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Abstract—Many real-world data can be represented as 

attributed graphs that contain vertices each of which is associated 

with a set of attribute values. Discovering clusters, or 

communities, which are structural patterns in these graphs is one 

of the most important tasks in graph analysis. To perform the 

task, a number of algorithms have been proposed. Some of them 

detect clusters of particular topological properties whereas some 

others discover them based mainly on attribute information. Also, 

most algorithms discover disjoint clusters only. As a result, they 

may not be able to detect more meaningful clusters hidden in the 

attributed graph. To do so more effectively, we propose an 

algorithm, called FSPGA, to discover fuzzy structural patterns for 

graph analytics. FSPGA performs the task of clusters discovery as 

a fuzzy constrained optimization problem which takes into 

consideration both graph topology and attribute values. FSPGA 

has been tested with both synthetic and real-world graph data sets 

and is found to be efficient and effective at detecting clusters in 

attributed graphs. FSPGA is a promising fuzzy algorithm for 

structural pattern detection in attributed graphs. 

Index Terms—fuzzy clustering, fuzzy structural pattern, fuzzy 

graph clustering, relational fuzzy c-means clustering, attributed 

graph, community detection, social network, biological network, 

complex network, graph analytics 

I. INTRODUCTION 

N attributed graph contains attributed vertices connected

by edges and each attributed vertex is associated with a set 

of attribute values. In these attributed graphs, there are a 

number of sub-graphs in which the vertices are more densely 

connected and are inter-related, according to their attribute 

values. Such sub-graphs are deemed as graph clusters, or 

communities, which are structural patterns in the graph. Many 

real-world problems can be formulated as the discovering of 

such clusters in the attributed graph. For example, in social 

network analysis, the identification of social groups is 

considered as social community detection. Similarly, the 

identification of functional modules in biological network 

graphs is also considered as cluster detection in biological 

graphs. 
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To solve the problem of discovering clusters in graphs, 

several so-called graph clustering algorithms have been 

proposed. And the problem of clustering in graphs has drawn 

much attention in recent years [1] [2]. Unsurprisingly, most 

graph clustering algorithms detect clusters based on 

pre-specified topologies or edge structures. For example, in [3], 

an algorithm that detects clusters based on edge centrality is 

presented. In [4], another measure, called modularity, which is 

defined as a function of the differences in density within graph 

clusters and a null-graph (in which vertices are connected 

randomly) is proposed. Based on it, two algorithms presented in 

[5] and [6] attempt to detect graph clusters through modularity 

optimization. In [7], the authors present a formalism in which it 

shows that some clusters smaller than a certain size cannot be 

detected by those algorithms based on modularity optimization. 

Besides these algorithms, there are other algorithms that 

discover graph clusters taking advantages of other properties of 

network topologies. For example, in [8], an algorithm is 

proposed to detect graph clusters based on the clique 

percolation method. In [9], a graph clustering method called 

affinity propagation (AP) is proposed to detect clusters based 

on the similarities between candidate cluster centers and other 

vertices. In [10], a method is proposed to detect graph clusters 

by introducing the concept of a link graph to facilitate 

optimization of edge densities. In [11], spectral clustering for 

graph data is proposed to consider normalized cuts [12] that 

may reveal the similar edge structure of the vertices in the same 

cluster. In [13], Mixed Membership Stochastic Block models 

(MMSB) is proposed to detect graph clusters by optimizing the 

posterior probability that a pair of vertices are connected. In 

[14], a model based algorithm called CoDa is proposed to 

detect communities in graphs. Modeling the discovering of 

communities as identifying the community affiliations of each 

vertex, the best affiliation can be identified by optimizing the 

posterior probabilities that are used to represent the possibility 

that vertices belong to a community in a generative model. 

Besides those algorithms based on graph topology, there are 

several algorithms proposed to discover graph clusters 

possessing similar attribute values. For example, some attempts 

have been made to make use of the k-means algorithm [15] to 

group vertices with higher similarity of attributes into the same 

clusters. In [16], an algorithm (MAC) that is based on a 

probabilistic generative model is proposed for clustering 

vertices that are labeled with Boolean attribute values. In [17], a 

graph summarization algorithm called k-SNAP is proposed to 
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detect graph clusters by grouping vertices into the same cluster 

according to a similarity measure of the attribute values. 

These graph clustering algorithms are not very well suited 

for the task to discover meaningful communities in attributed 

graphs because they take more emphasis either on graph 

topology or attributes associated with the vertices, but overlook 

the other. 

To consider both attributes and structures, several algorithms 

are proposed. In [18], SA-Cluster is proposed to detect disjoint 

graph clusters using a neighborhood random walk model. The 

cluster membership of each vertex is obtained when the 

transition matrix reaches the steady state. In [19], the efficiency 

of SA-Cluster is improved by computing the transition matrix 

incrementally. In [20], EDCAR is proposed to mine clusters by 

grouping together vertices that are densely connected and share 

similar attribute values. Though these algorithms may detect 

communities using both edge structure and attributes, the 

communities discovered are not overlapping. 

In addition to the above algorithms, some algorithms detect 

graph clusters by utilizing generative models. In [21], a general 

Bayesian model for graph clustering (GBAGC) is proposed to 

make use of a Bayesian generative model to estimate structural 

and attribute similarity of pairwise vertices in each cluster. A 

number of disjoint graph clusters are obtained after the all 

parameters are estimated. In [22], an algorithm, called CESNA, 

is proposed to make use of a statistical model to determine the 

posterior probability that pairwise vertices are connected given 

edge structures and attributes in a cluster. Cluster membership 

is determined when the posterior probability is maximized. In 

[23], an algorithm called Circles is proposed to detect 

communities in social graphs. Circles determines community 

membership by estimating the similarity between user 

attributes and those which are commonly observed in members 

of each cluster. The cluster membership of a vertex is 

determined to be those that are predicted to have higher 

similarities with other vertices in the same cluster. In [24], an 

evolutionary community detection algorithm, called ECDA, is 

proposed to detect for communities in social networks by 

considering network connections and attribute labeled to each 

pair of vertices. 

Inspired by topic modeling [25], several topic-model-based 

approaches, such as Link-PLSA-LDA [26], Relational Topic 

Model [27], iTopicModel [28], PL-DC [29] and Block-LDA 

[30] can also be used to segment document network graphs. 

With these topic-model-based approaches, cluster membership 

is determined by maximizing the probability that vertices in the 

same cluster labeled with the same topics. However, due to 

rather high demand for computational resources, these 

Topic-Model-based approaches are not developed to handle 

large attributed graphs [22]. 

Recently, fuzzy pattern analysis, such as fuzzy clustering has 

been drawn much attention because the feature of “soft 

membership” that is possessed by the algorithms based on 

fuzzy techniques may lead one to detect more sub-structures in 

different types of data. Besides of the classical fuzzy c-means 

algorithm [31], there are several algorithms based on the fuzzy 

c-means model, such as relational fuzzy c-means [32], fuzzy 

c-regression models [33], possibilistic fuzzy c-means models 

[34], and interval-based fuzzy model [35], which have been 

proposed for data clustering. And there are several fuzzy 

clustering algorithms proposed to solve specific clustering 

problems, such as motion detection [36] and linguistic analysis 

in web documents [37]. Among those proposed algorithms, 

FCAN [38] is the one that utilizes fuzzy techniques to detect 

clusters in complex network data. FCAN may detect clusters by 

segmenting a data matrix in which each element represents the 

strength of the relationship between pairwise data points. The 

entries of the data matrix are obtained by adding the binary 

value and the degree of similarity representing the connection 

and attribute similarity between pairwise vertices, respectively. 

Though effective to some extent, FCAN may not truly identify 

the strengths of topology and attribute values that may 

determine the cluster arrangement within the clustering 

process. 

Given the prevalent works in graph clustering and fuzzy 

clustering algorithms, we have the following findings that may 

motivate us to develop a more suitable algorithm. First, most of 

the graph clustering algorithms detect clusters based on 

topological properties only, or the attribute information is not 

fully utilized, just like the work presented in [38]. Second, most 

of the approaches cannot detect overlapping clusters, which 

might be more desirable in some graph data, e.g., some 

communities in social networks are overlapping. Last but the 

most, currently, there are no effective fuzzy algorithms for 

discovering clusters in attributed graphs. To overcome the 

mentioned challenges, we propose an algorithm for discovering 

Fuzzy Structural Patterns for Graph Analytics (FSPGA). 

FSPGA performs its tasks by formulating the identification of 

clusters in attributed graphs as a fuzzy constrained optimization 

problem that takes into the consideration edge structure and 

attributes. FSPGA may identify the optimal membership 

arrangement that is determined by both edge structure and 

attribute information between vertices and clusters. By 

adopting the fuzzy sets theory, FSPGA may detect overlapping 

clusters in the attributed graph. 

For performance evaluation, FSPGA is tested with both 

synthetic and real datasets including social and biological 

network graphs. The experimental results are verified against 

known ground-truth data. It is found that FSPGA obtains a 

better performance in both efficiency and effectiveness, 

compared with state-of-the-art graph clustering algorithms and 

fuzzy clustering algorithms. Given the performance, FSPGA is 

a very promising fuzzy algorithm for discovering structural 

patterns in the form of clusters in attributed graph data. 

In Section II below, how the problem of discovering clusters 

in the attributed graph is formulated as a constrained 

optimization problem is discussed and the details of FSPGA is 

presented. In Section III, we present the results of experiments 

performed to evaluate the performance of FSPGA. In Section 

IV, we discuss the unique features of FSPGA, the differences 

between FSPGA and other fuzzy or non-fuzzy clustering 

algorithms. We also compare the computational complexity 

and memory requirement of FSPGA with some popular 

clustering algorithms. Finally, in Section V, we present the 
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conclusion that summarizes the contributions of the paper and 

proposals for the future work. 

II. FSPGA IN DETAILS

A. Mathematical preliminaries 

Given an attributed graph containing nV vertices and nE 

edges, in which each vertex is associated with a set of attribute 

values, the graph can be represented as G = (V, E, Λ), where the 

set of vertices, V, can be denoted as, V= {vi | 1 ≤ i ≤ nV}, the set 

of edges, E, can be denoted as E = {eij | 1 ≤ i, j ≤ nV, i ≠ j}, and 

the set of attributes that is associated with each vertex can be 

denoted as Λ where Λ = {atti | 1 ≤ i ≤ nΛ}. 

Given the vertices and edges in G, we use an adjacency 

matrix M of dimensions, nV by nV, to represent the connections 

between vertices in G so that an entry, mij, in M has the value, 1, 

if vi and vj are connected and, 0, if they are not. 

Besides the topological information, we also use another 

nV-by-nV matrix A, to represent the degree of attribute affinity 

between pairwise vertices in G. Hence, each entry in A, say aij, 

can be obtained by any measure that may evaluate how similar 

or related the vertices vi and vj are, given the attribute values 

associated with them. Here we assume that aij should be 

nonnegative and a higher magnitude of it means vi and vj are 

more related, given the attribute values associated with the two 

vertices. It also should be noted that the value of each aij in A, is 

determined by the attribute inter-relationship between two 

vertices, vi and vj only. In other words, though mij might be zero, 

which means that there is no connection between vi and vj, aij 

might be positive if the attribute values associated with vi and vj 

are considered similar or correlated based on some evaluation 

measures. 

Given adjacency matrix M and matrix of attribute affinity A, 

we use the following augmented matrix to represent the mutual 

information between any pair of vertices in G 













A0

0M
Y

)1( 


   (1) 

where the parameter α is used to adjust the bias between edge 

structure and attribute similarity. The data matrix Y has the 

dimension of 2nV by 2nV, the mutual information between 

pairwise vertices are located in the diagonal blocks of Y, while 

entries in other blocks are all zero-valued. Utilizing Y, FSPGA 

may perform the task of discovering clusters in G. 

B. The function based algorithm 

FSPGA performs the task of cluster detection using Y. To 

find optimal cluster membership for the vertices in G that takes 

into the consideration edge structure and attribute, FSPGA is 

considering to use an objective function to evaluate the overall 

quality of detected clusters. 

To formulate the objective that is adopted by FSPGA, we 

firstly introduce an auxiliary matrix having the dimension of 

2nV-by-k, X, where k is the number of the clusters to seek. 

FSPGA uses X to represent strength in terms of structure and 

attributes that a vertex belongs to a cluster. Specifically, the 

first nV-by-k entries are used for representing the structural 

strength that a vertex belongs to a cluster, and the second 

nV-by-k entries are used for representing the strength in terms of 

attributes that a vertex belongs to a cluster. Let xij be an element 

in X. The value of xij indicates either the structural strength or 

that in terms of attributes that vertex i belongs to cluster j, 

according to the subscripts of the element. Given the properties 

of X, it can be used to measure either the edge structure, or 

attribute strength that each vertex belongs to each cluster as X 

uses different blocks to consider these two aspects, 

respectively. The aggregation of the number of connections and 

the degrees of attribute affinity, weighted by the corresponding 

variables in X can be obtained if an appropriate method can be 

used. Then, we introduce the membership matrix C, which has 

the dimension of nV by k. Each element of C, say cij, indicates 

the strength of membership that vertex i belongs to cluster j. 

Apparently, a higher value of cij means vertex i leans to cluster j 

more. 

Given Y, auxiliary matrix X, and membership matrix C, we 

propose FSPGA to formulate the cluster detection in the 

attributed graph as the following objective function to be 

optimized 

 
 

21

TΤT

2
T22T

,0,0

,

2

1
)(

maximize

eCeCX

CCS

XCXCYXS







tosubject

trO
FFF  (2) 

where (i) |C|2F, and |X|2F are the matrix Frobenius norms of C 

and X, which are used to smooth the variables in these matrices, 

(ii) |XCT|2F is the matrix Frobenius norm of the product of X 

and the transpose of C. (iii), e1 and e2 are k-by-1 and nV-by-1 

vectors, in which all elements are 1’s. With the use of the 

proposed objective function, FSPGA can have the advantage 

that it can discover graph clusters by taking into consideration 

both edge structure and attribute information between vertices 

in the graph. 

To better explain how FSPGA determines cluster 

membership of each vertex in a graph, let us consider the first 

term of (2). It is used to aggregate the number of connections 

and the degrees of attribute affinity within each of the k clusters 

in a graph. This first term, tr(STYX) can be rewritten as 





k

i

ii
tr

1

TT )( YxsYXS  (3) 

From (3), in the other words, the k elements in tr(STYX) are 

summed up and it is this total sum that FSPGA uses to evaluate 

the overall quality of the k clusters in the optimization process. 

Based on (3), the roles played by the variables in C, and X in 

measuring the overall clustering quality become clear. By 

evenly dividing the variables in each column of X into two parts 

and substituting Y in (3) using (1), (3) can be rewritten as  





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x

A0

0M
ccYxs




  (4) 

where xa
i and xb

i represent the first and second nV variables in 

xi, respectively. From (4), It should be noted that M is 

multiplied by the variables in xa
i, and A is multiplied by the 

variables in xb
i. The products of Mxa

i and Axb
i represent the 
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total number of connections and the total degrees of attribute 

affinity in cluster i, weighted by xa
i, and xb

i, respectively. In 

other words, the variables in each column of X, are used to 

obtain the weighted sums of connections and weighted degrees 

of attribute affinity within each cluster. Since M is different 

from A, in general xa
i, and xb

i are always different within the 

optimization process, they contribute to the graph clustering 

process in different ways. 

Unlike the elements in X, the elements in C, such as ci, is 

used to combine the effect of both the number of connections 

and the degrees of attribute affinity in cluster i, and such 

aggregation is made possible by FSPGA taking into 

consideration the variables in each column of C as the degrees 

of the cluster membership for each vertex with respect to each 

cluster. 

To show how (3) is computed by FSPGA in detail, we give a 

simple example below. It consists of an augmented matrix 

representing a graph containing 4 vertices which are segmented 

into 2 clusters. This matrix is shown as 





















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
















































0    0.8003    0.4854    0.9572

0.8003    0    0.9649    0.9575

0.4854    0.9649    0    0.6324

0.9572    0.9575    0.6324    0

0 0 0 1

0 0 1     1

0     1     0     1

1 1 1 0

0

0

Y        (5) 

where the first and second block at the main diagonal are the 

matrices M and A, respectively. For simplicity, we ignore the 

parameter α here. We assume that the variables in C and X 

obtained by FSPGA after some iteration are given as follows: 
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

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


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0.0344   0.0318

0.9502   0.7060

0.3171   0.1712

0.6948   0.6555

0.8235   0.3922

0.0971   0.7431

0.0462   0.7577

0.2769   0.6787

,,

0.4933   0.5067

0.5173   0.4827

0.0375   0.9625

0.6086   0.3914

X
C

C
SC    (6) 

To obtain the total number of connections and the total 

degrees of attribute affinity in a cluster, say cluster 1, we make 

use of (4) 

5740.5][
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where s1, c1, and x1 are the first columns in S, C, and X in (6). 

Based on (4), FSPGA can evaluate the overall quality of k 

clusters in the graph. If optimal values in X exist, the optimal 

membership matrix C, which assigns each vertex to the cluster 

that it has more connections with and that contains vertices that 

have attribute values most related or similar to it, can be found 

by FSPGA. 

In the case that there is no connection between two vertices, 

it should be noted that they might still be grouped into the same 

cluster. This is because the attribute values that are associated 

with each of them can still be similar or correlated and in such 

case, the corresponding variables in X can be positive. 

However, one may notice that the value of tr(STYX), i.e., the 

sum of the total number of edges in the k clusters and degrees of 

attribute affinity between the vertex pairs in each of them, may 

increase when the variables in S and X become larger. In such 

case, FSPGA makes use of |XCT|2F to penalize the variables in 

X and C which are assigned with too large or too small values. 

In other words, only when the variables in S and X are assigned 

with appropriate values that the objective function O can be 

optimized. The cluster membership matrix C obtained in such 

case is thus determined by both edge structure and attribute 

information. Moreover, since Equation (2) satisfies the fuzzy 

clustering constraint that requires the sum of each row in C to 

be 1, it is very convenient for overlapping clusters to be 

discovered after the optimal cluster membership matrix C is 

obtained. 

C. The iterative updating algorithm 

The proposed objective function is a constrained quadratic 

function. Based on the KKT conditions for constrained 

optimization problems, we may find the corresponding rules to 

iteratively update the matrices C, and X to search the local 

optima. 

1) Updating rule for C and adoption of fuzzy clustering

membership 

Let γij and λi be the Lagrange multipliers for the constraints of 

cij ≥ 0 and Σjcij = 1. The Lagrange function L for C is 

 
21

TT )(),( eCeλCγγC  trOL                  (8)

where γ = [γij] and λ = [λi] are Lagrange multipliers for the 

constraints of the non-negativity of C and the sum-to-1 of 

variables in each row of C. Based on the KKT conditions, we 

have 

21

T

1

T

0

0)1(

eCe

γ

0Cγ

λeγXCXCAXMX
C

21















L
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where (i) “ₒ” means the Hadamard product of two matrices 

with the same dimension, (ii) X1 and X2 are two block matrices 

obtained by dividing X between row nV and nV+1. Based on (9), 

we have the following element wise equation system 

 
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   (10) 

Given the first equation in (10), we have 

ijiijij
  )(])1([ T

XCXCAXMX
21

      (11) 

Using (11) to replace γij in the equation of Hadamard product, 

we have the iterative updating rule for C 
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In the above equation, one more unknown, λi, needs to be 

determined for the updating of the variables in C. Given the 

constraint that the sum of each row of variables is one (see 

Equation (10)), we have 

 
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ij
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T
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AXMX
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Given Equation (13), λi can, therefore, be solved as 
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          (14) 

Using the value of λi to replace the corresponding variable in 

(12), the iterative updating rule, which is under the fuzzy 

clustering framework for C, can be obtained. With such an 

updating rule, the sum of each row in C is constrained to be 1. 

within the optimization procedure. As a result, a vertex in G 

may belong to more than one cluster due to the considerations 

of fuzzy cluster boundaries.  

2) Updating rule for X

Let ηij be the Lagrange multipliers for the constraints xij≥0, 

hence the Lagrange function L for X is 

)(),( T
XηηX trOL     (15) 

where η = [ηij] is the matrix of Lagrange multipliers for the 

non-negativity of X. Based on the KKT conditions, we have 
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     (16) 

Given (16) we have the following element wise equation 

system 

 
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Given the equation system (17), the element wise updating 

rule for X can be derived 
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ijij
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XCXC
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
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By iteratively updating the variables in λ, C and X using the 

rules shown in (14), (12), and (18), FSPGA may find the local 

optima for (2) in a finite number of iterations. 

D. Summary of the algorithm 

Given the description from A to C in Section II, FSPGA can 

be summarized as the pseudo codes shown in Fig. 1. Once the 

number of clusters k, the adjust parameter α, maximum number 

of iteration and the minimum tolerance, τ are determined, 

FSPGA will automatically search for the optimal matrix of 

membership, C in a finite number of iterations. After FSPGA is 

stopped according to the terminal condition, the obtained C can 

be seen as the approximately optimal cluster arrangement.  

E. Determining the cluster affliation 

Having obtained the fuzzy membership in C for each vertex 

to belong to each cluster, FSPGA can determine, for each 

cluster, all its members. As vertices may belong to more than 

one cluster, FSPGA may determine whether vi belongs to 

cluster j according to the following inequality 

k

k
c

ij

11 



   (19) 

where k is the number of clusters and β is a positive real number 

that is used to determine the extent of overlapping between 

identified clusters in the attributed graph. Here, β is a global 

parameter which is used to determine if each vertex, say vi, 

belongs to cluster j after the optimization process. In addition, it 

should be noted that β is used only for the case of vertices 

whose degrees of cluster membership are not the highest for 

that vertex and FSPGA can discover disjoint clusters in an 

attributed graph when β is set to zero. Given this setting, it 

should be noted that it becomes more possible for more vertices 

to be assigned only to those clusters with the highest cluster 

membership and the extent of overlapping between detected 

clusters becomes smaller when β is set to a relatively high value. 

Hence, β can be adjusted according to the demand of 

overlapping in different attributed graph data and the variations 

of β won’t change the number of clusters.  

III. EXPERIMENTS AND ANALYSIS

In this section, we describe the details of the data sets that we 

used. We also explain how experiments and what criteria we 

used to evaluate the performance of FSPGA. 

A. Experimental set up and evaluation metrics 

1) Baselines for comparison

To show the desirable features of FSPGA, we selected a 

number of graph clustering algorithms to compare with FSPGA. 

These algorithms include Affinity Propagation clustering (AP), 

Spectral clustering (SC), CoDa, Fuzzy c-means clustering 

(FCM), improved Relational Fuzzy c-means clustering 

Algorithm FSPGA 

Input: Y, α, max_iteration, τ, k 

Output: C, X 

randomly initialize C, X; 

normalize C using C= C./(Ce1e1
T) 

for count=1: max_iteration  

      fixing X 

update λ and C using (14) and (12); 

      fixing C 

update X using (18); 

       if (|Ci - Ci-1|F<τ) 

   compute objective value using (2); 

   break; 

       end if 

end for 

return C, X; 
Fig. 1. Pseudo codes of FSPGA 



1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

6 

(iRFCM), CESNA, Relational topic model (RTM) and ECDA. 

Selecting these algorithms as baselines is because they are 

either the latest algorithms or classical ones and have all been 

used effectively to detect clusters in various network graphs. 

Specifically, AP, SC, and CoDa may detect graph clusters that 

take different topological properties of network graph data. For 

our experiments, we used the SC that makes use of the 

normalized cut in graph clustering. FCM may detect graph 

clusters making use of information of similarity between 

pairwise vertices in G. Therefore, we used the information in Λ 

as the input that is used to compute the similarity between 

pairwise vertices for FCM. As iRFCM is a version of FCM that 

can be used to discover graph clusters, we tested it using the 

same data as FSPGA uses. Algorithms like CESNA, RTM, and 

ECDA are ones taking into consideration both graph topologies 

and attribute values. RTM has been shown to be a very 

effective topic-model based approach to segment relational 

data. CESNA performs graph clustering using a generative 

process that determines cluster membership of a vertex by 

computing an estimate of the joint probability based on 

structure and vertex attributes. ECDA performs its tasks using 

an evolutionary graph clustering algorithm. 

For performance benchmarking, we used the source code or 

executables made available by the authors. All the experiments 

were conducted under the same environment which included a 

workstation with 4-core 3.4GHz CPU and 16GB RAM. 

2) Experimental set-up

To ensure that the algorithms we used in the experiment may 

obtain a robust performance, we tested them using the 

parameters in such a way that either the default settings as 

recommended by the authors are used or that they are tuned by 

trials to find the best settings. 

Specifically, the AP, Coda, and ECDA algorithms do not 

require input parameters to be set by the users. For these 

algorithms, the default settings as recommended and 

implemented by the authors were used. For algorithms, 

including SC, FCM, iRFCM, and RTM, which require 

parameters to manually input into the system, we tried as many 

different settings as we can, to obtain the best results for 

performance benchmarking. For example, SC requires that the 

parameter of sigma to be set by the users before it can run. To 

find a better set of parameters, we tried SC using different 

sigma from 1 to 10. The settings that give the best performance 

of SC are recorded and presented in our performance analysis 

report below. As for the number of clusters, k, we set it for those 

algorithms that need k as a predefined parameter, including, 

SC, FCM, iRFCM, CESNA, and RTM, to be equal to the 

number of ground truth clusters that are used for benchmarking. 

For FSPGA, we set β to 0 when FSPGA discovers structural 

patterns in those datasets whose ground-truth clusters are 

disjoint. We set β to 3 for all those datasets whose ground-truth 

clusters overlap with each other. As for the other parameters, 

we set α to 0.5, the maximum number of iterations to 300. As 

for k, it is set to be the same as the other algorithms, which is 

equal to the number of ground-truth clusters in each of the 

datasets. All the algorithms, including FSPGA, were executed 

10 times to obtain statistical averages for the performance 

measures. 

3) Data description

For performance evaluations, we used both synthetic and real 

datasets with known ground truth. We used synthetic data to 

test the effectiveness and efficiency of different algorithms and 

we used the real-world data sets to test the robustness of the 

different algorithms regarding to different applications. The 

real data sets that we used are mainly categorized into two 

classes, including social network graph data and biological 

network graph data. 

The data sets Twitter, Ego-facebook, and Googleplus [23] 

are obtained from real social networking sites. The vertices, 

edges, and attributes in these data sets represent users of the 

social networks, the friendship between users and user profiles, 

respectively. The Twitter dataset is constructed based on a 

number of social circles extracted from twitter.com. For this 

dataset, we have 2511 vertices, 37154 edges, and 9067 attribute 

values. The Ego-facebook data set is constructed based on a 

number of sub-networks extracted from facebook.com. In this 

data set, there are 4039 vertices, 88234 edges and 1283 attribute 

values. Googleplus is another set of online social network data 

which was constructed based on the sub-networks from 

plus.google.com. There are 7856 vertices, 321268 edges, and 

2024 attribute values in the dataset. The ground truth social 

communities for this data set have been identified. There are 

132, 191, and 91 ground truth clusters which are used for 

benchmarking the identified clusters from datasets Twitter, 

Ego-facebook, and Googleplus, respectively. 

Krogan [40], DIP [41], and BioGrid [39] are three sets of 

biological data that are constructed based on known 

interactions between proteins related to Saccharomyces 

cerevisiae. In these three data sets, the vertices, edges, and 

attribute values represent the proteins, protein-protein 

interactions and GO terms [42], respectively. In Krogan, there 

are in total 2674 vertices, 7075 edges, and 3064 attribute 

values. In DIP, there are 4579 vertices, 20845 edges and 4237 

attributes. In BioGrid, there are 5640 vertices, 59748 edges, and 

4286 attribute values. These three data sets have the 

ground-truth data stored in the CYC2008 database [43] and 

there are 200 ground-truth clusters. Compared with those social 

network graph data used, Krogan, DIP, and BioGrid, are 

sparser. Using these two types of data allows us to find out how 

robust the algorithms are when used with different types of 

graphs. 

Syn1k is a set of synthetic data which is generated based on 

the rule that the probability of intra-cluster edges is higher than 

that of inter-cluster edges and that vertices in the same cluster 

are more related to each other than those that are not. For this 

dataset, we used 1000 vertices that are divided into 4 disjoint 

ground truth communities, 9900 edges and 50 attribute values 

that are made to associate with each vertex. It should be noted 

that, the ground truth clusters of all the real data sets overlap 

with each other to some extent. Specifically, the overlapping 

rates between pairwise ground truth clusters in datasets Twitter, 

Ego-facebook, and Googleplus are 0.00193, 0.00113, and 
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0.01913, respectively. And that in Krogan, DIP, and BioGrid, it 

is 0.0004. 

The above data sets are used to test the effectiveness of 

FSPGA and other algorithms. In addition, to test the scalability 

of FSPGA, we have generated several additional synthetic 

datasets ranging in size from 5,000 to 100,000 for our 

experiments. 

4) Determining the degree of attribute affinity between

pairwise vertices 

To determine the degrees of attribute affinity between all 

pairs of vertices that are used by FSPGA, we use the following 

method. First, we use a statistical measure to determine whether 

a pair of attribute values, say atti and attj are significantly 

associated. This measure is defined as 
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where o(atti, attj) represents the number of edges that 

connect two vertices which are associated with atti and attj, 

o(atti+) represents the number of edges that connect vertices 

which are associated with atti, e(atti, attj) to represent the 

expected number of such edges in the case that the attributes of 

the connected vertices are independent and unassociated, and in 

such case e(atti, attj) can be computed as [o(atti+)o(attj+)]/nE. In 

[44] and [45], this measure is shown to approximately follow 

the Standard Normal distribution. One may, therefore, decide 

that atti and attj are significantly associated with each other at a 

95% confidence level if diff(atti, attj) is greater than 1.96. 

Otherwise, they can be considered not significantly associated 

with each other. With this measure, attribute values that are not 

relevant can be filtered out. 

After the significantly associated attribute values are 

obtained, we may determine the degree of attribute affinity 

given all significantly associated attribute values of pairwise 

vertices (aij) using an information theoretical measure [15] 
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where Pr(attik, attjm) denotes the probability that two 

connected vertices are characterized by attk and attm, this 

probability can be computed as o(attk, attm)/nE, Pr(attik) denotes 

the probability that an edge may connect two vertices that are 

characterized by attk, and these two probabilities can be 

computed as o(+attk)/nE. The magnitude of aij, can be 

interpreted as the information redundancy of the attribute 

values that are associated with vi and vj in the attributed graph. 

After normalization, it ranges from 0 to 1. A greater value of it 

means that the attribute values of the pair of vertices, vi and vj 

are more strongly associated with each other. Having obtained 

the degrees of attribute affinity, we use them to construct A that 

is used by FSPGA.  

5) Evaluation metrics

For performance evaluation, we are considering different 

evaluation measures which are widely used for evaluating 

graph clustering algorithms and fuzzy clustering algorithms. 

For measures used for validating graph clusters, we used the 

Normalized Mutual Information (NMI), and the Average 

Accuracy (Acc) [46]. There are a number of measures for fuzzy 

clustering validity, such as Beni Index [47], Earth Mover’s 

Distance [48], and several fuzzy Rand-Index-based measures 

[49]. In our experiments, we selected Fuzzy Adjusted Rand 

Index (FARI) [49] for evaluating the graph clusters discovered 

by different algorithms.  

The NMI measures the overall accuracy of the matches 

between detected clusters and those that are considered 

“ground truth”. It is defined as 
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where Pr(Ci, Cj
*) denotes the probability that vertices are in 

both the detected cluster i and the true cluster j, and Pr(Ci) 

denotes the probability that a vertex is found to exist in cluster i. 

Based on this definition, if the NMI measure is high, it means 

that the clusters detected match well with the ground-truth 

clusters.  

Contrary to the NMI, the Acc measure evaluates individually 

detected cluster. It is defined as 

  
c

i

i
CCf

C

C
Acc ,       (23) 

where |C| means the size of the detected clusters, and f(.) 

stands for a mapping function between cluster i and the ground 

truth. For our purpose, we define f(.) to be the maximum 

overlap between detected cluster i and a ground-truth cluster. 

Thus, Acc evaluates the best matching of each cluster. A higher 

value of Acc, therefore means that each detected cluster has a 

better match with the ground truth. The higher the Acc of all 

clusters detected by an algorithm, therefore means that the 

algorithm is more effective.  

The Fuzzy Adjusted Rand Index (FARI) measures the overall 

adjusted agreement between the discovered and ground truth 

clusters and it is defined as 
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where nij represents the number of vertices in both 

discovered cluster i and ground truth cluster j, Ng is the number 

of vertices in the ground truth database. NMI, Acc, and FARI 

evaluate the quality of detected clusters against the ground truth 

from different aspects. With these three measures, we can better 

evaluate the robustness of different algorithms.  

B. Experimental results using synthetic data 

1) Evaluation on clustering quality

For performance evaluation, we used a set of synthetic graph 

data containing 1000 vertices to test the effectiveness of all 

different algorithms. There are four disjoint ground truth 

clusters in the synthetic dataset. As mentioned above, the 

synthetic data are generated by assuming that the probability of 

vertices within the same cluster to be connected with other 

vertices to be higher than that of the probability between 

clusters. For our experiment, the data set Syn1k was generated 

by setting the probability of intra-cluster connections to be 0.05 

and the probability of inter-cluster connections to be 0.01.  

The performance of FSPGA and other algorithms on the 

synthetic dataset Syn1k with respect to NMI, Acc, and FARI is 

given in Table I. As the table shows, FSPGA performs better 

than other algorithms. No matter which of NMI, Acc, or FARI is 

considered, FSPGA may outperform all the compared baselines 

in dataset Syn1k. These experimental results show that FSPGA 

can be very effective with the discovering of clusters in the 

synthetic attributed graph.    

2) Scalability test

To find out how FSPGA can scale up when dataset size 

increases, a series of synthetic data of sizes ranging from 5000 

to 100,000 were generated using the same probabilities of 0.05 

and 0.01 for intra- and inter-cluster vertex connections as is 

with Syn1k. Given these generated data, the scalability of 

FSPGA was studied in a number of experiments involving 

different data sets. The results obtained were compared with 

those obtained with CESNA, RTM, iRFCM, and AP. As 

FSPGA and these algorithms are all iterative in nature, a 

comparison is made based on the average execution time of 

each iteration. The results are shown in Fig. 2.  

The results show that FSPGA scales up well when compared 

with RTM and iRFCM and AP. Even with the data sets 

containing as many as 100,000 vertices, FSPGA could 

complete each iteration in the optimization process in around 1 

second and this is slightly faster than CESNA. However, when 

comparing the number of iterations that are required for the two 

algorithms to complete the cluster discovery tasks, it should be 

noted that CESNA needed at least 300 iterations whereas 

FSPGA converges much below 300. Given this to be the case, 

FSPGA is more computationally efficient.  

When compared with AP, RTM and iRFCM, the 

computational time used by them is much more than FSPGA 

did. It should be noted that we did not obtain the results of 

scalability test of RTM or iRFCM when the size of synthetic 

data is larger than 10,000 as they were crushed under that 

situation. And the computational time of AP is also intolerable 

when the data size is larger than 25,000. 

3) Sensitivity test of α

As described in Section 2, for FSPGA to performs its tasks, it 

requires the setting of a parameter α. The parameter is used to 

adjust the bias between the edge density and the degree of 

attribute affinity during the process of cluster identification. 

How the parameter may affect the performance of FSPGA can 

be investigated in several sensitivity tests using the data set 

Syn1k.  

In our experiment, α was set to different values from 0 to 1, 

with an increment of 0.2, and FSPGA was used under these 

different settings to detect clusters. The performance was 

measured with NMI, Acc, and FARI and the results are shown in 

Fig. 3. 

It is seen that when α was set to 0, which means that only the 

attribute values are considered, and when it is set to 1, which 

Fig. 2. Scalability test between different algorithms 

Fig. 3. Sensitivity test of α 

TABLE I 

NMI, ACC AND FARI IN SYN1K 

 Syn1k 

Approach NMI Acc FARI 

AP 0.152 0.747 0.01 

CoDa 0.116 0.43 0.097 

SC 0.232 0.528 0.277 

FCM 0.732 0.871 0.674 

iRFCM 0.718 0.739 0.677 

CESNA 0.792 0.845 0.813 

RTM 0.797 0.797 0.683 

ECDA 0.272 0.466 0.203 

FSPGA 0.992 0.998 0.995 
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means that only the edge structure is considered, the 

performance of FSPGA is affected negatively. When setting α 

to the value between 0.4 and 0.6, FSPGA obtains very good 

results. Given these results, we set α to be 0.5 in all our 

experiments so that both attribute values and edge structures are 

considered equally important by FSPGA.  

C. Experimental results in real data 

1) Application in social community detection

Social communities are important structural patterns in 

social graphs. The identification of such communities is 

important to social network analysis. For performance 

evaluation of FSPGA, we used three sets of social network data, 

including Twitter, Ego-facebook, and Googleplus. All these 

data sets have known ground-truth communities that have been 

verified in previous work. Given the fact that the number of 

ground truth clusters is known, for those algorithms which need 

to set the number of clusters (k), we set it to be the number of 

known ground truth clusters in each dataset.  

The experimental results of NMI, Acc, and FARI obtained 

with these datasets are summarized in Table II. As the table 

shows, FSPGA performs more robustly than other algorithms. 

When the identified clusters are evaluated by NMI, FSPGA 

outperforms all the other algorithms in all the three social 

network datasets. When evaluated by Acc, FSPGA ranks the 

best in Googleplus, and second best in Twitter, and 

Ego-facebook, respectively. When the identified clusters are 

evaluated by FARI, FSPGA outperforms the other algorithms in 

the case of Twitter, and Googleplus, and ranks second best in 

Ego-facebook. In total, the above results obtained from social 

network data show that the social communities detected by 

FSPGA better match with the ground-truth when compared 

with the others.  

2) Functional modules detection in biological graph data

Functional modules in biological networks, such as protein 

complexes in protein-protein interaction (PPI) network graphs 

also can be considered as structural patterns in the form of 

graph clusters. 

To further test the effectiveness of FSPGA, we used three 

sets of PPI network data in our experiments. They included the 

data sets Krogan, DIP, and BioGrid. These datasets were 

chosen as the ground-truth, which correspond to known protein 

complexes, could be found and some of the known protein 

complexes are overlapping. Performance data based on NMI, 

Acc and FARI were obtained from the experiments. The results 

obtained with these two data sets are shown in Table III. 

As shown in the table, FSPGA obtains better performance 

than all the other algorithms regardless of performance 

measures used. When the evaluation measure, Acc is 

considered, FSPGA outperforms all the baselines in all three 

datasets. When NMI is considered, FSPGA ranks the best in the 

case of DIP and BioGrid, and third with Krogan. When the 

discovered clusters are evaluated by FARI, FSPGA 

outperforms all other algorithms with DIP and BioGrid, and 

ranks third with Krogan.  

As the objective function used by FSPGA considers the 

pairwise relationship between any pair of vertices in terms of 

edge structure and attribute information, the relative weighting 

between how much each of these two factors should be 

considered can be adjusted dynamically during the 

optimization process. The fuzzy cluster membership matrix C 

obtained by FSPGA can find k clusters in which vertices share 

TABLE II 

NMI, ACC AND FARI OBTAINED FROM SOCIAL NETWORK DATA 

Twitter Ego-facebook Googleplus 

Approach NMI Acc FARI NMI Acc FARI NMI Acc FARI 

AP 0.5982nd 0.4793rd 0.123 0.5282nd 0.416 0.1941st 0.355 0.273 0.095 

CoDa 0.5843rd 0.471 0.1823rd 0.5243rd 0.5023rd 0.133rd 0.373 0.3753rd 0.079 

SC 0.493 0.305 0.094 0.52 0.447 0.126 0.33 0.296 0.081 

FCM 0.08 0.09 0.016 0.28 0.208 0.056 0.128 0.181 0.031 

iRFCM 0.535 0.37 0.172 0.315 0.282 0.074 0.266 0.318 0.054 

CESNA 0.572 0.5281st 0.169 0.483 0.6231st 0.118 0.422nd 0.472nd 0.1053rd 

RTM 0.028 0.099 0.014 0.227 0.167 0.061 0.023 0.151 0.019 

ECDA 0.529 0.385 0.1842nd 0.322 0.234 0.099 0.3953rd 0.341 0.1222nd 

FSPGA 0.6411st 0.5132nd 0.2411st 0.5791st 0.5882nd 0.172nd 0.4891st 0.5191st 0.1491st 

TABLE III 

NMI, ACC AND FARI OBTAINED FROM BIOLOGICAL NETWORK DATA 

Krogan DIP BioGrid 

Approach NMI Acc FARI NMI Acc FARI NMI Acc FARI 

AP 0.6921st 0.1873rd 0.11 0.6882nd 0.1172nd 0.098 0.109 0.016 0.003 

CoDa 0.6882nd 0.1992nd 0.2981st 0.463 0.0683rd 0.045 0.299 0.035 0.017 

SC 0.609 0.079 0.026 0.588 0.047 0.009 0.5453rd 0.032 0.0873rd 

FCM 0.454 0.078 0.115 0.49 0.06 0.1383rd 0.444 0.0482nd 0.073 

iRFCM 0.342 0.055 0.058 0.444 0.049 0.091 0.355 0.0463rd 0.045 

CESNA 0.484 0.055 0.027 0.425 0.026 0.063 0.449 0.026 0.049 

RTM 0.578 0.037 0.169 0.6143rd 0.025 0.1842nd 0.6222nd 0.021 0.1942nd 

ECDA 0.631 0.142 0.2292nd 0.299 0.058 0.016 0.145 0.026 0.043 

FSPGA 0.6773rd 0.2021st 0.1913rd 0.7121st 0.1291st 0.2671st 0.7551st 0.1251st 0.3721st 
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similar weighted structure with each other. This represents, in 

other words, the optimized weighted aggregation of 

intra-cluster connections and attribute relativity. This feature 

allows FSPGA to group unconnected but related vertices to be 

taken into consideration based on attribute relativity. Moreover, 

as FSPGA allows fuzzy cluster membership to be considered 

within the optimization process, thereby making it possible for 

FSPGA to find overlapping clusters as fuzzy structural patterns 

in an attributed graph. These features are the reasons why 

FSPGA can obtain a more robust performance with both 

overlapping and non-overlapping clustering. 

D. Case study-overlapping rate versus cluster quality 

To find out what impact the parameter β can have on the 

quality of clusters, FSPGA is tested with all real datasets, using 

β from 0.1 to 4, with a 0.1 increment. The clusters obtained 

under different settings of β are evaluated using NMI, Acc, and 

FARI. The results are shown in Fig. 4 (a) - (c). Together with 

the overlapping rate of ground truth clusters of each real dataset, 

the impact of β on the quality of overlapping clustering were 

studied in detail.  

The variations of NMI, Acc, and FARI are shown in Fig. 4 

(a)-(c). As it is shown in the figures, the magnitudes of different 

clustering validity measures share similar variations. As the 

value of β becomes larger than a particular value, the clustering 

quality does not improve by much. In Fig. 4 (d), it should be 

noted that the extent of overlapping in all the datasets decreases 

and approximates to zero as β becomes larger and larger.  Given 

these results, it should be noted that β needs to be adjusted for 

FSPGA to discover clusters with different extent of 

overlapping. 

It is mentioned in Section II.E that β is used to constrain the 

number of vertices that can belong to more than one cluster. As 

a result, each vertex in an attributed graph is probably assigned 

to the cluster with the greatest degree of cluster membership 

when β is set to be high enough. As a result, the clustering 

quality of FSPGA would be approximately the same as with 

crisp clustering. Given the fact that the overlapping rate of most 

datasets is relatively low, e.g., 0.00193 in Twitter, 0.00113 in 

Ego-facebook, and 0.0004 in biological datasets, the clustering 

quality is better when β is set higher, e.g., 2.5 to 3.5 in Twitter, 

Ego-facebook, and biological datasets. Using relatively large β, 

discovered clusters are mostly disjoint and the overall 

overlapping rate is therefore similar to that of the ground truth 

clusters (see Fig. 4 (d)).    

However, when β is set between 2.5 and 3.5, it may degrade 

the quality of clusters discovered in Googleplus. This is 

because this data set has a relatively high overlapping rate. E.g., 

the Acc decreases when β is set larger than 2.5.  

Given these characteristics of β, it is necessary for one to 

adjust the setting. However, FSPGA performs robustly when β 

is set between 2 and 3.5 and this is why β is set to 3 in our 

experiments.  

IV. DISCUSSION

A. Comparisons between FSPGA and formal fuzzy 

clustering algorithms 

With the above features, FSPGA can be considered different 

from such popular fuzzy clustering algorithms as the fuzzy 

c-means algorithm (FCM), and the relational fuzzy c-means 

algorithm (iRFCM). With the objective function that it uses, 

 (a)   (b) 

     (c)       (d) 

Fig. 4. NMI, Acc, FARI, and overlapping rate in social and biological datasets 
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FSPGA can determine, dynamically, the degrees of cluster 

membership based on both the edge structure and attribute 

information of vertices. Compared with algorithms such as 

iRFCM which adjust global bias between M and A, FSPGA 

may identify meaningful clusters which other algorithms may 

miss.  

Also, while existing fuzzy clustering algorithms minimize 

dissimilarity between data entities and cluster centers, FSPGA 

takes into consideration the edge structure and attribute 

relativity within each cluster. By so doing, FSPGA can identify 

clusters in which the weighted aggregation of intra-cluster 

connections and degrees of attribute relativity between any pair 

of vertices is optimized. These features are some of the reasons 

why FSPGA may perform better than other algorithms we used 

for comparison. 

B. Computational complexity and space requirements of 

FSPGA 

As the computational complexity of FSPGA is dependent 

mainly on the iterative updating of C and X, the complexity of 

the process of determining these matrices is considered here. 

Let nV and k be the number of vertices in the graph and the 

number of clusters in an attributed graph. It should be noted that 

k << nV in practice. According to Equation (8), for updating 

each element in C, say cij, it approximates the order of 

O((2k+2)nV). Hence updating all elements in C approximates 

the order of O(k(2k+2)nV
2). According to Equation (10), 

updating each element in λ follows the order of O(k). This is 

because the computational components in the numerator and 

denominator are the same as those in (8). As a result, updating λ 

follows the order of O(knV). According to Equation (14), the 

updating of each element in X approximates the order of 

O((k+2)nV). Hence updating all the elements in X follows the 

order of O(2k(k+2)nV
2).  

Given the complexity of updating variables in C and X, 

FSPGA is an algorithm with complexity of O(n2). In other 

words, FSPGA is more efficient than the spectral-based 

clustering algorithms since their computational complexity 

follows the order of O(n3). In fact, as the augmented matrix Y is 

always very sparse, theoretically, FSPGA should run faster 

than those algorithms, such as Affinity Propagation (AP), that 

also have the complexity of O(n2). The scalability test shown in 

Fig. 2 also supports the analysis here. 

Regarding the space requirement of FSPGA, it should be 

noted that FSPGA does not require much memory space when 

performing the task of discovering fuzzy structural patterns in 

the attributed graph. This is because FSPGA only stores those 

non-zero elements in the augmented matrix Y. For example, 

one synthetic dataset used in our experiment contains 100,000 

vertices, but there are about 30,000,000 elements in Y which 

are larger than zero. Compared with the full memory space for 

100,0002, 30,000,000 is only 0.3% of the full space. Given the 

analysis here and the scalability test shown in Fig. 2, FSPGA 

can be used for discovering fuzzy structural patterns in large 

attributed graphs. 

V. CONCLUSION 

In this paper, FSPGA, which is an algorithm for discovering 

fuzzy structural patterns in the form of clusters in the attributed 

graph, is proposed. Compared with prevalent algorithms that 

take different properties of an attributed graph, including 

topology, attribute, and both of the aforementioned, FSPGA 

may find an optimal arrangement of clusters for vertices in an 

attributed graph by formulating the task as a fuzzy constrained 

optimization problem. As the adoption of fuzzy set theory when 

determining the cluster membership, FSPGA can detect 

overlapping clusters, while most of the prevalent algorithms 

cannot. The experimental results presented in this paper show 

that FSPGA may perform robustly and efficiently in different 

types graph data, compared with the classical, latest graph 

clustering algorithms, and fuzzy clustering algorithms. In 

future, we will intend to further improve the efficiency of 

FSPGA and develop a version of FSPGA that may discover 

hierarchical structural patterns in attributed graphs. 
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