
1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



Abstract—Many real-world data can be represented as

attributed graphs that contain vertices each of which is associated

with a set of attribute values. Discovering clusters, or

communities, which are structural patterns in these graphs is one

of the most important tasks in graph analysis. To perform the

task, a number of algorithms have been proposed. Some of them

detect clusters of particular topological properties whereas some

others discover them based mainly on attribute information. Also,

most algorithms discover disjoint clusters only. As a result, they

may not be able to detect more meaningful clusters hidden in the

attributed graph. To do so more effectively, we propose an

algorithm, called FSPGA, to discover fuzzy structural patterns for

graph analytics. FSPGA performs the task of clusters discovery as

a fuzzy constrained optimization problem which takes into

consideration both graph topology and attribute values. FSPGA

has been tested with both synthetic and real-world graph data sets

and is found to be efficient and effective at detecting clusters in

attributed graphs. FSPGA is a promising fuzzy algorithm for

structural pattern detection in attributed graphs.

Index Terms—fuzzy clustering, fuzzy structural pattern, fuzzy

graph clustering, relational fuzzy c-means clustering, attributed

graph, community detection, social network, biological network,

complex network, graph analytics

I. INTRODUCTION

N attributed graph contains attributed vertices connected

by edges and each attributed vertex is associated with a set

of attribute values. In these attributed graphs, there are a

number of sub-graphs in which the vertices are more densely

connected and are inter-related, according to their attribute

values. Such sub-graphs are deemed as graph clusters, or

communities, which are structural patterns in the graph. Many

real-world problems can be formulated as the discovering of

such clusters in the attributed graph. For example, in social

network analysis, the identification of social groups is

considered as social community detection. Similarly, the

identification of functional modules in biological network

graphs is also considered as cluster detection in biological

graphs.

This paragraph of the first footnote will contain the date on which you

submitted your paper for review. It will also contain support information,

including sponsor and financial support acknowledgment. For example, “This
work was supported in part by the U.S. Department of Commerce under Grant

BS123456”.

T. He and Keith C. C. Chan are with the Department of Computing, The
Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR

(e-mail: {csthe, cskcchan}@comp.polyu.edu.hk).

To solve the problem of discovering clusters in graphs,

several so-called graph clustering algorithms have been

proposed. And the problem of clustering in graphs has drawn

much attention in recent years [1] [2]. Unsurprisingly, most

graph clustering algorithms detect clusters based on

pre-specified topologies or edge structures. For example, in [3],

an algorithm that detects clusters based on edge centrality is

presented. In [4], another measure, called modularity, which is

defined as a function of the differences in density within graph

clusters and a null-graph (in which vertices are connected

randomly) is proposed. Based on it, two algorithms presented in

[5] and [6] attempt to detect graph clusters through modularity

optimization. In [7], the authors present a formalism in which it

shows that some clusters smaller than a certain size cannot be

detected by those algorithms based on modularity optimization.

Besides these algorithms, there are other algorithms that

discover graph clusters taking advantages of other properties of

network topologies. For example, in [8], an algorithm is

proposed to detect graph clusters based on the clique

percolation method. In [9], a graph clustering method called

affinity propagation (AP) is proposed to detect clusters based

on the similarities between candidate cluster centers and other

vertices. In [10], a method is proposed to detect graph clusters

by introducing the concept of a link graph to facilitate

optimization of edge densities. In [11], spectral clustering for

graph data is proposed to consider normalized cuts [12] that

may reveal the similar edge structure of the vertices in the same

cluster. In [13], Mixed Membership Stochastic Block models

(MMSB) is proposed to detect graph clusters by optimizing the

posterior probability that a pair of vertices are connected. In

[14], a model based algorithm called CoDa is proposed to

detect communities in graphs. Modeling the discovering of

communities as identifying the community affiliations of each

vertex, the best affiliation can be identified by optimizing the

posterior probabilities that are used to represent the possibility

that vertices belong to a community in a generative model.

Besides those algorithms based on graph topology, there are

several algorithms proposed to discover graph clusters

possessing similar attribute values. For example, some attempts

have been made to make use of the k-means algorithm [15] to

group vertices with higher similarity of attributes into the same

clusters. In [16], an algorithm (MAC) that is based on a

probabilistic generative model is proposed for clustering

vertices that are labeled with Boolean attribute values. In [17], a

graph summarization algorithm called k-SNAP is proposed to

Discovering Fuzzy Structural Patterns for

Graph Analytics

Tiantian He, and Keith C. C. Chan

A

1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2

detect graph clusters by grouping vertices into the same cluster

according to a similarity measure of the attribute values.

These graph clustering algorithms are not very well suited

for the task to discover meaningful communities in attributed

graphs because they take more emphasis either on graph

topology or attributes associated with the vertices, but overlook

the other.

To consider both attributes and structures, several algorithms

are proposed. In [18], SA-Cluster is proposed to detect disjoint

graph clusters using a neighborhood random walk model. The

cluster membership of each vertex is obtained when the

transition matrix reaches the steady state. In [19], the efficiency

of SA-Cluster is improved by computing the transition matrix

incrementally. In [20], EDCAR is proposed to mine clusters by

grouping together vertices that are densely connected and share

similar attribute values. Though these algorithms may detect

communities using both edge structure and attributes, the

communities discovered are not overlapping.

In addition to the above algorithms, some algorithms detect

graph clusters by utilizing generative models. In [21], a general

Bayesian model for graph clustering (GBAGC) is proposed to

make use of a Bayesian generative model to estimate structural

and attribute similarity of pairwise vertices in each cluster. A

number of disjoint graph clusters are obtained after the all

parameters are estimated. In [22], an algorithm, called CESNA,

is proposed to make use of a statistical model to determine the

posterior probability that pairwise vertices are connected given

edge structures and attributes in a cluster. Cluster membership

is determined when the posterior probability is maximized. In

[23], an algorithm called Circles is proposed to detect

communities in social graphs. Circles determines community

membership by estimating the similarity between user

attributes and those which are commonly observed in members

of each cluster. The cluster membership of a vertex is

determined to be those that are predicted to have higher

similarities with other vertices in the same cluster. In [24], an

evolutionary community detection algorithm, called ECDA, is

proposed to detect for communities in social networks by

considering network connections and attribute labeled to each

pair of vertices.

Inspired by topic modeling [25], several topic-model-based

approaches, such as Link-PLSA-LDA [26], Relational Topic

Model [27], iTopicModel [28], PL-DC [29] and Block-LDA

[30] can also be used to segment document network graphs.

With these topic-model-based approaches, cluster membership

is determined by maximizing the probability that vertices in the

same cluster labeled with the same topics. However, due to

rather high demand for computational resources, these

Topic-Model-based approaches are not developed to handle

large attributed graphs [22].

Recently, fuzzy pattern analysis, such as fuzzy clustering has

been drawn much attention because the feature of “soft

membership” that is possessed by the algorithms based on

fuzzy techniques may lead one to detect more sub-structures in

different types of data. Besides of the classical fuzzy c-means

algorithm [31], there are several algorithms based on the fuzzy

c-means model, such as relational fuzzy c-means [32], fuzzy

c-regression models [33], possibilistic fuzzy c-means models

[34], and interval-based fuzzy model [35], which have been

proposed for data clustering. And there are several fuzzy

clustering algorithms proposed to solve specific clustering

problems, such as motion detection [36] and linguistic analysis

in web documents [37]. Among those proposed algorithms,

FCAN [38] is the one that utilizes fuzzy techniques to detect

clusters in complex network data. FCAN may detect clusters by

segmenting a data matrix in which each element represents the

strength of the relationship between pairwise data points. The

entries of the data matrix are obtained by adding the binary

value and the degree of similarity representing the connection

and attribute similarity between pairwise vertices, respectively.

Though effective to some extent, FCAN may not truly identify

the strengths of topology and attribute values that may

determine the cluster arrangement within the clustering

process.

Given the prevalent works in graph clustering and fuzzy

clustering algorithms, we have the following findings that may

motivate us to develop a more suitable algorithm. First, most of

the graph clustering algorithms detect clusters based on

topological properties only, or the attribute information is not

fully utilized, just like the work presented in [38]. Second, most

of the approaches cannot detect overlapping clusters, which

might be more desirable in some graph data, e.g., some

communities in social networks are overlapping. Last but the

most, currently, there are no effective fuzzy algorithms for

discovering clusters in attributed graphs. To overcome the

mentioned challenges, we propose an algorithm for discovering

Fuzzy Structural Patterns for Graph Analytics (FSPGA).

FSPGA performs its tasks by formulating the identification of

clusters in attributed graphs as a fuzzy constrained optimization

problem that takes into the consideration edge structure and

attributes. FSPGA may identify the optimal membership

arrangement that is determined by both edge structure and

attribute information between vertices and clusters. By

adopting the fuzzy sets theory, FSPGA may detect overlapping

clusters in the attributed graph.

For performance evaluation, FSPGA is tested with both

synthetic and real datasets including social and biological

network graphs. The experimental results are verified against

known ground-truth data. It is found that FSPGA obtains a

better performance in both efficiency and effectiveness,

compared with state-of-the-art graph clustering algorithms and

fuzzy clustering algorithms. Given the performance, FSPGA is

a very promising fuzzy algorithm for discovering structural

patterns in the form of clusters in attributed graph data.

In Section II below, how the problem of discovering clusters

in the attributed graph is formulated as a constrained

optimization problem is discussed and the details of FSPGA is

presented. In Section III, we present the results of experiments

performed to evaluate the performance of FSPGA. In Section

IV, we discuss the unique features of FSPGA, the differences

between FSPGA and other fuzzy or non-fuzzy clustering

algorithms. We also compare the computational complexity

and memory requirement of FSPGA with some popular

clustering algorithms. Finally, in Section V, we present the

1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3

conclusion that summarizes the contributions of the paper and

proposals for the future work.

II. FSPGA IN DETAILS

A. Mathematical preliminaries

Given an attributed graph containing nV vertices and nE

edges, in which each vertex is associated with a set of attribute

values, the graph can be represented as G = (V, E, Λ), where the

set of vertices, V, can be denoted as, V= {vi | 1 ≤ i ≤ nV}, the set

of edges, E, can be denoted as E = {eij | 1 ≤ i, j ≤ nV, i ≠ j}, and

the set of attributes that is associated with each vertex can be

denoted as Λ where Λ = {atti | 1 ≤ i ≤ nΛ}.

Given the vertices and edges in G, we use an adjacency

matrix M of dimensions, nV by nV, to represent the connections

between vertices in G so that an entry, mij, in M has the value, 1,

if vi and vj are connected and, 0, if they are not.

Besides the topological information, we also use another

nV-by-nV matrix A, to represent the degree of attribute affinity

between pairwise vertices in G. Hence, each entry in A, say aij,

can be obtained by any measure that may evaluate how similar

or related the vertices vi and vj are, given the attribute values

associated with them. Here we assume that aij should be

nonnegative and a higher magnitude of it means vi and vj are

more related, given the attribute values associated with the two

vertices. It also should be noted that the value of each aij in A, is

determined by the attribute inter-relationship between two

vertices, vi and vj only. In other words, though mij might be zero,

which means that there is no connection between vi and vj, aij

might be positive if the attribute values associated with vi and vj

are considered similar or correlated based on some evaluation

measures.

Given adjacency matrix M and matrix of attribute affinity A,

we use the following augmented matrix to represent the mutual

information between any pair of vertices in G













A0

0M
Y

)1(


 (1)

where the parameter α is used to adjust the bias between edge

structure and attribute similarity. The data matrix Y has the

dimension of 2nV by 2nV, the mutual information between

pairwise vertices are located in the diagonal blocks of Y, while

entries in other blocks are all zero-valued. Utilizing Y, FSPGA

may perform the task of discovering clusters in G.

B. The function based algorithm

FSPGA performs the task of cluster detection using Y. To

find optimal cluster membership for the vertices in G that takes

into the consideration edge structure and attribute, FSPGA is

considering to use an objective function to evaluate the overall

quality of detected clusters.

To formulate the objective that is adopted by FSPGA, we

firstly introduce an auxiliary matrix having the dimension of

2nV-by-k, X, where k is the number of the clusters to seek.

FSPGA uses X to represent strength in terms of structure and

attributes that a vertex belongs to a cluster. Specifically, the

first nV-by-k entries are used for representing the structural

strength that a vertex belongs to a cluster, and the second

nV-by-k entries are used for representing the strength in terms of

attributes that a vertex belongs to a cluster. Let xij be an element

in X. The value of xij indicates either the structural strength or

that in terms of attributes that vertex i belongs to cluster j,

according to the subscripts of the element. Given the properties

of X, it can be used to measure either the edge structure, or

attribute strength that each vertex belongs to each cluster as X

uses different blocks to consider these two aspects,

respectively. The aggregation of the number of connections and

the degrees of attribute affinity, weighted by the corresponding

variables in X can be obtained if an appropriate method can be

used. Then, we introduce the membership matrix C, which has

the dimension of nV by k. Each element of C, say cij, indicates

the strength of membership that vertex i belongs to cluster j.

Apparently, a higher value of cij means vertex i leans to cluster j

more.

Given Y, auxiliary matrix X, and membership matrix C, we

propose FSPGA to formulate the cluster detection in the

attributed graph as the following objective function to be

optimized

 
 

21

TΤT

2
T22T

,0,0

,

2

1
)(

maximize

eCeCX

CCS

XCXCYXS







tosubject

trO
FFF (2)

where (i) |C|2F, and |X|2F are the matrix Frobenius norms of C

and X, which are used to smooth the variables in these matrices,

(ii) |XCT|2F is the matrix Frobenius norm of the product of X

and the transpose of C. (iii), e1 and e2 are k-by-1 and nV-by-1

vectors, in which all elements are 1’s. With the use of the

proposed objective function, FSPGA can have the advantage

that it can discover graph clusters by taking into consideration

both edge structure and attribute information between vertices

in the graph.

To better explain how FSPGA determines cluster

membership of each vertex in a graph, let us consider the first

term of (2). It is used to aggregate the number of connections

and the degrees of attribute affinity within each of the k clusters

in a graph. This first term, tr(STYX) can be rewritten as





k

i

ii
tr

1

TT)(YxsYXS (3)

From (3), in the other words, the k elements in tr(STYX) are

summed up and it is this total sum that FSPGA uses to evaluate

the overall quality of the k clusters in the optimization process.

Based on (3), the roles played by the variables in C, and X in

measuring the overall clustering quality become clear. By

evenly dividing the variables in each column of X into two parts

and substituting Y in (3) using (1), (3) can be rewritten as
























k

i
b

i

a

i

ii

k

i

ii

1

TT

1

T

)1(
][

x

x

A0

0M
ccYxs




 (4)

where xa
i and xb

i represent the first and second nV variables in

xi, respectively. From (4), It should be noted that M is

multiplied by the variables in xa
i, and A is multiplied by the

variables in xb
i. The products of Mxa

i and Axb
i represent the

1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

4

total number of connections and the total degrees of attribute

affinity in cluster i, weighted by xa
i, and xb

i, respectively. In

other words, the variables in each column of X, are used to

obtain the weighted sums of connections and weighted degrees

of attribute affinity within each cluster. Since M is different

from A, in general xa
i, and xb

i are always different within the

optimization process, they contribute to the graph clustering

process in different ways.

Unlike the elements in X, the elements in C, such as ci, is

used to combine the effect of both the number of connections

and the degrees of attribute affinity in cluster i, and such

aggregation is made possible by FSPGA taking into

consideration the variables in each column of C as the degrees

of the cluster membership for each vertex with respect to each

cluster.

To show how (3) is computed by FSPGA in detail, we give a

simple example below. It consists of an augmented matrix

representing a graph containing 4 vertices which are segmented

into 2 clusters. This matrix is shown as







































































0 0.8003 0.4854 0.9572

0.8003 0 0.9649 0.9575

0.4854 0.9649 0 0.6324

0.9572 0.9575 0.6324 0

0 0 0 1

0 0 1 1

0 1 0 1

1 1 1 0

0

0

Y (5)

where the first and second block at the main diagonal are the

matrices M and A, respectively. For simplicity, we ignore the

parameter α here. We assume that the variables in C and X

obtained by FSPGA after some iteration are given as follows:































































0.0344 0.0318

0.9502 0.7060

0.3171 0.1712

0.6948 0.6555

0.8235 0.3922

0.0971 0.7431

0.0462 0.7577

0.2769 0.6787

,,

0.4933 0.5067

0.5173 0.4827

0.0375 0.9625

0.6086 0.3914

X
C

C
SC (6)

To obtain the total number of connections and the total

degrees of attribute affinity in a cluster, say cluster 1, we make

use of (4)

5740.5][
1

1T

1

T

11

T

1



















b

a

x

x

A0

0M
ccYxs (7)

where s1, c1, and x1 are the first columns in S, C, and X in (6).

Based on (4), FSPGA can evaluate the overall quality of k

clusters in the graph. If optimal values in X exist, the optimal

membership matrix C, which assigns each vertex to the cluster

that it has more connections with and that contains vertices that

have attribute values most related or similar to it, can be found

by FSPGA.

In the case that there is no connection between two vertices,

it should be noted that they might still be grouped into the same

cluster. This is because the attribute values that are associated

with each of them can still be similar or correlated and in such

case, the corresponding variables in X can be positive.

However, one may notice that the value of tr(STYX), i.e., the

sum of the total number of edges in the k clusters and degrees of

attribute affinity between the vertex pairs in each of them, may

increase when the variables in S and X become larger. In such

case, FSPGA makes use of |XCT|2F to penalize the variables in

X and C which are assigned with too large or too small values.

In other words, only when the variables in S and X are assigned

with appropriate values that the objective function O can be

optimized. The cluster membership matrix C obtained in such

case is thus determined by both edge structure and attribute

information. Moreover, since Equation (2) satisfies the fuzzy

clustering constraint that requires the sum of each row in C to

be 1, it is very convenient for overlapping clusters to be

discovered after the optimal cluster membership matrix C is

obtained.

C. The iterative updating algorithm

The proposed objective function is a constrained quadratic

function. Based on the KKT conditions for constrained

optimization problems, we may find the corresponding rules to

iteratively update the matrices C, and X to search the local

optima.

1) Updating rule for C and adoption of fuzzy clustering

membership

Let γij and λi be the Lagrange multipliers for the constraints of

cij ≥ 0 and Σjcij = 1. The Lagrange function L for C is

 
21

TT)(),(eCeλCγγC  trOL (8)

where γ = [γij] and λ = [λi] are Lagrange multipliers for the

constraints of the non-negativity of C and the sum-to-1 of

variables in each row of C. Based on the KKT conditions, we

have

21

T

1

T

0

0)1(

eCe

γ

0Cγ

λeγXCXCAXMX
C

21















L

 (9)

where (i) “ₒ” means the Hadamard product of two matrices

with the same dimension, (ii) X1 and X2 are two block matrices

obtained by dividing X between row nV and nV+1. Based on (9),

we have the following element wise equation system

 







j

ij

ij

ijij

iijijij

c

c

1

0

0

0)(])1([T









XCXCAXMX
21

 (10)

Given the first equation in (10), we have

ijiijij
 )(])1([T

XCXCAXMX
21

 (11)

Using (11) to replace γij in the equation of Hadamard product,

we have the iterative updating rule for C

1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

5

ij

iij

ijij
cc

)(

))1((
T

CXCX

AXMX
21







 (12)

In the above equation, one more unknown, λi, needs to be

determined for the updating of the variables in C. Given the

constraint that the sum of each row of variables is one (see

Equation (10)), we have

 




j ij

iij

ij
c 1

)(

))1((
T

CXCX

AXMX
21


 (13)

Given Equation (13), λi can, therefore, be solved as




























j ij

ij

j ij

ij

ij

i c

c

)(

1
)(

))1((

T

T

CXCX

CXCX

AXMX
21



 (14)

Using the value of λi to replace the corresponding variable in

(12), the iterative updating rule, which is under the fuzzy

clustering framework for C, can be obtained. With such an

updating rule, the sum of each row in C is constrained to be 1.

within the optimization procedure. As a result, a vertex in G

may belong to more than one cluster due to the considerations

of fuzzy cluster boundaries.

2) Updating rule for X

Let ηij be the Lagrange multipliers for the constraints xij≥0,

hence the Lagrange function L for X is

)(),(T
XηηX trOL  (15)

where η = [ηij] is the matrix of Lagrange multipliers for the

non-negativity of X. Based on the KKT conditions, we have

0η

0Xη

0ηXCXCYS
X












TL

 (16)

Given (16) we have the following element wise equation

system

 

0

0

T







ij

ijij

ijij

x









XCXCYS

 (17)

Given the equation system (17), the element wise updating

rule for X can be derived

ij

ij

ijij
xx

)(

)(
T

XCXC

YS


 (18)

By iteratively updating the variables in λ, C and X using the

rules shown in (14), (12), and (18), FSPGA may find the local

optima for (2) in a finite number of iterations.

D. Summary of the algorithm

Given the description from A to C in Section II, FSPGA can

be summarized as the pseudo codes shown in Fig. 1. Once the

number of clusters k, the adjust parameter α, maximum number

of iteration and the minimum tolerance, τ are determined,

FSPGA will automatically search for the optimal matrix of

membership, C in a finite number of iterations. After FSPGA is

stopped according to the terminal condition, the obtained C can

be seen as the approximately optimal cluster arrangement.

E. Determining the cluster affliation

Having obtained the fuzzy membership in C for each vertex

to belong to each cluster, FSPGA can determine, for each

cluster, all its members. As vertices may belong to more than

one cluster, FSPGA may determine whether vi belongs to

cluster j according to the following inequality

k

k
c

ij

11 



 (19)

where k is the number of clusters and β is a positive real number

that is used to determine the extent of overlapping between

identified clusters in the attributed graph. Here, β is a global

parameter which is used to determine if each vertex, say vi,

belongs to cluster j after the optimization process. In addition, it

should be noted that β is used only for the case of vertices

whose degrees of cluster membership are not the highest for

that vertex and FSPGA can discover disjoint clusters in an

attributed graph when β is set to zero. Given this setting, it

should be noted that it becomes more possible for more vertices

to be assigned only to those clusters with the highest cluster

membership and the extent of overlapping between detected

clusters becomes smaller when β is set to a relatively high value.

Hence, β can be adjusted according to the demand of

overlapping in different attributed graph data and the variations

of β won’t change the number of clusters.

III. EXPERIMENTS AND ANALYSIS

In this section, we describe the details of the data sets that we

used. We also explain how experiments and what criteria we

used to evaluate the performance of FSPGA.

A. Experimental set up and evaluation metrics

1) Baselines for comparison

To show the desirable features of FSPGA, we selected a

number of graph clustering algorithms to compare with FSPGA.

These algorithms include Affinity Propagation clustering (AP),

Spectral clustering (SC), CoDa, Fuzzy c-means clustering

(FCM), improved Relational Fuzzy c-means clustering

Algorithm FSPGA

Input: Y, α, max_iteration, τ, k

Output: C, X

randomly initialize C, X;

normalize C using C= C./(Ce1e1
T)

for count=1: max_iteration

 fixing X

update λ and C using (14) and (12);

 fixing C

update X using (18);

 if (|Ci - Ci-1|F<τ)

 compute objective value using (2);

 break;

 end if

end for

return C, X;
Fig. 1. Pseudo codes of FSPGA

1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

6

(iRFCM), CESNA, Relational topic model (RTM) and ECDA.

Selecting these algorithms as baselines is because they are

either the latest algorithms or classical ones and have all been

used effectively to detect clusters in various network graphs.

Specifically, AP, SC, and CoDa may detect graph clusters that

take different topological properties of network graph data. For

our experiments, we used the SC that makes use of the

normalized cut in graph clustering. FCM may detect graph

clusters making use of information of similarity between

pairwise vertices in G. Therefore, we used the information in Λ

as the input that is used to compute the similarity between

pairwise vertices for FCM. As iRFCM is a version of FCM that

can be used to discover graph clusters, we tested it using the

same data as FSPGA uses. Algorithms like CESNA, RTM, and

ECDA are ones taking into consideration both graph topologies

and attribute values. RTM has been shown to be a very

effective topic-model based approach to segment relational

data. CESNA performs graph clustering using a generative

process that determines cluster membership of a vertex by

computing an estimate of the joint probability based on

structure and vertex attributes. ECDA performs its tasks using

an evolutionary graph clustering algorithm.

For performance benchmarking, we used the source code or

executables made available by the authors. All the experiments

were conducted under the same environment which included a

workstation with 4-core 3.4GHz CPU and 16GB RAM.

2) Experimental set-up

To ensure that the algorithms we used in the experiment may

obtain a robust performance, we tested them using the

parameters in such a way that either the default settings as

recommended by the authors are used or that they are tuned by

trials to find the best settings.

Specifically, the AP, Coda, and ECDA algorithms do not

require input parameters to be set by the users. For these

algorithms, the default settings as recommended and

implemented by the authors were used. For algorithms,

including SC, FCM, iRFCM, and RTM, which require

parameters to manually input into the system, we tried as many

different settings as we can, to obtain the best results for

performance benchmarking. For example, SC requires that the

parameter of sigma to be set by the users before it can run. To

find a better set of parameters, we tried SC using different

sigma from 1 to 10. The settings that give the best performance

of SC are recorded and presented in our performance analysis

report below. As for the number of clusters, k, we set it for those

algorithms that need k as a predefined parameter, including,

SC, FCM, iRFCM, CESNA, and RTM, to be equal to the

number of ground truth clusters that are used for benchmarking.

For FSPGA, we set β to 0 when FSPGA discovers structural

patterns in those datasets whose ground-truth clusters are

disjoint. We set β to 3 for all those datasets whose ground-truth

clusters overlap with each other. As for the other parameters,

we set α to 0.5, the maximum number of iterations to 300. As

for k, it is set to be the same as the other algorithms, which is

equal to the number of ground-truth clusters in each of the

datasets. All the algorithms, including FSPGA, were executed

10 times to obtain statistical averages for the performance

measures.

3) Data description

For performance evaluations, we used both synthetic and real

datasets with known ground truth. We used synthetic data to

test the effectiveness and efficiency of different algorithms and

we used the real-world data sets to test the robustness of the

different algorithms regarding to different applications. The

real data sets that we used are mainly categorized into two

classes, including social network graph data and biological

network graph data.

The data sets Twitter, Ego-facebook, and Googleplus [23]

are obtained from real social networking sites. The vertices,

edges, and attributes in these data sets represent users of the

social networks, the friendship between users and user profiles,

respectively. The Twitter dataset is constructed based on a

number of social circles extracted from twitter.com. For this

dataset, we have 2511 vertices, 37154 edges, and 9067 attribute

values. The Ego-facebook data set is constructed based on a

number of sub-networks extracted from facebook.com. In this

data set, there are 4039 vertices, 88234 edges and 1283 attribute

values. Googleplus is another set of online social network data

which was constructed based on the sub-networks from

plus.google.com. There are 7856 vertices, 321268 edges, and

2024 attribute values in the dataset. The ground truth social

communities for this data set have been identified. There are

132, 191, and 91 ground truth clusters which are used for

benchmarking the identified clusters from datasets Twitter,

Ego-facebook, and Googleplus, respectively.

Krogan [40], DIP [41], and BioGrid [39] are three sets of

biological data that are constructed based on known

interactions between proteins related to Saccharomyces

cerevisiae. In these three data sets, the vertices, edges, and

attribute values represent the proteins, protein-protein

interactions and GO terms [42], respectively. In Krogan, there

are in total 2674 vertices, 7075 edges, and 3064 attribute

values. In DIP, there are 4579 vertices, 20845 edges and 4237

attributes. In BioGrid, there are 5640 vertices, 59748 edges, and

4286 attribute values. These three data sets have the

ground-truth data stored in the CYC2008 database [43] and

there are 200 ground-truth clusters. Compared with those social

network graph data used, Krogan, DIP, and BioGrid, are

sparser. Using these two types of data allows us to find out how

robust the algorithms are when used with different types of

graphs.

Syn1k is a set of synthetic data which is generated based on

the rule that the probability of intra-cluster edges is higher than

that of inter-cluster edges and that vertices in the same cluster

are more related to each other than those that are not. For this

dataset, we used 1000 vertices that are divided into 4 disjoint

ground truth communities, 9900 edges and 50 attribute values

that are made to associate with each vertex. It should be noted

that, the ground truth clusters of all the real data sets overlap

with each other to some extent. Specifically, the overlapping

rates between pairwise ground truth clusters in datasets Twitter,

Ego-facebook, and Googleplus are 0.00193, 0.00113, and

1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

7

0.01913, respectively. And that in Krogan, DIP, and BioGrid, it

is 0.0004.

The above data sets are used to test the effectiveness of

FSPGA and other algorithms. In addition, to test the scalability

of FSPGA, we have generated several additional synthetic

datasets ranging in size from 5,000 to 100,000 for our

experiments.

4) Determining the degree of attribute affinity between

pairwise vertices

To determine the degrees of attribute affinity between all

pairs of vertices that are used by FSPGA, we use the following

method. First, we use a statistical measure to determine whether

a pair of attribute values, say atti and attj are significantly

associated. This measure is defined as

))
)(

1)((
)(

1)(,(

),(),(

),(

E

j

E

i

ji

jiji

ji

n

atto

n

atto
attatte

attatteattatto

attattdiff








 (20)

where o(atti, attj) represents the number of edges that

connect two vertices which are associated with atti and attj,

o(atti+) represents the number of edges that connect vertices

which are associated with atti, e(atti, attj) to represent the

expected number of such edges in the case that the attributes of

the connected vertices are independent and unassociated, and in

such case e(atti, attj) can be computed as [o(atti+)o(attj+)]/nE. In

[44] and [45], this measure is shown to approximately follow

the Standard Normal distribution. One may, therefore, decide

that atti and attj are significantly associated with each other at a

95% confidence level if diff(atti, attj) is greater than 1.96.

Otherwise, they can be considered not significantly associated

with each other. With this measure, attribute values that are not

relevant can be filtered out.

After the significantly associated attribute values are

obtained, we may determine the degree of attribute affinity

given all significantly associated attribute values of pairwise

vertices (aij) using an information theoretical measure [15]












k m

jmikjmikji

k m jmik

jmik

jmikji

ji

ji

ij

attattattattvvH

attatt

attatt
attattvvr

vvH

vvr
a

),Pr(log),Pr(),(

)Pr()Pr(

),Pr(
log),Pr(),(

),(

),(

(21)

where Pr(attik, attjm) denotes the probability that two

connected vertices are characterized by attk and attm, this

probability can be computed as o(attk, attm)/nE, Pr(attik) denotes

the probability that an edge may connect two vertices that are

characterized by attk, and these two probabilities can be

computed as o(+attk)/nE. The magnitude of aij, can be

interpreted as the information redundancy of the attribute

values that are associated with vi and vj in the attributed graph.

After normalization, it ranges from 0 to 1. A greater value of it

means that the attribute values of the pair of vertices, vi and vj

are more strongly associated with each other. Having obtained

the degrees of attribute affinity, we use them to construct A that

is used by FSPGA.

5) Evaluation metrics

For performance evaluation, we are considering different

evaluation measures which are widely used for evaluating

graph clustering algorithms and fuzzy clustering algorithms.

For measures used for validating graph clusters, we used the

Normalized Mutual Information (NMI), and the Average

Accuracy (Acc) [46]. There are a number of measures for fuzzy

clustering validity, such as Beni Index [47], Earth Mover’s

Distance [48], and several fuzzy Rand-Index-based measures

[49]. In our experiments, we selected Fuzzy Adjusted Rand

Index (FARI) [49] for evaluating the graph clusters discovered

by different algorithms.

The NMI measures the overall accuracy of the matches

between detected clusters and those that are considered

“ground truth”. It is defined as

))Pr(log)Pr(),Pr(log)Pr(max(

)Pr()Pr(

),Pr(
log),Pr(

**

,

*

*

*

*

 






i j

jjii

CC ji

ji

ji

CCCC

CC

CC
CC

NMI

(22)

where Pr(Ci, Cj
*) denotes the probability that vertices are in

both the detected cluster i and the true cluster j, and Pr(Ci)

denotes the probability that a vertex is found to exist in cluster i.

Based on this definition, if the NMI measure is high, it means

that the clusters detected match well with the ground-truth

clusters.

Contrary to the NMI, the Acc measure evaluates individually

detected cluster. It is defined as

  
c

i

i
CCf

C

C
Acc , (23)

where |C| means the size of the detected clusters, and f(.)

stands for a mapping function between cluster i and the ground

truth. For our purpose, we define f(.) to be the maximum

overlap between detected cluster i and a ground-truth cluster.

Thus, Acc evaluates the best matching of each cluster. A higher

value of Acc, therefore means that each detected cluster has a

better match with the ground truth. The higher the Acc of all

clusters detected by an algorithm, therefore means that the

algorithm is more effective.

The Fuzzy Adjusted Rand Index (FARI) measures the overall

adjusted agreement between the discovered and ground truth

clusters and it is defined as

 

     cbdaadcbbcadFARI

n

N
cbnnd

nnc

nnbnna

i j

ij

g

i j

ij

i j

ij

i j

ij

i j

ij

i j

ij

j i

ij

i j

ijij



















































































 

 

2/2

,)(2
2

1

2

1

2

1
,1

2

1

22

22

2

22

2

22

2







(24)

1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

8

where nij represents the number of vertices in both

discovered cluster i and ground truth cluster j, Ng is the number

of vertices in the ground truth database. NMI, Acc, and FARI

evaluate the quality of detected clusters against the ground truth

from different aspects. With these three measures, we can better

evaluate the robustness of different algorithms.

B. Experimental results using synthetic data

1) Evaluation on clustering quality

For performance evaluation, we used a set of synthetic graph

data containing 1000 vertices to test the effectiveness of all

different algorithms. There are four disjoint ground truth

clusters in the synthetic dataset. As mentioned above, the

synthetic data are generated by assuming that the probability of

vertices within the same cluster to be connected with other

vertices to be higher than that of the probability between

clusters. For our experiment, the data set Syn1k was generated

by setting the probability of intra-cluster connections to be 0.05

and the probability of inter-cluster connections to be 0.01.

The performance of FSPGA and other algorithms on the

synthetic dataset Syn1k with respect to NMI, Acc, and FARI is

given in Table I. As the table shows, FSPGA performs better

than other algorithms. No matter which of NMI, Acc, or FARI is

considered, FSPGA may outperform all the compared baselines

in dataset Syn1k. These experimental results show that FSPGA

can be very effective with the discovering of clusters in the

synthetic attributed graph.

2) Scalability test

To find out how FSPGA can scale up when dataset size

increases, a series of synthetic data of sizes ranging from 5000

to 100,000 were generated using the same probabilities of 0.05

and 0.01 for intra- and inter-cluster vertex connections as is

with Syn1k. Given these generated data, the scalability of

FSPGA was studied in a number of experiments involving

different data sets. The results obtained were compared with

those obtained with CESNA, RTM, iRFCM, and AP. As

FSPGA and these algorithms are all iterative in nature, a

comparison is made based on the average execution time of

each iteration. The results are shown in Fig. 2.

The results show that FSPGA scales up well when compared

with RTM and iRFCM and AP. Even with the data sets

containing as many as 100,000 vertices, FSPGA could

complete each iteration in the optimization process in around 1

second and this is slightly faster than CESNA. However, when

comparing the number of iterations that are required for the two

algorithms to complete the cluster discovery tasks, it should be

noted that CESNA needed at least 300 iterations whereas

FSPGA converges much below 300. Given this to be the case,

FSPGA is more computationally efficient.

When compared with AP, RTM and iRFCM, the

computational time used by them is much more than FSPGA

did. It should be noted that we did not obtain the results of

scalability test of RTM or iRFCM when the size of synthetic

data is larger than 10,000 as they were crushed under that

situation. And the computational time of AP is also intolerable

when the data size is larger than 25,000.

3) Sensitivity test of α

As described in Section 2, for FSPGA to performs its tasks, it

requires the setting of a parameter α. The parameter is used to

adjust the bias between the edge density and the degree of

attribute affinity during the process of cluster identification.

How the parameter may affect the performance of FSPGA can

be investigated in several sensitivity tests using the data set

Syn1k.

In our experiment, α was set to different values from 0 to 1,

with an increment of 0.2, and FSPGA was used under these

different settings to detect clusters. The performance was

measured with NMI, Acc, and FARI and the results are shown in

Fig. 3.

It is seen that when α was set to 0, which means that only the

attribute values are considered, and when it is set to 1, which

Fig. 2. Scalability test between different algorithms

Fig. 3. Sensitivity test of α

TABLE I

NMI, ACC AND FARI IN SYN1K

 Syn1k

Approach NMI Acc FARI

AP 0.152 0.747 0.01

CoDa 0.116 0.43 0.097

SC 0.232 0.528 0.277

FCM 0.732 0.871 0.674

iRFCM 0.718 0.739 0.677

CESNA 0.792 0.845 0.813

RTM 0.797 0.797 0.683

ECDA 0.272 0.466 0.203

FSPGA 0.992 0.998 0.995

1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

9

means that only the edge structure is considered, the

performance of FSPGA is affected negatively. When setting α

to the value between 0.4 and 0.6, FSPGA obtains very good

results. Given these results, we set α to be 0.5 in all our

experiments so that both attribute values and edge structures are

considered equally important by FSPGA.

C. Experimental results in real data

1) Application in social community detection

Social communities are important structural patterns in

social graphs. The identification of such communities is

important to social network analysis. For performance

evaluation of FSPGA, we used three sets of social network data,

including Twitter, Ego-facebook, and Googleplus. All these

data sets have known ground-truth communities that have been

verified in previous work. Given the fact that the number of

ground truth clusters is known, for those algorithms which need

to set the number of clusters (k), we set it to be the number of

known ground truth clusters in each dataset.

The experimental results of NMI, Acc, and FARI obtained

with these datasets are summarized in Table II. As the table

shows, FSPGA performs more robustly than other algorithms.

When the identified clusters are evaluated by NMI, FSPGA

outperforms all the other algorithms in all the three social

network datasets. When evaluated by Acc, FSPGA ranks the

best in Googleplus, and second best in Twitter, and

Ego-facebook, respectively. When the identified clusters are

evaluated by FARI, FSPGA outperforms the other algorithms in

the case of Twitter, and Googleplus, and ranks second best in

Ego-facebook. In total, the above results obtained from social

network data show that the social communities detected by

FSPGA better match with the ground-truth when compared

with the others.

2) Functional modules detection in biological graph data

Functional modules in biological networks, such as protein

complexes in protein-protein interaction (PPI) network graphs

also can be considered as structural patterns in the form of

graph clusters.

To further test the effectiveness of FSPGA, we used three

sets of PPI network data in our experiments. They included the

data sets Krogan, DIP, and BioGrid. These datasets were

chosen as the ground-truth, which correspond to known protein

complexes, could be found and some of the known protein

complexes are overlapping. Performance data based on NMI,

Acc and FARI were obtained from the experiments. The results

obtained with these two data sets are shown in Table III.

As shown in the table, FSPGA obtains better performance

than all the other algorithms regardless of performance

measures used. When the evaluation measure, Acc is

considered, FSPGA outperforms all the baselines in all three

datasets. When NMI is considered, FSPGA ranks the best in the

case of DIP and BioGrid, and third with Krogan. When the

discovered clusters are evaluated by FARI, FSPGA

outperforms all other algorithms with DIP and BioGrid, and

ranks third with Krogan.

As the objective function used by FSPGA considers the

pairwise relationship between any pair of vertices in terms of

edge structure and attribute information, the relative weighting

between how much each of these two factors should be

considered can be adjusted dynamically during the

optimization process. The fuzzy cluster membership matrix C

obtained by FSPGA can find k clusters in which vertices share

TABLE II

NMI, ACC AND FARI OBTAINED FROM SOCIAL NETWORK DATA

Twitter Ego-facebook Googleplus

Approach NMI Acc FARI NMI Acc FARI NMI Acc FARI

AP 0.5982nd 0.4793rd 0.123 0.5282nd 0.416 0.1941st 0.355 0.273 0.095

CoDa 0.5843rd 0.471 0.1823rd 0.5243rd 0.5023rd 0.133rd 0.373 0.3753rd 0.079

SC 0.493 0.305 0.094 0.52 0.447 0.126 0.33 0.296 0.081

FCM 0.08 0.09 0.016 0.28 0.208 0.056 0.128 0.181 0.031

iRFCM 0.535 0.37 0.172 0.315 0.282 0.074 0.266 0.318 0.054

CESNA 0.572 0.5281st 0.169 0.483 0.6231st 0.118 0.422nd 0.472nd 0.1053rd

RTM 0.028 0.099 0.014 0.227 0.167 0.061 0.023 0.151 0.019

ECDA 0.529 0.385 0.1842nd 0.322 0.234 0.099 0.3953rd 0.341 0.1222nd

FSPGA 0.6411st 0.5132nd 0.2411st 0.5791st 0.5882nd 0.172nd 0.4891st 0.5191st 0.1491st

TABLE III

NMI, ACC AND FARI OBTAINED FROM BIOLOGICAL NETWORK DATA

Krogan DIP BioGrid

Approach NMI Acc FARI NMI Acc FARI NMI Acc FARI

AP 0.6921st 0.1873rd 0.11 0.6882nd 0.1172nd 0.098 0.109 0.016 0.003

CoDa 0.6882nd 0.1992nd 0.2981st 0.463 0.0683rd 0.045 0.299 0.035 0.017

SC 0.609 0.079 0.026 0.588 0.047 0.009 0.5453rd 0.032 0.0873rd

FCM 0.454 0.078 0.115 0.49 0.06 0.1383rd 0.444 0.0482nd 0.073

iRFCM 0.342 0.055 0.058 0.444 0.049 0.091 0.355 0.0463rd 0.045

CESNA 0.484 0.055 0.027 0.425 0.026 0.063 0.449 0.026 0.049

RTM 0.578 0.037 0.169 0.6143rd 0.025 0.1842nd 0.6222nd 0.021 0.1942nd

ECDA 0.631 0.142 0.2292nd 0.299 0.058 0.016 0.145 0.026 0.043

FSPGA 0.6773rd 0.2021st 0.1913rd 0.7121st 0.1291st 0.2671st 0.7551st 0.1251st 0.3721st

1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

10

similar weighted structure with each other. This represents, in

other words, the optimized weighted aggregation of

intra-cluster connections and attribute relativity. This feature

allows FSPGA to group unconnected but related vertices to be

taken into consideration based on attribute relativity. Moreover,

as FSPGA allows fuzzy cluster membership to be considered

within the optimization process, thereby making it possible for

FSPGA to find overlapping clusters as fuzzy structural patterns

in an attributed graph. These features are the reasons why

FSPGA can obtain a more robust performance with both

overlapping and non-overlapping clustering.

D. Case study-overlapping rate versus cluster quality

To find out what impact the parameter β can have on the

quality of clusters, FSPGA is tested with all real datasets, using

β from 0.1 to 4, with a 0.1 increment. The clusters obtained

under different settings of β are evaluated using NMI, Acc, and

FARI. The results are shown in Fig. 4 (a) - (c). Together with

the overlapping rate of ground truth clusters of each real dataset,

the impact of β on the quality of overlapping clustering were

studied in detail.

The variations of NMI, Acc, and FARI are shown in Fig. 4

(a)-(c). As it is shown in the figures, the magnitudes of different

clustering validity measures share similar variations. As the

value of β becomes larger than a particular value, the clustering

quality does not improve by much. In Fig. 4 (d), it should be

noted that the extent of overlapping in all the datasets decreases

and approximates to zero as β becomes larger and larger. Given

these results, it should be noted that β needs to be adjusted for

FSPGA to discover clusters with different extent of

overlapping.

It is mentioned in Section II.E that β is used to constrain the

number of vertices that can belong to more than one cluster. As

a result, each vertex in an attributed graph is probably assigned

to the cluster with the greatest degree of cluster membership

when β is set to be high enough. As a result, the clustering

quality of FSPGA would be approximately the same as with

crisp clustering. Given the fact that the overlapping rate of most

datasets is relatively low, e.g., 0.00193 in Twitter, 0.00113 in

Ego-facebook, and 0.0004 in biological datasets, the clustering

quality is better when β is set higher, e.g., 2.5 to 3.5 in Twitter,

Ego-facebook, and biological datasets. Using relatively large β,

discovered clusters are mostly disjoint and the overall

overlapping rate is therefore similar to that of the ground truth

clusters (see Fig. 4 (d)).

However, when β is set between 2.5 and 3.5, it may degrade

the quality of clusters discovered in Googleplus. This is

because this data set has a relatively high overlapping rate. E.g.,

the Acc decreases when β is set larger than 2.5.

Given these characteristics of β, it is necessary for one to

adjust the setting. However, FSPGA performs robustly when β

is set between 2 and 3.5 and this is why β is set to 3 in our

experiments.

IV. DISCUSSION

A. Comparisons between FSPGA and formal fuzzy

clustering algorithms

With the above features, FSPGA can be considered different

from such popular fuzzy clustering algorithms as the fuzzy

c-means algorithm (FCM), and the relational fuzzy c-means

algorithm (iRFCM). With the objective function that it uses,

 (a) (b)

 (c) (d)

Fig. 4. NMI, Acc, FARI, and overlapping rate in social and biological datasets

1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

11

FSPGA can determine, dynamically, the degrees of cluster

membership based on both the edge structure and attribute

information of vertices. Compared with algorithms such as

iRFCM which adjust global bias between M and A, FSPGA

may identify meaningful clusters which other algorithms may

miss.

Also, while existing fuzzy clustering algorithms minimize

dissimilarity between data entities and cluster centers, FSPGA

takes into consideration the edge structure and attribute

relativity within each cluster. By so doing, FSPGA can identify

clusters in which the weighted aggregation of intra-cluster

connections and degrees of attribute relativity between any pair

of vertices is optimized. These features are some of the reasons

why FSPGA may perform better than other algorithms we used

for comparison.

B. Computational complexity and space requirements of

FSPGA

As the computational complexity of FSPGA is dependent

mainly on the iterative updating of C and X, the complexity of

the process of determining these matrices is considered here.

Let nV and k be the number of vertices in the graph and the

number of clusters in an attributed graph. It should be noted that

k << nV in practice. According to Equation (8), for updating

each element in C, say cij, it approximates the order of

O((2k+2)nV). Hence updating all elements in C approximates

the order of O(k(2k+2)nV
2). According to Equation (10),

updating each element in λ follows the order of O(k). This is

because the computational components in the numerator and

denominator are the same as those in (8). As a result, updating λ

follows the order of O(knV). According to Equation (14), the

updating of each element in X approximates the order of

O((k+2)nV). Hence updating all the elements in X follows the

order of O(2k(k+2)nV
2).

Given the complexity of updating variables in C and X,

FSPGA is an algorithm with complexity of O(n2). In other

words, FSPGA is more efficient than the spectral-based

clustering algorithms since their computational complexity

follows the order of O(n3). In fact, as the augmented matrix Y is

always very sparse, theoretically, FSPGA should run faster

than those algorithms, such as Affinity Propagation (AP), that

also have the complexity of O(n2). The scalability test shown in

Fig. 2 also supports the analysis here.

Regarding the space requirement of FSPGA, it should be

noted that FSPGA does not require much memory space when

performing the task of discovering fuzzy structural patterns in

the attributed graph. This is because FSPGA only stores those

non-zero elements in the augmented matrix Y. For example,

one synthetic dataset used in our experiment contains 100,000

vertices, but there are about 30,000,000 elements in Y which

are larger than zero. Compared with the full memory space for

100,0002, 30,000,000 is only 0.3% of the full space. Given the

analysis here and the scalability test shown in Fig. 2, FSPGA

can be used for discovering fuzzy structural patterns in large

attributed graphs.

V. CONCLUSION

In this paper, FSPGA, which is an algorithm for discovering

fuzzy structural patterns in the form of clusters in the attributed

graph, is proposed. Compared with prevalent algorithms that

take different properties of an attributed graph, including

topology, attribute, and both of the aforementioned, FSPGA

may find an optimal arrangement of clusters for vertices in an

attributed graph by formulating the task as a fuzzy constrained

optimization problem. As the adoption of fuzzy set theory when

determining the cluster membership, FSPGA can detect

overlapping clusters, while most of the prevalent algorithms

cannot. The experimental results presented in this paper show

that FSPGA may perform robustly and efficiently in different

types graph data, compared with the classical, latest graph

clustering algorithms, and fuzzy clustering algorithms. In

future, we will intend to further improve the efficiency of

FSPGA and develop a version of FSPGA that may discover

hierarchical structural patterns in attributed graphs.

REFERENCES

[1] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486,

no.3-5, pp. 75-174, Feb. 2010.

[2] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison of

algorithms for network community detection,” in Proc 19th Int. conf.

World Wide Web, 2010, pp. 631-640.

[3] M. Girvan, and M. E. J. Newman, “Community structure in social and

biological networks,” Proc. Nat. Acad. Sci. U. S. A., vol. 99, no. 12, pp.

7821-7826, Jun. 2002.

[4] M. E. J. Newman, “Modularity and community structure in networks,”

Proc. Nat. Acad. Sci. U. S. A., vol. 103, no. 23, pp. 8577-8582, Jun. 2006.

[5] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community

structure in very large networks,” Phys. Rev. E, vol. 70, no. 6, pp. 066111,

Dec. 2004.

[6] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast

unfolding of communities in large networks,” J. Stat. Mech., vol. 2008,

no. 10, pp. P10008, Oct. 2008.

[7] S. Fortunato, and M. Barthelemy, “Resolution limit in community

detection,” Proc. Nat. Acad. Sci. U. S. A., vol. 104, no. 1, pp. 36-41, Jan.

2007.

[8] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, “Uncovering overlapping

community structure of complex networks in nature and society,” Nature,

vol. 435, pp. 814-818, Jun. 2005.

[9] B. J. Frey, and D. Dueck, “Clustering by passing messages between data

points,” Science, vol. 16, pp. 972-976, Feb. 2007.

[10] Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal

multiscale complexity in networks,” Nature, vol. 466, pp. 761-764, Aug.

2010.

[11] U. Luxburg, “A tutorial on spectral clustering,” Statistics and

Computing., vol. 17, no. 4, pp. 395-426, Dec. 2007.

[12] J. Shi, and J. Malik, “Normalized cuts and image segmentation,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.

[13] E. M. Airoldi, D. Blei, S. E. Fienberg, and E. P. Xing, “Mixed

Membership Stochastic Blockmodels,” J. Mach. Learn. Res., vol. 9, pp.

1981-2014, Sep. 2008.

[14] J. Yang, J. McAuley, and J. Leskovec, “Detecting Cohesive and 2-mode

Communities in Directed and Undirected Networks,” in Proc. 7th ACM

Int. Conf. Web Search and Data Mining, 2014, pp. 323-332.

[15] D. J. C. MacKay, Information Theory, Inference, and Learning

Algorithms, Cambridge, UK: Cambridge Univ. Press, 2003.

[16] M. Frank, A. P. Streich, D. Basin, and J. M. Buhmann, “Multi-assignment

clustering for boolean data,” J. Mach. Learn. Res., vol. 13, pp. 459-489,

Feb. 2012.

1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

12

[17] Y. Tian, R. A. Hankins, and J. M. Patel, “Efficient aggregation for graph

summarization,” in Proc. of the 2008 ACM Int. Conf. Management of

Data, pp. 567-580, 2008.

[18] Y. Zhou, H. Cheng, and J. X. Yu, “Graph clustering based on

structural/attribute similarities,” in Proc. VLDB 2009, pp. 718-729.

[19] Y. Zhou, H. Cheng, and J. X. Yu, “Clustering large attributed graphs: an

efficient incremental approach,” in Proc. IEEE 10th Int. Conf. Data

Mining, 2010, pp. 689-698.

[20] S. Gunnermann, B. Boden, I. Farber, and T. Seidl, “Efficient mining of

combined subspace and subgraph clusters in graphs with feature vectors,”

in Proc. PAKDD, 2013, pp.261-275.

[21] Z. Xu, Y. Ke, Y. Wang, H. Cheng and J. Cheng, “Gbagc: a general

bayesian framework for attributed graph clustering,” ACM Trans. Knowl.

Discov. Data, vol. 9, no. 1, article 5, 2014.

[22] J. Yang, J. McAuley, and J. Leskovec, “Community detection in networks

with node attributes,” in Proc. IEEE 13th Int. Conf. Data Mining, 2013,

pp. 1151-1156.

[23] J. McAuley, and J. Leskovec, “Discovering social circles in ego

networks,” ACM Trans. Knowl. Discov. Data, vol. 8, no. 1, article 4,

2014.

[24] T. He, and K. C. C. Chan, “Evolutionary community detection in social

networks,” in Proc. CEC, 2014, pp. 1496-1503.

[25] D. Blei, “Probabilistic topic models,” Commun. ACM, vol. 55, no. 4, pp.

77-84, 2012.

[26] R. Nallapati, A. Ahmed, E. P. Xing, and W. W. Cohen, “Joint latent topic

models for text and citations,” in Proc. 14th ACM Int. Conf. Kowl. Discov.

Data Mining, 2008, pp. 542-550.

[27] J. Chan, and D. Blei, “Relational topic models for document networks,” in

Proc. 12th Int. Conf. Artificial Intel. Stat., 2009, pp. 81-88.

[28] Y. Sun, J. Han, J. Gao, and Y. Yu, “itopicmodel: information

network-integrated topic modeling,” in Proc. IEEE 9th Int. Conf. Data

Mining, 2009, pp. 493-502.

[29] T. Yang, R. Jin, Y. Chi, and S. Zhu, “Combining link and content for

community detection: a discriminative approach,” in Proc. 15th ACM Int.

Conf. Kowl. Discov. Data Mining, 2009, pp. 927-936.

[30] R. Balasubramanyan, and W. W. Cohen, “Block-LDA: Jointly modeling

entity-annotated text and entity-entity links,” in Proc. SIAM Int. Conf.

Data Mining, 2011, pp. 450-461.

[31] J. C. Bezdek, R. Ehrlich, W. Full, “FCM: the fuzzy c-means clustering

algorithm,” Computers and Geosciences, vol.10, no. 2-3, pp. 191-203,

1984.

[32] M. A. Khalilia, J. Bezdek, M. Popescu, and J. M. Keller, “Improvements

to the relational fuzzy c-means clustering algorithm,” Pattern Recog., vol.

47, no. 12, pp.3920-3930, 2014.

[33] R. J. Hathaway, J. C., Bezdek, “Switching regression models and fuzzy

clustering,” IEEE Trans. Fuzzy Systems, vol. 1, no. 3, pp. 195-204, 1993.

[34] N. R. Pal, K. Pal, and J. M. Keller, “A possibilistic fuzzy c-means

clustering algorithm,” IEEE Trans. Fuzzy Syst., vol. 13, no. 4, pp.

517-530, 2005.

[35] L. Silva, R. Moura, A. M. P. Canuto, R. H. N. Santiago, and B. Bedregal,

“An interval based frame work for fuzzy clustering applications,” IEEE

Trans. Fuzzy Syst., vol. 23, no. 6, pp. 2174-2187, Mar. 2015.

[36] T. M. Nguyen, and Q. M. J. Wu, “Dynamic fuzzy clustering and its

application in motion segmentation,” IEEE Trans. Fuzzy Syst., vol. 21,

no. 6, pp. 1019-1031, Dec. 2013.

[37] I. Chiang, C. C. Liu, Y. Tsai, and A. Kumar, “Discovering latent

semantics in web documents using fuzzy clustering,” IEEE Trans. Fuzzy

Syst., vol. 23, no. 6, pp. 2122-2134, Dec. 2015.

[38] L. Hu and K. C. C. Chan, “Fuzzy Clustering in a Complex Network Based

on Content Relevance and Link Structures,” IEEE Trans. Fuzzy Syst., vol.

24, no. 2, pp. 456-470, Apr. 2016.

[39] C. Stark, B. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M.

Tyers, “BioGRID: A General Repository for Interaction Datasets,”

Nucleic Acids Research, vol. 34, no. Suppl. 1, pp. D535-D539, 2006.

[40] N. J. Krogan, et al., “Global Landscape of Protein Complexes in the Yeast

Saccharomyces cerevisiae,” Nature, vol. 440, no. 7084, pp. 637-643,

2006.

[41] I. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S. Kim, and D.

Eisenberg, “DIP, the Database of Interacting Proteins: A Research Tool

for Studying Cellular Networks of Protein Interactions,” Nucleic Acids

Research, vol. 30, no. 1, pp. 303-305, 2002.

[42] M. Ashburner, et al., “Gene Ontology: Tool for the Unification of

Biology,” Nature Genetics, vol. 25, no. 1, pp. 25-29, 2000.

[43] S. Pu, J. Wong, B. Turner, E. Cho, and S. J. Wodak, “Up-to-date

catalogues of yeast protein complexes,” Nucleic Acids Res., vol. 37, no. 3,

pp. 825-831, Feb. 2009.

[44] K. C. C. Chan, A. K. C. Wong, and D. K. Y. Chiu, “Learning sequential

patterns for probabilistic inductive prediction,” IEEE Trans. Systems,

man and cybernetics, vol. 24, no. 10, pp. 1532-1547, Oct. 1994.

[45] J. Y. Ching, A. K. C. Wong, and K. C. C. Chan, “Class-dependent

discretization for inductive learning from continuous and mixed-mode

data,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 7, pp.

641-651, Jul. 1995.

[46] G. Qi, C. C. Aggarwal, and T. Huang, “Community detection with edge

content in social media networks,” in Proc. IEEE 28th Int. Conf. Data

Engineering, 2012, pp. 534-545.

[47] L. Xie, and G. Beni, “A validity measure for fuzzy clustering,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 13, no. 8, pp. 841-847, Aug. 1991.

[48] D. T. Anderson, A. Zare, and S. Price, “Comparing Fuzzy, Probabilistic,

and Possibilistic Partitions Using the Earth Mover’s Distance,” IEEE

Trans. Fuzzy Syst., vol. 21, no. 4, pp. 766-775, Aug. 2013.

[49] D. T. Anderson, J. C. Bezdek, M. Popescu, and J. M. Keller, “Comparing

Fuzzy, Probabilistic, and Possibilistic Partitions,” IEEE Trans. Fuzzy

Syst., vol. 18, no. 5, pp. 906-918, Oct. 2013.

Tiantian He received the BEng degree in

computer science from North China

University of Technology, Beijing, China

in 2008, the MSc degree in information

systems, and the PhD degree in computer

science from the Hong Kong Polytechnic

University in 2012 and 2017, respectively.

Currently he is a postdoctoral research

fellow in Department of Computing, the

Hong Kong Polytechnic University. His research interests

include machine learning, data mining, and bioinformatics.

Keith C. C. Chan received the BMath

(Hons.) degree in computer science and

statistics in 1984 and the MASc and PhD

degrees in systems design engineering in

1985 and 1989, respectively, from the

University of Waterloo, Ontario, Canada.

Soon after graduation, he worked as a

software analyst for the development of

multimedia and software engineering tools at the IBM Canada

Laboratory in Toronto, Canada. He joined the Hong Kong

Polytechnic University in 1994, where he is currently a

professor in the Department of Computing. His research

interests include bioinformatics, data mining, and software

engineering. He has over 250 publications in these areas, and

his research is supported both by government research funding

agencies and the industry.

