fij(m) =

k ̸=d(m)∑
k:i∈Tk

fki(m) (m ∈ LS, i ∈ N ) .

(11)
• If node i is the destination node of secondary session m

(i.e., i = d(m)), then
i∈Tk∑
k

fki(m) = R(m) (m ∈ LS, i = d(m)) . (12)

Just as the case for the primary sessions, it is sufficient to
include (10) and (11) as (12) is redundant.
Link Flow Constraints. Denote Cij as the capacity between
transmit node i and receive node j. On average (over T time
slots), the aggregate flow rates by the primary and secondary
sessions on link (i, j) is bounded by the link capacity, we
have:
j ̸=ŝ(l),i ̸=d̂(l)∑

l∈L̂P

f̂ij(l)+

j ̸=s(m),i̸=d(m)∑
m∈LS

fij(m) ≤ 1

T

T∑
t=1

Cij ·xij [t] .

(13)

3.3 Cost Model

As discussed in Section 1, cost incurs either when a primary
node relays traffic for a secondary session or when a secondary
node relays traffic for a primary session. We first consider
cost incurred on the primary nodes. Denote µ̂ as the cost
at a primary node when it receives and transmits each unit
of secondary traffic flow. The total secondary session traffic
relayed by primary node i is

∑
m∈LS

∑j ̸=s(m)
j:j∈Ti

fij(m). Denote
q̂P as the cost over all primary nodes i ∈ N̂P for relaying
secondary data traffic. We have:

q̂P = µ̂ ·
∑
i∈N̂P

∑
m∈LS

j ̸=s(m)∑
j:j∈Ti

fij(m) . (14)

Now we consider cost incurred on the secondary nodes.
Denote µ as the cost at a secondary node when it receives
and transmits each unit of primary traffic flow. The to-
tal primary session traffic relayed by secondary node i is∑

l∈L̂P

∑j ̸=ŝ(l)
j:j∈Ti

f̂ij(l). Denote qS as the cost over all sec-
ondary nodes i ∈ NS for relaying primary data traffic. We
have:

qS = µ ·
∑
i∈NS

∑
l∈L̂P

j ̸=ŝ(l)∑
j:j∈Ti

f̂ij(l) . (15)

3.4 Multiobjective Problem Formulation

In this paper, we are interested in minimizing the costs
incurred at both the primary and secondary nodes, i.e., a
multiobjective optimization problem. Putting together the con-
straints and requirements discussed in this section, we have the
following formulation:

BIOPT
min qS = µ ·

∑
i∈NS

∑
l∈L̂P

∑j ̸=ŝ(l)
j:j∈Ti

f̂ij(l)

min q̂P = µ̂ ·
∑

i∈N̂P

∑
m∈LS

∑j ̸=s(m)
j:j∈Ti

fij(m)

s.t. Mutual interference constraints: (4);
Self-interference constraints: (6);
Primary rate requirements: (7), (8);
Secondary rate requirements: (10), (11);
Link flow constraints: (13).

In the formulation, µ, µ̂, R(m), R̂(l) and Cij are constants,
xij [t] are binary variables, fij(m) and f̂ij(l) are continuous
variables.

In this formulation, satisfying both primary and secondary
data rate requirements is listed as two constraints. If these
constraints are not satisfied, then the solution is infeasible.
Within the feasible solution space, the first objective is to
minimize the cost on the secondary network to carry primary
users’ traffic, while the second objective is to minimize the
cost on primary network to carrry secondary users’ traffic.
The amount of primary users’ traffic carried by the secondary
network can be controlled by setting cost parameter µ. That
is, the smaller µ is, the more primary traffic can be carried
by the secondary network. Likewise, the amount of secondary
users’ traffic carried by the primary network can be controlled
by setting cost parameter µ̂. Such tuning of µ and µ̂ is a
direct control of the amount of traffic that can relayed between
primary and secondary networks. In the extreme case, when
we set µ close to 0, meaning that primary user traffic can
be relayed almost free by the secondary network, we are
encouraging more primary users’ traffic to be carried on the
secondary network. On the other hand, when we set µ̂ to be
extremely large, meaning that it is extremely costly for primary
network to relay secondary users’ traffic, we are discouraging
secondary user’s traffic to be carried on the primary network.

BIOPT is in the form of multiobjective optimization prob-
lem formulation [6], which differs from traditional single
objective optimization problem formulation. For BIOPT, we
want to find minimum costs for both primary and secondary
networks under a set of constraints. This optimization problem
is a multiobjective mixed-integer linear program (MO-MILP),
which is NP-hard in general [6].

For a multiobjective optimization problem (BIOPT), we are
pursuing the so-called Pareto-optimal solution. We will give
a review of Pareto-optimal solution in Section 3.5. Simply
put, under a Pareto-optimal solution, there is no room to
further decrease any one objective value. A Pareto-optimal
point is the corresponding objective pair (q, q̂) of Pareto-
optimal solution. Several approaches to solve multiobjective
optimization problem can be considered: (i) the weighted sum
method [6], [16], [23] , (ii) the Chebyshev norm method
[22], [23], and (iii) the ϵ-constraint method [4], [6], [8], [23].
All of them transform a multiobjective problem into a single
objective problem, which we discuss separately as follows. In
our discussion, ω is denoted as a feasible solution to BIOPT.

• In the weighed sum method, the objective is defined
as a nonnegative linear combination of the two objec-
tive functions through a parameter 0 ≤ β ≤ 1, i.e.,
min βq(ω) + (1 − β)q̂(ω). Although it is easy to find
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one Pareto-optimal point for a given β, it is impossible
to find Pareto-optimal points for all β’s (infinite number).

• In the Chebyshev norm method, the objective is defined to
minimize the minimum value of the weighted Chebyshev
norm with weight 0 ≤ β ≤ 1 over all feasible solutions,
i.e., min min{β|qId(ω)−q(ω)|, (1−β)|q̂Id(ω)− q̂(ω)|},
where qId(ω) and q̂Id(ω) denote the coordinates of the
so-called Ideal point [22]. Although the Chebyshev norm
method identifies a new β and generates a new Pareto-
optimal point in each iteration (instead of enumerating
all values blindly like the weighed sum method), the
iterations are unable to terminate when there is an infinite
number of Pareto-optimal points.

• In the ϵ-constraint method, one objective is chosen as
the objective function and the other is transformed into
a constraint. The general formulation of ϵ-constraint
method can be shown as:

min q(ω)
s.t. q̂(ω) ≤ ϵ ;

and
min q̂(ω)
s.t. q(ω) ≤ ϵ ,

where ϵ denotes an upper bound of the objective function
[4]. The ϵ-constraint method determines the range of
each objective function and divides it into equal intervals,
respectively [4]. For each objective function, it takes one
value in the interval as its own upper bound and solves it.
In this method, some infeasible solutions can be discarded
in order to find the Pareto-optimal points. Although
the improved ϵ-constraint methods in [1], [17] can find
all discrete Pareto-optimal points to construct an exact
Pareto curve, they are limited to solve integer or discrete
optimization problems. Their methods cannot be extended
to address our BIOPT problem (with both integer and
continuous variables) due to the potential existence of
infinite and continuous Pareto-optimal points.

3.5 Minimum Cost Curve: Notations and Properties

In this section, we present the necessary notations for a
solution to BIOPT. We also present some interesting properties
for BIOPT that will help us better understand the problem.

Denote x as the set of {xij [t], i ∈ N , j ∈ N , t =
1, 2, · · · , T}, f as the set of {fij(m), i ∈ N , j ∈ N ,m ∈ LS}
and f̂ as the set of {f̂ij(l), i ∈ N , j ∈ N , l ∈ L̂P}. Denote ω
as a feasible solution to BIOPT, which consists of {x, f , f̂}.
Since the cost pair of objectives qS and q̂P in (14)-(15) are
both functions of ω, we can also write them as q(ω) and
q̂(ω) respectively whenever necessary. Note that we omit the
subscripts S and P for q(ω) and q̂(ω) when there is no
confusion.

Denote (q1, q̂1) and (q2, q̂2) as the objective pairs cor-
responding to two different feasible solutions ω1 and ω2,
respectively. We say objective pair (q1, q̂1) dominates (q2, q̂2)
if q1 < q2 and q̂1 ≤ q̂2, or q1 ≤ q2 and q̂1 < q̂2. That is,
(q1, q̂1) dominates (q2, q̂2) if solution ω1 is better than ω2.

For solution ω† with its corresponding objective pair
(q†, q̂†), if there does not exist another solution with its

objective pair (q, q̂) satisfying q < q† and q̂ ≤ q̂†, or q ≤ q†

and q̂ < q̂†, then ω† is called a Pareto-optimal solution to
BIOPT and its corresponding objective pair (q†, q̂†) is called a
Pareto-optimal point. In other words, Pareto-optimal solutions
are those solutions that have no room to further decrease any
one objective value.

Besides Pareto-optimal point, there is also another type of
solutions that are also of interest. For solution ω∗ with its
corresponding objective pair (q∗, q̂∗), if there does not exist
another solution with its objective pair (q, q̂) satisfying q < q∗

and q̂ < q̂∗, then ω∗ is called a weakly Pareto-optimal solution
and its corresponding objective pair (q∗, q̂∗) is called a weakly
Pareto-optimal point. Weakly Pareto optimal solutions are
those for which decreasing on both objectives simultaneously
is impossible, but decreasing one objective without increasing
the other may be possible. Note that Pareto-optimal points are
also weakly Pareto-optimal, but weakly Pareto-optimal points
are not always Pareto-optimal.

For our problem BIOPT, we are interested in finding the
so-called minimum cost curve, or Pareto frontier, where each
point on the curve is a weakly Pareto-optimal point and
represents the minimum cost objective values for the primary
and secondary networks. What makes a minimum cost curve
significant is that it shows the entire landscape of minimum
cost value for a single objective (between the two) or both
objectives. Once this curve is available, for any given cost for
the primary (secondary) network, we can immediately find
the minimum cost that will incur in the secondary (primary)
network, without the need to solve any optimization problem.

We will discuss how to find the minimum cost curve in the
next section. For now, we present some interesting properties.
For the first objective function in BIOPT, denote φ̂ as the
primary traffic relayed by the secondary nodes, i.e., φ̂ =∑

i∈NS

∑
l∈L̂

∑j ̸=ŝ(l)
j:j∈Ti

f̂ij(l). For the second objective func-
tion in BIOPT, denote φ as the secondary traffic relayed by
the primary nodes, i.e., φ =

∑
i∈N̂P

∑
m∈L

∑j ̸=s(m)
j:j∈Ti

fij(m).
Hence, we can rewrite the two objective functions in BIOPT
as qS = µφ̂ and q̂P = µ̂φ, respectively. Denote α1 and α2

as two positive scaling factors, i.e., α1 > 0 and α2 > 0. The
following property shows how the scaling of cost parameters
µ and µ̂ by α1 and α2, respectively, will affect the solution in
BIOPT.

Property 1: For a weakly Pareto-optimal point (q∗, q̂∗) with
a solution ω = {x, f , f̂} to problem BIOPT, if the cost
parameters µ and µ̂ are both scaled by factors of α1 and α2,
respectively (i.e., µ → α1µ and µ̂ → α2µ̂), then we have a
weakly Pareto-optimal point (α1q

∗, α2q̂
∗) to the new problem

BIOPT (with cost parameters α1µ and α2µ̂). Further, the new
solution to (α1q

∗, α2q̂
∗) is the same as ω = {x, f , f̂} for the

original BIOPT.
A proof of Property 1 is given in Appendix A. This property

considers how the point on the minimum cost curve for the
original BIOPT is scaled when the cost parameters µ and µ̂ are
each scaled by α1 and α2, respectively. When we consider the
entire minimum cost curve, the following corollary follows.

Corollary 1: Suppose we have the minimum cost curve for
problem BIOPT(µ, µ̂), when the cost parameters µ and µ̂
are each scaled by α1 and α2, respectively (i.e., µ → α1µ
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Fig. 2: Finding two Pareto-optimal endpoints Q0 and QZ based on Ideal and
Nadir points QId and QNd.

and µ̂ → α2µ̂), the new minimum cost curve for problem
BIOPT(α1µ, α2µ̂) can be found by scaling each point (q∗, q̂∗)
on the original minimum cost curve to (α1q

∗, α2q̂
∗).

4 APPROXIMATION CURVE

4.1 Roadmap

Given the difficulty in finding all the Pareto-optimal points that
are necessary to construct the exact minimum cost curve, we
will develop a novel algorithm motivated by the ϵ-constraint
method to find an approximation curve with performance
guarantee (i.e., each point with an approximation error less
than ϵ). That is, for any given cost for the secondary (primary)
network, the difference in cost for the primary (secondary)
networks between the approximation curve and the minimum
cost curve is less than ϵ. In this section, we will find such an
approximation curve to the minimum cost curve. In our two-
phase iterative algorithm, we find a subset of Pareto-optimal
points iteratively from BIOPT(µ, µ̂) and use them to construct
an ϵ-approximation curve. The details of each step are given in
Sections 4.2 to 4.3. In Section 4.4, we prove that the connected
curve is indeed an ϵ-approximation to the minimum cost curve.

4.2 Finding Two Endpoints

As the first step of our algorithm, we show how to find
the two Pareto-optimal endpoints, which will determine the
range for all the other Pareto-optimal points. To find the two
Pareto-optimal endpoints, we need to determine the lower and
upper bounds for the Pareto-optimal objective values. This
can be done through the so-called Ideal and Nadir points
[6]. Denote QId as the Ideal point with coordinates (qId, q̂Id),
where qId is obtained by solving min qS in BIOPT(µ, µ̂)
without minimizing q̂P while q̂Id is obtained by solving min q̂P

without minimizing qS . That is, the two objectives for the Ideal
point are obtained by solving a single objective optimization
problem without considering optimizing the other objective.
Obviously, the Ideal point is not achievable, as qId and q̂Id
cannot occur at the same time, due to the conflicting nature
between the two objectives in BIOPT(µ, µ̂). So the Ideal point
is only used as a reference point in our algorithm.

Denote QNd as the Nadir point with coordinates (qNd, q̂Nd),
where qNd is obtained by solving min qS in BIOPT(µ, µ̂)
by replacing minimizing the other objective q̂P with the
assignment q̂P = q̂Id while q̂Nd is obtained by solving min q̂P

in BIOPT(µ, µ̂) by replacing minimizing the other objective
qS with the assignment qS = qId, as shown in Fig. 2. Although

the two coordinates in a Nadir point, qNd and q̂Nd, are obtained
through solving two separate single objective optimization
problems, each of them is obtained by assuming worst case
in the other objective value. Since the two objectives go in
opposite directions, qNd and q̂Nd can be considered as the
upper bounds for two objectives, respectively. Note that unlike
the Ideal point, Nadir point is achievable. Once we have the
Ideal point QId(qId, q̂Id) and the Nadir point QNd(qNd, q̂Nd),
we can obtain the two Pareto-optimal endpoints, which we
denote as Q0 and QZ , respectively (see Fig. 2). Specifically,
we define point Q0 with its coordinates being (qId, q̂Nd) (i.e.,
(q0, q̂0)) and QZ with coordinates (qNd, q̂Id).

Lemma 1: Both points Q0(qId, q̂Nd) and QZ(qNd, q̂Id) are
Pareto-optimal points for problem BIOPT(µ, µ̂).

A proof of Lemma 1 is given in Appendix B.
The next lemma shows that any Pareto-optimal point for

problem BIOPT(µ, µ̂) falls between Q0 and QZ .
Lemma 2: For any Pareto-optimal point Qk(q

†
k, q̂

†
k) for

problem BIOPT(µ, µ̂), we have qId ≤ q†k ≤ qNd and q̂Id ≤
q̂†k ≤ q̂Nd.

A proof of Lemma 2 is given in Appendix C.

4.3 Finding New Pareto-optimal Points

As we discussed in Section 4.1, it is infeasible to find all
Pareto-optimal points. In this section, we show how to properly
find a subset of Pareto-optimal points between Q0 and QZ .
In Phase I, we iteratively reduce the second optimal objective
value in BIOPT(µ, µ̂) to find a subset of Pareto-optimal points
from Q0 to QZ . In Phase II, we iteratively reduce the first
optimal objective value in BIOPT(µ, µ̂) to find another subset
of Pareto-optimal points from QZ to Q0. Then, we merge the
two subsets of Pareto-optimal points into one set that we can
use to construct the approximation curve.
Phase I: Finding a Subset of Pareto-optimal Points. In
this phase, we show how to find a subset of Pareto-optimal
points from Q0 to QZ . Denote ϵ as a small positive constant.
We now show how to find Q1 (a new Pareto-optimal point)
based on Q0(qId, q̂Nd) and ϵ (see Fig. 3(a)). Denote the
coordinates of Q1 as (q†1, q̂†1). From Q0(qId, q̂Nd), we reduce
the second optimal objective value of Q0, which is q̂Nd, by
ϵ to (q̂Nd − ϵ). That is, we set q̂P ≤ q̂Nd − ϵ. By replacing
the second objective function (min q̂P ) with the new constraint
q̂P ≤ q̂Nd − ϵ in BIOPT(µ, µ̂), we have the following single
objective optimization problem:

min q(ω)
s.t. q̂(ω) ≤ q̂Nd − ϵ;

ω = {x, f̂ , f};
Constraints (4),(6)-(8),(10),(11) and (13).

This optimization problem is in the form of mixed-integer
linear program (MILP). In our algorithm, each iteration needs
to solve one MILP problem as in Phase 1, which is NP-
hard and its computation complexity is exponential. Since the
computation complexity is dominated by solving the MILP
problem, it is also exponential complexity. Fortunately, all
integer variables in this MILP are binary. For binary variables
that can only take 0 and 1, a branch-and-cut based solution
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Fig. 3: (a) Finding Pareto-optimal point Q1 based on Q0 and ϵ. (b) Pareto-optimal point QK is above the final Pareto-optimal point QZ . (c) Pareto-optimal
point QK coincides with the final Pareto-optimal point QZ .

procedure used by a commercial solver such as CPLEX is very
efficient. Therefore, we use CPLEX to solve all our binary
MILP problems, which turns out to be very successful for all
practical purposes.

The optimal objective value from the above problem gives
q†1. With q†1 being fixed, we can now find q̂†1. This is done
by replacing the first objective function (min qS) with the
constraint qS = q†1 in BIOPT(µ, µ̂) and solve the following
single objective optimization problem:

min q̂(ω)

s.t. q(ω) = q†1;
ω = {x, f̂ , f};
Constraints (4),(6)-(8),(10),(11) and (13).

The optimal objective value from the above optimization
problem gives q̂†1.

Two remarks on Q1(q
†
1, q̂

†
1) are in order. First, the new point

Q1(q
†
1, q̂

†
1) is a Pareto-optimal point for problem BIOPT(µ, µ̂),

which will be stated in Lemma 3 later in this section. Second,
although we start by reducing q̂Nd by ϵ in the first optimization
problem, the final gap between q̂Nd and q̂1 can be larger than
ϵ, as we show in Fig. 3(a), which will be stated in Property 2.

Denote the process for finding Q1 (based on Q0 and ϵ)
as the first iteration. We can find points Q2, Q3, · · · , QK

iteratively following the same process, where K is the number
of iterations until q̂†K − ϵ < q̂Id (see Fig. 3(b)). In the special
case when q̂†K = q̂Id, QK coincides exactly with QZ , as
shown in Fig. 3(c). Denote {Q0, Q1, Q2, · · · , QK , QZ} as
the Pareto-optimal point subset H1 and the coordinates of Qk

as (q†k, q̂†k), k = 1, 2, · · · ,K. More formally, we can find
Qk based on Qk−1 and ϵ as follows. Given the two optimal
objectives (qk−1, q̂k−1) for Qk−1, we can reduce the second
optimal objective value of q̂†k−1 by ϵ to (q̂†k−1 − ϵ). That is,
we can replace the second objective function (min q̂P ) with the
constraint q̂P ≤ q̂k−1 − ϵ in BIOPT(µ, µ̂) and have a single
objective optimization problem as following:

OPT(qS)
min q(ω)

s.t. q̂(ω) ≤ q̂†k−1 − ϵ;
ω = {x, f̂ , f};
Constraints (4),(6)-(8),(10),(11) and (13).

The optimal objective value of the above problem gives q†k, the
first optimal objective value for Qk. Likewise, with q†k being
fixed, we can now find the second optimal objective value q̂†k
for Qk. This is done by replacing the first objective function

...

...
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Fig. 4: The subset of Pareto-optimal points found in Phase II.

(min qS ) with the constraint qS = q†k in BIOPT(µ, µ̂), and
solving the following single objective optimization problem:

OPT(q̂P )
min q̂(ω)

s.t. q(ω) = q†k;
ω = {x, f̂ , f};
Constraints (4),(6)-(8),(10),(11) and (13).

The optimal objective value of the above problem gives q̂†k.
Such iteration continues until for some k such that q̂†k −

ϵ < q̂Id, i.e., the second optimal objective value goes outsides
its feasible interval. Define this k as K and the algorithm
terminates. We want quantify K shortly.

Lemma 3: Qk, k = 1, 2, · · · ,K are Pareto-optimal points.

A proof of Lemma 3 is given in Appendix D. The following
property gives a lower bound for the gap between q̂†k−1 and
q̂†k for k = 1, 2, · · · ,K.

Property 2: For any two consecutive Pareto-optimal points
Qk−1 and Qk, k = 1, 2, · · · ,K, we have q̂†k−1 − q̂†k ≥ ϵ.

A proof of Property 2 is given in Appendix E. Since the
minimum vertical gap in each iteration is at least ϵ and that
the interval for the second optimal objective values between
Q0 and QZ is (q̂Nd − q̂Id), we have an upper bound for K,
the maximum number of iterations.

Corollary 2: K ≤
⌈
q̂Nd−q̂Id

ϵ

⌉
.

Phase II: Finding a Second Subset of Pareto-optimal
Points. In Phase I, we find a subset of Pareto-optimal points
by iteratively reducing the second optimal objective values. In
Phase II, we can find a second subset of Pareto-optimal points
by iteratively reducing the first optimal objective values.
The details are similar to those in the preceding paragraphs
and are omitted here to conserve space. In conclusion,
we can find QK+1(q

†
K+1, q̂

†
K+1), QK+2(q

†
K+2, q̂

†
K+2),
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Fig. 5: An example to connect Pareto-optimal points in H to approximate the
minimum cost curve.

· · · , QK+H(q†K+H , q̂†K+H) based on QZ(qNd, q̂Nd),
QK+1(q

†
K+1, q̂

†
K+1), · · · , QK+H−1(q

†
K+H−1, q̂

†
K+H−1),

respectively, where H is the number of iterations until
q†K+H − ϵ < qId. Denote {QZ , QK+1, QK+2, · · · , QK+H ,
Q0} as the Pareto-optimal point subset H2 (see Fig. 4).
We can prove that QK+j are Pareto-optimal points with
j = 1, 2, · · · ,H; q†Z − q†K+1 ≥ ϵ and q†K+j−1 − q†K+j ≥ ϵ
for any two consecutive Pareto-optimal points QK+j−1 and
QK+j with j = 2, 3, · · · ,H; and the maximum number of
iterations for H is H ≤

⌈
qNd−qId

ϵ

⌉
.

Merging Two Subsets of Pareto-optimal points. Now we
merge H1 and H2 into one subset of Pareto-optimal points
and remove any duplication if any. Denote the newly merged
subset as H.

4.4 Connecting Pareto-optimal Points
Recall that the purpose of finding a subset of Pareto-optimal
points H between Q0 and QZ is to connect these points to
approximate the minimum cost curve. In this section, we show
how to do this.

As an example, suppose that H1 = {Q0, Q1, Q2, Q3, QZ}
in Phase I, and H2 = {QZ , Q4, Q5, Q6, Q0} in Phase
II. We merge H1 and H2 into H = H1

∪
H2 =

{Q0, Q6, Q1, Q5, Q2, Q4, Q3, QZ}. To approximate the mini-
mum cost curve, we connect the two neighbouring points in H
through staircase linear segments (see Fig. 5). In general, we
connect the two neighbouring points in H whose coordinates
are closest to each other through staircase linear segments to
construct an approximation curve.

Theorem 1: The approximation curve constructed by the set
of Pareto-optimal points in H is an ϵ-approximation to the
minimum cost curve for problem BIOPT(µ, µ̂).

A proof of Theorem 1 is given in Appendix F.
The first application of the approximation curve is that it

shows the entire landscape of minimum cost value for a single
objective (between the two) or both objectives with approxi-
mation performance guarantee. That is, using this curve, for
any given cost for the primary (secondary) network, we can
immediately find the minimum cost that will incur in the
secondary (primary) network with approximation performance
guarantee.

5 SCALING ϵ-APPROXIMATE CURVE FOR DIF-
FERENT COST PARAMETERS
In Section 3.5, we presented an interesting finding (Property 1)
that shows how to find a new minimum cost curve when the

AS-OPT: An Approximate Solution to S-OPT
1. Input: ϵ-approximate curve for problem BIOPT(µ, µ̂);
2. Procedure:
3. Step 1: Scale each point on the ϵ-approximation
4. curve for BIOPT(µ, µ̂) by factors of (λ1, λ2)
5. to obtain the (λ1ϵ, λ2ϵ)-approximation curve
6. for BIOPT(λ1µ, λ2µ̂);
7. Step 2: Check all the Pareto-optimal points
8. (λ1q

†, λ2q̂
†) on the (λ1ϵ, λ2ϵ)-approximation

9. curve to find the point with min(λ1q
† + λ2q̂

†).
10. Denote this point as QS−OPT and its solution
11. as ω = {x, f , f̂};
12. Output: The value min(λ1q

† + λ2q̂
†) and solution ω.

Fig. 6: An algorithm to offer an approximate solution to single objective
optimization problem based on the ϵ-approximation curve.

cost parameters µ and µ̂ vary. For the ϵ-approximation curve,
we would like to find a similar property. This is stated in the
following sequel property.

Property 3: For a Pareto-optimal point (q†, q̂†) with a
solution ω = {x, f , f̂} on the ϵ-approximation curve for
problem BIOPT(µ, µ̂), if the cost parameters µ and µ̂ are
scaled by factors of α1 and α2, respectively (i.e., µ → α1µ and
µ̂ → α2µ̂), then we have a Pareto-optimal point (α1q

†, α2q̂
†)

to the new problem BIOPT(α1µ, α2µ̂) while a solution to
(α1q

†, α2q̂
†) is the same as ω = {x, f , f̂}.

The above property can be easily proved by comparing
BIOPT(α1µ, α2µ̂) to BIOPT(µ, µ̂) and noticing that the two
objectives in BIOPT(α1µ, α2µ̂) are the scaled version of
these two objectives in BIOPT(µ, µ̂) while the constraints are
identical.

The ϵ-approximation curve contains both weakly Pareto-
optimal points and other points (feasible but not weakly
Pareto-optimal). If we scale each point on the ϵ-approximation
curve by factors of α1 and α2 (i.e., α1 for q

S
and α2 for

q̂P ), then what kind of curve are we getting? To answer this
question, we first give the following definition.

Definition 1: The curve that is obtained by scaling each
point on an ϵ-approximation curve by factors of α1 and
α2 (i.e., α1 for qS and α2 for q̂P ) is called an (α1ϵ, α2ϵ)-
approximation curve.
With this definition, we present the following main result.

Theorem 2: The (α1ϵ, α2ϵ)-approximation curve is an
approximation to the minimum cost curve for problem
BIOPT(α1µ, α2µ̂) in that for any point on the vertical segment
of the (α1ϵ, α2ϵ)-approximation curve, the approximation er-
ror is less than α1ϵ in the qS dimension (horizonal axis), and
for any point on the horizontal segment of the (α1ϵ, α2ϵ)-
approximation curve, the approximation error is less than α2ϵ
in the q̂P dimension (vertical axis).

A proof of Theorem 2 is given in Appendix G. Note that
based on Definition 1, the ϵ-approximation curve guarantees
an error bound of ϵ in both qS and q̂P dimensions and can also
be denoted as (ϵ, ϵ)-approximation curve.

6 EXTENSION TO SINGLE OBJECTIVE OPTI-
MIZATION PROBLEMS
As another application of the ϵ-approximate curve obtained in
the previous section, we now show how it can be extended
to serve as an approximate solution to a single objective
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Fig. 7: Finding QS−OPT to offer an approximate solution to S-OPT.

optimization problem. To see how this works, let us consider
the following weighted cost (single objective) optimization
problem:

S-OPT
min λ1qS + λ2q̂P

s.t. Mutual interference constraints: (4);
Self-interference constraints: (6);
Primary rate requirements: (7), (8);
Secondary rate requirements: (10), (11);
Link flow constraints: (13);

where λ1 ≥ 0 and λ2 ≥ 0 and the set of the constraints in S-
OPT is identical to those in BIOPT(µ, µ̂). Since q

S
= µφ̂ and

q̂P = µ̂φ, we can rewrite the objective min(λ1qS + λ2q̂P)
as min(λ1µφ̂ + λ2µ̂φ). Now, we give a simple algorithm
that takes advantage of the ϵ-approximation curve for prob-
lem BIOPT(µ, µ̂) to solve this single objective optimization
problem.

Fig. 6 gives the pseudo-code of this simple algorithm, which
we call AS-OPT. To show how it works, suppose that we
have an ϵ-approximation curve for problem BIOPT(µ, µ̂). In
step 1 of the algorithm, we scale the cost parameters µ and
µ̂ by factors of λ1 and λ2, respectively (i.e., µ → λ1µ and
µ̂ → λ2µ̂) and obtain the (λ1ϵ, λ2ϵ)-approximation curve for
problem BIOPT(λ1µ, λ2µ̂) per Definition 1. In step 2 of the
algorithm, we check all the Pareto-optimal points (λ1q

†, λ2q̂
†)

on the (λ1ϵ, λ2ϵ)-approximation curve to find the point with
min(λ1q

† + λ2q̂
†) among all the Pareto-optimal points and

denote it as QS−OPT (see Fig. 7). Finally, the algorithm gives
an output min(λ1q

† + λ2q̂
†) and ω = {x, f , f̂}.

Theorem 3: A feasible solution ω = {x, f , f̂} in the output
of the AS-OPT algorithm is also a feasible solution to problem
S-OPT. Further, the approximation error between the output
value min(λ1q

†+λ2q̂
†) by AS-OPT and the optimal objective

for the S-OPT is upper bounded by (λ1 + λ2)ϵ.
A proof of Theorem 3 is given in Appendix H.

7 NUMERICAL RESULTS

In this section, we present numerical results to validate the
ϵ-approximation curve for problem BIOPT(µ, µ̂) and demon-
strate its applications.

7.1 Network Setting
As a case study, we consider a randomly generated 15-
node primary network and a 15-node secondary network in
a 100 × 100 area (see Fig. 8). For generality, we normalize
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Fig. 8: A 15-node primary network and a 15-node secondary network.

TABLE 2: Source-destination nodes and rate requirements for each session
in the network.

Sessions Source Destination Rate Req.
Primary session 1 P10 P14 1.5
Primary session 2 P7 P3 1.8

Secondary session 1 S11 S3 1.8
Secondary session 2 S1 S6 1.5

all units for distance, data rate, bandwidth and power with
appropriate dimensions. The location of each node is randomly
generated. We assume the transmission range and interference
range for each node are 30 and 50, respectively. We assume
that the primary and secondary networks share the same pool
of channels with a total bandwidth (W ) 10 and that a time
frame has eight time slots (T = 8). The power spectral density
ρi for each node i ∈ N is 1, the path loss index γ is 4
and the ambient Gaussian noise density N0 is 10−6. The
link’s capacity between transmit node i and receive node j

is calculated by Cij = W log2(1 +
ρid

−γ
ij

N0
), where dij is the

distance between nodes i and j.
We assume that there are two primary sessions in the

primary network and two secondary sessions in the secondary
network. The source and destination nodes for each session are
randomly chosen and are shown in Table 2. Rate requirement
for each primary and secondary sessions is also given in
Table 2. We set µ = 1 and µ̂ = 1 for the cost parameters.
We set the target approximation error ϵ = 0.05.

7.2 Validation of ϵ-approximation Curve
Under the above network setting, we apply our algorithm to
iteratively find a subset of Pareto-optimal points to construct
an ϵ-approximation curve for problem BIOPT(µ, µ̂).

We used a commercial solver (CPLEX) to solve our
Mixed Integer Linear Programming (MILP). The CPLEX
solver was run on a Dell Precision T7600 workstation,
with dual Intel Xeon CPUE5-2687W CPUs (each with 8
cores) running at 3.1 GHz. The memory of the worksta-
tion is 64 GB and the OS is Windows 7 Professional.
We find the initial Pareto-optimal point Q0(0, 3.3) and the
final Pareto-optimal point QZ(5.4, 0). In Phase I, we find
H1 = {(0, 3.3), (0.038, 1.8), (1.8, 0.966), (3.198, 0.543),
(3.248, 0.493), (3.298, 0.443), (5.4, 0)}, and in Phase II,
we find H2 = {(5.4, 0), (3.343, 0.398), (3.293, 0.448),
(3.243, 0.498), (1.8, 0.966), (0.038, 1.8), (0, 3.3)}. Then we
have H = H1

∪
H2 = {(0, 3.3), (0.038, 1.8), (1.8, 0.966),

(3.198, 0.543), (3.243, 0.498), (3.248, 0.493), (3.293, 0.448),
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Fig. 9: An ϵ-approximation curve for problem BIOPT(µ, µ̂) found by our
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Fig. 10: Solution for flow routing and scheduling corresponding to weakly
Pareto-optimal Point (3.198, 0.7). A number in the box indicates the time
slot when the link is active.

(3.298, 0.443), (3.343, 0.398), (5.4, 0)}. Based on H, we
plot an ϵ-approximation curve in Fig. 9. The run-time for
calculating one Pareto-optimal point in ϵ-approximation curve
is about 2 hours for epsilon=0.05, and the total runtime for
the entire ϵ-approximation curve is about 20 hours.

Now we validate that the constructed curve in Fig. 9 is
indeed an ϵ-approximation curve (Theorem 1). We follow
the following process. For any point (q∗, q̂∗) on a vertical
segment of the constructed curve in Fig. 9, we can compute
the first objective function (min qS) while assigning q̂P = q̂∗ in
BIOPT(µ, µ̂). This is a single objective optimization problem
and we can find q†. If q∗−q† < ϵ, we can claim that this point
(q∗, q̂∗) on the vertical segment is an ϵ-approximation to point
(q†, q̂∗), which is on the minimum cost curve. Likewise, for
any point (q∗, q̂∗) on a horizontal segment of the constructed
curve in Fig. 9, we can compute the second objective function
(min q̂P ) while assigning qS = q∗ in BIOPT(µ, µ̂). This is
a single objective optimization problem and we can find q̂†.
If q̂∗ − q̂† < ϵ, we can claim that this point (q∗, q̂∗) on the
horizontal segment is an ϵ-approximation to point (q∗, q̂†),
which is on the minimum cost curve. Putting the two cases
together, we can verify that any point on the constructed curve
is an ϵ-approximation to a point on the minimum cost curve
for problem BIOPT(µ, µ̂).

We randomly pick two points for illustration, with the first
point on the vertical segment and the second point on the
horizontal segment of the constructed curve in Fig. 9. For
the first point, we pick (3.198, 0.7). We can compute the first
objective function (min qS) while assigning q̂P = q̂∗ = 0.7
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Fig. 11: A comparison of the ϵ-approximation curve between ϵ = 0.1 and
ϵ = 0.05

.in BIOPT(µ, µ̂) and find q† = 3.198. Then the approxi-
mation error is q∗ − q† = 0 < ϵ, which is correct. A
solution for flow routing and scheduling corresponding to this
point (3.198, 0.7) is shown in Fig. 10. Secondary cost q∗

occurs when secondary nodes S4, S6, S8, S9 and S10 relay
the primary traffic (for primary session 2). According to the
simulation results, f̂S4,S10(2) = 0.349, f̂S6,S4(2) = 0.349,
f̂S8,P4(2) = 0.349, f̂S9,P2(2) = 1.451, f̂S9,S6(2) = 0.349,
and f̂S10,S8(2) = 0.349. Since µ = 1 and φ̂ = f̂S4,S10(2) +
f̂S10,S8(2) + f̂S8,P4(2) + f̂S9,S6(2) + f̂S9,P2(2) + f̂S6,S4(2) =
3.198, we have q∗ = µφ̂ = 3.198. Meanwhile, primary cost q̂∗

occurs when primary node P7 relays the secondary traffic (for
secondary session 1). Since µ̂ = 1 and φ = fP7,S1(1) = 0.7,
we have q̂∗ = µ̂φ = 0.7. Hence, this solution for flow
routing and scheduling indeed matches point (3.198, 0.7).
For the second point, we pick (3.265, 0.493). Following the
same validation method, we can compute the second objective
function (min q̂P ) while assigning qS = q∗ = 3.265 in
BIOPT(µ, µ̂) and find q̂† = 0.475. The approximation error is
q̂∗ − q̂† = 0.018 < ϵ, which is correct.

We can repeat the validation for any other points on the
vertical and horizontal segments on the curve in Fig. 9 and
obtain the same conclusion. Therefore, the constructed curve
is an ϵ-approximation to the minimum cost curve for problem
BIOPT(µ, µ̂).

For the case of varying target approximation error ϵ, the
results can be obtained by executing our algorithm. New
simulation results with target approximation error ϵ = 0.1
are shown in Fig. 11, where the ϵ-approximation curves for
ϵ = 0.1 and ϵ = 0.05 are compared. These two stair curves
are similar and almost overlapping as shown in Fig. 11, but
there are more Pareto-optimal points when ϵ = 0.05.

7.3 Applications of ϵ-approximation curve

Finding minimum relayed traffic for a given cost. Based
on the ϵ-approximation curve in Fig. 9 and the linear re-
lationship between secondary (primary) cost and primary
(secondary) traffic relayed by the secondary (primary) nodes
defined in BIOPT, i.e., qS = µ·φ̂ (q̂P = µ̂·φ), we can immedi-
ately plot Fig. 12. The staircase curve in Fig. 12(a) shows the
minimum amount of secondary traffic φ that can be relayed by
the primary network for a given cost on the secondary network;
the dashed line in Fig. 12(a) shows the amount of primary
traffic φ̂ that can be relayed by the secondary network for a
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given cost on the secondary network. Note that the staircase
curve for φ is obtained by q̂ in Fig. 9 while the dashed line for
φ̂ is obtained by q. Fig. 12(b) is obtained in the same fashion
as Fig. 12(a) with the only difference being that the horizontal
axis is now q̂, the counterpart of q in Fig. 9. The results in
Fig. 12 (a) and (b) are very useful as one can read out the
minimum amount of secondary (primary) traffic that can be
relayed by the primary (secondary) nodes for a given q (q̂)
on the staircase curve and the amount of primary (secondary)
traffic that can be relayed by the secondary (primary) nodes
for a given q (q̂) on the dashed line. For example, in Fig. 12(a),
for q = 1, we have that a minimum of 1.8 unit of secondary
traffic can be relayed by the primary nodes on the staircase
curve while 1 unit of primary traffic can be relayed by the
secondary nodes on the dashed line. In Fig. 12(b), for q̂ = 0.8,
we have that a minimum of 3.198 unit of primary traffic can be
relayed by the secondary nodes on the staircase curve while
0.8 unit of secondary traffic can be relayed by the primary
nodes on the dashed line.
Validation of (α1ϵ, α2ϵ)-approximation Curve. Now we
validate Theorem 2 numerically. Suppose the scaling factors
α1 = 0.5 and α2 = 2. Then based on Definition 1, for the
ϵ-approximation curve in Fig. 9, we can obtain an (α1ϵ, α2ϵ)-
approximation curve in Fig. 13 (solid staircase line segments).
The original ϵ-approximation curve in Fig. 9 is also shown in
Fig. 13 for scaling comparison.

Now we validate that the (α1ϵ, α2ϵ)-approximation curve
in Fig. 13 is indeed an approximation to the minimum cost
curve for problem BIOPT(α1µ, α2µ̂) (Theorem 2). Similar
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Fig. 14: (a) Finding QS−OPT(1.337, 0.636) to offer an approximate solution
to S-OPT min(0.4qS +1.6q̂P ). (b) Finding QS−OPT(0.030, 0.36) to offer
an approximate solution to S-OPT min(0.8qS + 0.2q̂P ).

to the validation method of the ϵ-approximation curve in
Section 7.3, for any point (α1q

∗, α2q̂
∗) on a vertical seg-

ment of the (α1ϵ, α2ϵ)-approximation curve in Fig. 13, we
can compute the first objective function (minα1qS ) while
assigning α2q̂P = α2q̂

∗ in BIOPT(α1µ, α2µ̂). This is a single
objective optimization problem and we can find α1q

†. If
α1q

∗−α1q
† < α1ϵ, we can claim that this point (α1q

∗, α2q̂
∗)

on the vertical segment is an α1ϵ-approximation to point
(α1q

†, α2q̂
∗), which is on the minimum cost curve. Likewise,

for any point (α1q
∗, α2q̂

∗) on a horizontal segment of the
(α1ϵ, α2ϵ)-approximation curve in Fig. 13, we can compute
the second objective function (minα2q̂P ) while assigning
α1qS = α1q

∗ in BIOPT(α1µ, α2µ̂). This is also a single
objective optimization problem and we can find α2q̂

†. If
α2q̂

∗−α2q̂
† < α2ϵ, we can claim that this point (α1q

∗, α2q̂
∗)

on the horizontal segment is an α2ϵ-approximation to point
(α1q

∗, α2q̂
†), which is on the minimum cost curve. Putting

the two cases together, we can verify that any point on the
(α1ϵ, α2ϵ)-approximation curve is an approximation to a point
on the minimum cost curve for problem BIOPT(α1µ, α2µ̂).

We randomly pick two points for illustrations, with the first
point on the vertical segment and the second point on the
horizontal segment of the (α1ϵ, α2ϵ)-approximation curve in
Fig. 13. For the first point, we pick (1.599, 1.4), which is ob-
tained by scaling the point (3.198, 0.7) on the ϵ-approximation
for problem BIOPT(µ, µ̂) by (0.5, 2). We can compute the first
objective function (minα1qS) while assigning α2q̂P = α2q̂

∗ =
1.4 in BIOPT(α1µ, α2µ̂) and find α1q

† = 1.599. Then the
approximation error is α1q

∗ − α1q
† = α1 × 0 = 0 < α1ϵ,

which is correct. For the second point, we pick (1.628, 0.986),
which is obtained by scaling the point (3.265, 0.493) on
the ϵ-approximation for problem BIOPT(µ, µ̂) by (0.5, 2).
Following the same validation method, we can compute the
second objective function (minα2q̂P ) while assigning α1qS =
α1q

∗ = 1.628 in BIOPT(α1µ, α2µ̂) and find α2q̂
† = 0.95.

The approximation error is α2q̂
∗ − α2q̂

† = α2 × 0.018 =
0.036 < α2ϵ, which is correct.

We can repeat the validation for any other points on the ver-
tical and horizontal segments on the (α1ϵ, α2ϵ)-approximation
curve in Fig. 13 and obtain the same conclusion. Therefore, the
(α1ϵ, α2ϵ)-approximation is an approximation to the minimum
cost curve for problem BIOPT(α1µ, α2µ̂).
Extension to Single Objective Optimization Problems. In
the following, we validate Theorem 3. We follow the following
process. First, we validate a feasible solution ω = {x, f , f̂}
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in the output of the AS-OPT algorithm (see Fig. 6) is a
feasible solution to problem S-OPT min(λ1qS + λ2q̂P). As
the output of the AS-OPT algorithm, the solution ω =
{x, f , f̂} corresponding to a Pareto-optimal point QS−OPT

on the (λ1ϵ, λ2ϵ)-approximation curve is feasible after we
obtained the (λ1ϵ, λ2ϵ)-approximation curve for problem
BIOPT(λ1µ, λ2µ̂) (by scaling each point on the ϵ-approximate
curve for problem BIOPT(µ, µ̂) by factors of λ1 and λ2). Since
problem BIOPT(λ1µ, λ2µ̂) and problem S-OPT have the same
set of constraints in their formulations, the feasible solution
ω = {x, f , f̂} in the output of the AS-OPT algorithm is also
a feasible solution to problem S-OPT.

We now validate that the approximation error between
the output value min(λ1q

† + λ2q̂
†) by AS-OPT algorithm

and the optimal objective for problem S-OPT is upper
bounded by (λ1 + λ2)ϵ. In AS-OPT algorithm, after we
obtained the (λ1ϵ, λ2ϵ)-approximation curve for problem
BIOPT(λ1µ, λ2µ̂) (by scaling each point on the ϵ-approximate
curve for problem BIOPT(µ, µ̂) by factors of λ1 and λ2),
we check all the Pareto-optimal points (λ1q

†, λ2q̂
†) on the

(λ1ϵ, λ2ϵ)-approximation curve to find the point QS−OPT

with min(λ1q
† + λ2q̂

†). Hence, we have the output value
min(λ1q

† +λ2q̂
†) in AS-OPT algorithm. For comparison, we

can solve problem S-OPT and find its optimal objective value.
If the difference between the output value min(λ1q

† + λ2q̂
†)

in AS-OPT algorithm and the optimal objective value for
problem S-OPT is less than (λ1 + λ2)ϵ, we are done.

For illustrations, we randomly pick two sets of λ1 and λ2.
For the first set, we have λ1 = 0.4 and λ2 = 1.6. Following
our validation method, in AS-OPT algorithm, we find the
Pareto-optimal point QS−OPT(1.337, 0.636) (see Fig. 14(a))
with min(λ1q

† + λ2q̂
†) = 1.973. So the output value

min(λ1q
†+λ2q̂

†) = 1.973 in AS-OPT algorithm. On the other
hand, we solve problem S-OPT and find its optimal objective
value is also 1.973. Then the approximation error between the
two is 0 and is less than (λ1 + λ2)ϵ = 0.1, which is correct.

For the second set, we have λ1 = 0.8 and λ2 = 0.2.
Following the same validation method, in AS-OPT algorithm,
we find the Pareto-optimal point QS−OPT(0.030, 0.36) (see
Fig. 14(b)) with min(λ1q

† + λ2q̂
†) = 0.390. So the output

value min(λ1q
† + λ2q̂

†) = 0.390 in AS-OPT algorithm. On
the other hand, we solve problem S-OPT and find its optimal
objective value is also 0.390. Then the approximation error
between the two is 0 and is less than (λ1 + λ2)ϵ = 0.05,
which is correct.

For any other sets of λ1 and λ2, we can validate and obtain
the same conclusion.

7.4 Other Case Studies
In addition to the case study in Section 7.3 with the network
setting in Section 7.1, we also vary network topologies,
number of nodes for primary and secondary networks, number
of network sessions and the rate requirements, the simulation
results are all consistent and we have the same conclusions.

8 CONCLUSIONS
In this paper, we offered an in-depth study on potential costs
incurred in the primary and secondary networks when they

are allowed to relay each other’s traffic. We presented cost
models for cooperative traffic relaying between the two net-
works and studied a multiobjective optimization problem. The
main contributions of this paper are: (i) a two-phase iterative
algorithm to find a subset of Pareto-optimal points that can be
used to construct an ϵ-approximation curve; (ii) an application
of the ϵ-approximation curve to show the entire landscape of
minimum cost value for a single objective (between the two)
or both objectives with approximation performance guarantee;
(iii) an application of the ϵ-approximation curve to find a
new approximate minimum cost curve for a different set of
cost parameters; (iv) an application of the ϵ-approximation
curve to find an approximate solution for a single objective
optimization problem. Collectively, these results offer impor-
tant theoretical foundation on quantifying mutual cost in the
primary and secondary networks when they help relay each
other’s traffic in a cooperative manner.
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