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Abstract—Identifying rumor sources in social networks plays a critical role in limiting the damage caused by them through the

timely quarantine of the sources. However, the temporal variation in the topology of social networks and the ongoing dynamic

processes challenge our traditional source identification techniques that are considered in static networks. In this paper, we

borrow an idea from criminology and propose a novel method to overcome the challenges. First, we reduce the time-varying

networks to a series of static networks by introducing a time-integrating window. Second, instead of inspecting every individual

in traditional techniques, we adopt a reverse dissemination strategy to specify a set of suspects of the real rumor source. This

process addresses the scalability issue of source identification problems, and therefore dramatically promotes the efficiency

of rumor source identification. Third, to determine the real source from the suspects, we employ a novel microscopic rumor

spreading model to calculate the maximum likelihood (ML) for each suspect. The one who can provide the largest ML estimate is

considered as the real source. The evaluations are carried out on real social networks with time-varying topology. The experiment

results show that our method can reduce 60% − 90% of the source seeking area in various time-varying social networks. The

results further indicate that our method can accurately identify the real source, or an individual who is very close to the real

source. To the best of our knowledge, the proposed method is the first that can be used to identify rumor sources in time-varying

social networks.

Index Terms—Time-varying social networks, rumor spreading, source identification, scalability.

✦

1 INTRODUCTION

RUMORS spreading in social networks have long
been a critical threat to our society. A recent inci-

dent of rumors “Obama was injured in two explosions
of White House” led to 10 billion USD losses in a
few hours. This demonstrates that a single rumor
can cause great damage to business and life [1].
Nowadays, with the development of mobile devices
and wireless techniques, the temporal nature of social
networks (time-varying social networks) has a deep
influence on dynamical information spreading pro-
cesses occurring on top of them [2]. The ubiquity and
easy access of social networks not only promote the
efficiency of information sharing but also dramatically
accelerate the speed of rumor spreading [3]. Rumors
combine the characteristics of the “word-of-mouth”
spreading scheme with the dynamic connections be-
tween individuals in time-varying social networks [4].

For either forensic or defensive purposes, it has
always been a significant work to identify the source
of rumors in time-varying social networks [5]. How-
ever, the existing techniques generally require firm
connections between individuals (i.e., static networks)
so that administrators can trace back along the deter-
mined connections to reach the spreading sources. For
example, many methods rely on identifying spanning
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trees in networks [6]–[8], then the roots of the span-
ning trees are regarded as the rumor sources. The
firm connections between users are the premise of
constructing spanning trees in these methods. Some
other methods detect rumor sources by measuring
node centralities [9], [10]. The individual who has the
maximum centrality value is considered as the rumor
source. All of these centrality measures are based on
static networks. Time-varying social networks, where
users and interactions evolve over time, have led
to great challenges to the traditional rumor source
identification techniques.

In this paper, we propose a novel source identifi-
cation method to overcome the challenges. First, to
represent a time-varying social network, we reduce
it to a sequence of static networks, each aggregating
all edges and nodes present in a time-integrating
window. This is the case, for instance, of rumors
spreading in Bluetooth networks, for which the fine-
grained temporal resolution is not available, whose
spreading can be studied through different integrating
windows ∆t (e.g., ∆t could be minutes, hours, days
or even months). In each integrating window, if users
did not activate the Bluetooth on their devices (i.e.,
offline), they would not receive or spread the rumors.
If they moved out the bluetooth coverage of their
communities (i.e., physical mobility), they would not
receive or spread the rumors. Second, similar to the
detective routine in criminology, a small set of sus-
pects will be identified by adopting a reverse dissem-
ination process to narrow down the scale of the source
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Fig. 1. Example of a rumor spreading in a time-varying social network. The random spread is located on the black node,
and can travel on the links depicted as line arrows in the time windows. Dashed lines represent links that are present in the
system in each time window.

seeking area. The reverse dissemination process dis-
tributes copies of rumors reversely from the users
whose states have been determined based on various
observations upon the networks. The ones who can
simultaneously receive all copies of rumors from the
infected users are supposed to be the suspects of the
real sources. This reverse dissemination process is
inspired from the Jordan Center method [9], which
is used to detect rumor sources in static neworks.
The method adopted here is different from the Jordan
Center method, because our method is based on time-
varying social networks rather than static networks.
We find that the reverse dissemination method ad-
dresses the scalability in rumor source identification,
and therefore, dramatically promotes the efficiency of
rumor source identification. In contrast, the traditional
methods inspect every user in networks, which costs
a lot of time in estimating the real sources [10]–[12].
Third, to determine the real source from the suspects,
we employ a microscopic rumor spreading model to
analytically estimate the probabilities of each user
being in different states in each time window. Since
this model allows for the time-varying connections
among users, it can feature the dynamics of each user.
More specifically, assuming any suspect as the rumor
source, we can obtain the probabilities of the observed
users to be in their observed states. Then, for any
suspect, we can calculate the maximum likelihood
(ML) of obtaining the observation. The one who can
provide the maximum ML will be considered as the
real rumor source.

To the best of our knowledge, the proposed two-
stage method is the first one that can be used to iden-
tify rumor sources in time-varying social networks.
The major contribution of this paper is two-fold:

• We adopt a reverse dissemination method to

narrow the scale of the source seeking area, and
therefore significantly promotes the efficiency of
source identification.

• We introduce a novel ML-based method that can
overcome the connection-always-changing chal-
lenge through a novel rumor spreading model in
time-varying social networks.

• Experiment results show significant advantages
of our method in the identification of rumor
sources, the estimation of spreading time, and the
prediction of infection scale of rumors.

The rest of this paper is organized as follows. We
introduce the preliminary knowledge of source iden-
tification in Section 2. Section 3 presents the details of
the reverse dissemination method. We elaborate upon
the ML-based method in Section 4 followed by Section
5 which shows a series of evaluations on our methods.
Section 7 presents the state-of-the-art in this area, and
finally, Section 8 concludes this paper.

2 SOURCE IDENTIFICATION PRIMER

In this section, we introduce the primer for rumor
source identification in social networks with time-
varying topology, including the features of time-
varying social networks, the state transition of users
when they hear a rumor, and the categorization of
partial observations in time-varying social networks.

2.1 Time-varying Social Networks

The essence of social networks lies in its time-varying
nature. For example, the neighborhood of individuals
moving over a geographic space evolves over time
(i.e., physical mobility), and the interaction between
the individuals appears and disappears in online
social networks (i.e., online/offline) [2]. Time-varying
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Fig. 3. Three types of observations in regards to the rumor spreading in Fig. 1. (A) Wavefront; (B) Snapshot; (C) Sensor.

social networks are defined by an ordered stream
of interactions between individuals. In other words,
as time progresses, the interaction structure keeps
changing. Examples can be found in both face-to-face
interaction networks [13], and online social networks
[3]. The temporal nature of such networks has a
deep influence on information spreading on top of
them. Indeed, the spreading of rumors is affected
by duration, sequence, and concurrency of contacts
among people.

In this work, we reduce time-varying networks to
a series of static networks by introducing a time-
integrating window. Each integrating window aggre-
gates all edges and nodes present in the correspond-
ing time duration. In Fig. 1, we show an example to
illustrate the time-integrating windows. In the time
window t − 1 (or, at time t − 1), a rumor started
to spread from node S who had interaction with 5
neighbors in this time window. In the next time win-
dow t, nodes B, D and F were successfully infected.
In this time window, we notice that node O moved
next to B (i.e., physical mobility), and node G had
no interaction with its neighbors (i.e., offline). Other
examples of physical mobility or online/offline status
of nodes can be found in the time window t+ 1.

Sus. Inf.v(i,t)1−v(i,t)

1−q(i)
infected recovered

Recq(i)

Con. Mis.1 q(i)v(i,t)

1−q(i)

Con. Mis.ss1 qq(i)v(i,t)

1−q(i)sub-states of Inf.

q(i)

Fig. 2. State transition of a node in rumor spreading model.

2.2 Security States of Individuals

For the convenience of description, we borrow the no-
tions from epidemiology to describe the spreading of
rumors in time-varying social networks [14]. We say a
user is infected when he/she accepts the rumors, and
an infected user is recovered if he/she abandons the
rumors. In this paper, we adopt the classic susceptible-
infected-recovered (SIR) scheme to present the infec-
tion dynamics of each user. Fig. 2 shows the state
transition graph of an arbitrary user in this model.
Every user is initially susceptible (Sus.). They can
be infected (Inf.) by their neighbors with probability
v(i, t), and then recover (Rec.) with probability q(i).
Rumors will be spread out from infected users to
their social neighbors until they get recovered. There
are also many other models of rumor propagation,
including the SI, SIS, SIRS models [15]–[17]. In present
work, we adopt the SIR model because it can reflect
the state transition of users when they hear a rumor,
from being susceptible to being recovered. Generally,
people will not believe the rumor again after they
know the truth. Therefore, recovered users will not
transit their states any more. For other propagation
models, readers can refer to Section 6 for further
discussion.

To more precisely describe node states in different
types of observations, we introduce two sub-states of
nodes being infected: ‘contagious’ (Con.) and ‘misled’
(Mis.), see Fig. 2. An infected node first becomes
contagious and then transit to being misled. The Con.
state describes the state of nodes newly infected. More
specifically, a node is Con. at time t means this node
is susceptible at time t − 1 but becomes infected at
time t. An misled node will stay being infected until
it recovers. For instance, sensors can record the time
at which they get infected, and the infection time is
crucial in detecting rumor sources because it reflects
the infection trend and speed of a rumor. Hence,
the introduction of contagious and misled states is
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Fig. 4. Illustration of the reverse dissemination process in regards to the wavefront observation in Fig. 3 (A). (A) The
observed nodes broadcast labeled copies of rumors to their neighbors in time window t; (B) The neighbors who received
labeled copies will relay them to their own neighbors in time window t− 1.

intrinsic to the rumor spreading framework.

2.3 Observations for Source Identification

Prior knowledge for source identification is provided
by various types of partial observations upon time-
varying social networks. According to previous work
on static networks, we collect three categories of par-
tial observations: wavefronts, snapshots, and sensor
observations. We denote the set of observed nodes as
O = {o1, o2, ..., on}. Following the rumor spreading
in Fig. 1, we will explain each type of the partial
observations as follows:

Wavefront [11]: Given a rumor spreading incident,
a wavefront provides partial knowledge of the time-
varying social network status. Only the users who are
in the wavefront of the spreading can be observed (i.e.,
all the contagious nodes in the latest time window are
observed), leaving the states of the other users un-
known. Fig. 3(A) shows an example of the wavefront
in the rumor spreading in Fig. 1. We see that nodes
C,E, I,K and O are in the wavefront as they transit
to being contagious at time t+ 1.

Snapshot [7]: Given a rumor spreading incident, a
snapshot also provides partial knowledge of the time-
varying social network status. In this case, only a
group of users can be observed in the latest time
window when the snapshot is taken. The states of
the observed users can be susceptible, infected or
recovered. We use OS , OI and OR to denote the
observed users who are susceptible, infected or re-
covered, respectively. This type of observations is the
most common one in our daily life. Fig. 3(B) shows
an example of the snapshot in the rumor spreading
in Fig. 1 . We see that OS = {N,Q, T, V }, OI =
{F, I,K,O} and OR = ∅.

Sensor Observation [10]: Sensors are a group of prese-
lected users in time-varying social networks. The sen-
sors can record the rumor spreading dynamics over
them, including the security states and the time win-
dow when they get infected (more specifically, become
contagious). We introduce OS and OI to denote the
set of susceptible and infected sensors, respectively.
For each oi ∈ OI , the infection time is denoted by
ti. This type of observation is usually obtained from
sensor networks. Fig. 3(C) shows an example of the
sensor observations in the rumor spreading in Fig. 1.
In this case, OS = {N,P, T, V }, OI = {K,B}, and
the infection time of node K is t + 1, and node B is
infected at time t.

We can see that these three types of partial ob-
servations provide three different categories of par-
tial knowledge of the time-varying social network
status. Different types of observations are suitable
for different circumstances in real-world applications.
Readers could refer to [9]–[11] for further discussion
on different types of partial observations. The partial
knowledge together with the physical mobility and
online/offline status of users make the tracing back
of rumor sources much more difficult.

3 NARROWING DOWN THE SUSPECTS

Current methods of source identification need to
screen every node in the underlying network. This is
a bottlenecks of identifying rumor sources: scalability.
It is necessary to narrow down the set of suspects,
especially in large-scale networks. In this section, we
adopt a reverse dissemination strategy to identify a
small set of suspects. The details of the method are
presented in Section 3.1, and its efficiency will be
evaluated in Section 3.2.
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3.1 Reverse dissemination Method

In this subsection, we first present the rationale of the
reverse dissemination method. Then, we show how to
apply the reverse dissemination method into different
types of observations.

3.1.1 Rationale

The rationale of the reverse dissemination method
is to send copies of rumors along the reversed dy-
namic connections from observed nodes to exhaust all
possible spreading paths leading to the observation.
The node from which all the paths, covering all the
observed nodes’ states, originated is more likely to
be a suspect. The reverse dissemination method is
inspired from the Jordan method [9]. The reverse
dissemination method is different from the Jordan
method, because our method is based on time-varying
social networks (involving the physical mobility and
online/offline status of users) rather than static net-
works. In Fig. 4, we show a simple example to illus-
trate the reverse dissemination process. This example
follows the rumor spreading in Fig. 1 and the wave-
front observation in Fig. 3(A). All wavefront nodes
OI = {E,C, I,K,O} observed in time window t + 1
are labeled as black in Fig. 4 (A). The whole process
is composed of two rounds of reverse dissemination.
In round 1 (Fig. 4 (A)), all observed nodes broadcast
labeled copies reversely to their neighbors in time
window t. For example, nodes S and O received
copies of node C (S,O ← C), and node D received
copies of three observed nodes C, I and K (D ←
C, I,K). In round 2 (Fig. 4 (B)), the neighbors who
have received labeled copies will relay them to other
neighbors in time window t − 1. In each round, the
labels will be recorded in each relay node. We can see
from Fig. 4(B) that node S has received all copies from
all the observed nodes (S ← C,E,K, I,O). Then, node
S is chosen to be a suspect.

We notice that the starting time for each observed
node starting their reverse dissemination processes
varies in different types of observations. For a wave-
front, since all the observed nodes are supposed to be
contagious in the latest time window, all the observed
nodes need to simultaneously start their reverse dis-
semination processes. For a snapshot, the observed
nodes stay in their states in the latest time win-
dow. Therefore, the reverse dissemination processes
will also simultaneously starts from all the observed
nodes. However, for a sensor observation, because
the infected sensors record their infection time, the
starting time of reverse dissemination for each sensor
will be determined by ti. More specifically, the latest
infected sensors first start their reverse dissemination
processes, and then the sensors infected in the previ-
ous time window, until the very first infected sensors.

Algorithm 1: Reverse dissemination

Input: A set of observed nodes O = {o1, o2, ..., on}, a set of
infection times of the observed nodes {t1, t2, ..., tn}, a
threshold α, and a threshold tmax .
Initialize: A set of suspects U = ∅, and t1 = ... = tn = T if O

is a snapshot/wavefront, otherwise T = max{t1, t2, ..., tn}.
for (t starts from 1 to a given maximum value tmax) do

for (oi: i starts from 1 to n) do
if (oi has not started to disseminate the rumor) then

Start to propagate the rumor from user oi
separately and independently at time t+ T − ti.

end
end
for (u: any node in the whole network) do

if (user u received n separate rumors from O) then
Compute the maximum likelihood L(u, t) for
user u;
Add user u into the set U .

end
end
if (|U | ≥ αN ) then

Keep the first αN suspects with large maximum
likelihoods in U , and delete all the other suspects.
Stop.

end
end
Output: A set of suspects U .

3.1.2 Wavefront

Given a reverse dissemination process starting from
an observed node oi, we use PC(u, t|oi) to denote the
probability of an arbitrary node u to be contagious
after time t, where t denotes the time span of the
whole reverse dissemination process. Let all observed
nodes oi start their reverse dissemination processes
in the latest time window. To match the wavefront,
it is expected a suspect u can simultaneously receive
rumor copies from all oi ∈ O (i.e., the rumor copies
sent from all observed nodes can make node u be-
come contagious simultaneously). Mathematically, we
identify those nodes who can provide the maximum
likelihood, L(u, t), of being a suspect receiving copies
from all the observed nodes, as in

L(u, t) =
∑

oi∈O

ln(PC(u, t|oi)). (1)

For the convenience of computation, we adopt loga-
rithmic function ln(·) in Eq. (1) to derive the maxi-
mum likelihood. We use U to denote the set of sus-
pects. The ones who provide larger values of L(u, t)
are recognized as a member of set U .

3.1.3 Snapshot

To match the snapshot observation (which includes
susceptible, infected or recovered nodes), it is ex-
pected that a suspect u needs to satisfy the following
three principles at time t. First, copies of rumors
disseminated from observed susceptible nodes oi ∈ OS

cannot reach node u at time t (i.e., u is still suscep-
tible). Second, copies of rumors disseminated from
observed infected nodes oj ∈ OI can reach node u
at time t (i.e., u becomes infected). Third, copies of
rumors disseminated from observed recovered nodes
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Fig. 5. Accuracy of the reverse dissemination method in networks. (A) MIT; (B) Sigcom09; (C) Enron Email; (D) Facebook.

ok ∈ OR can arrive at node u before time t (i.e.,
u becomes recovered). Again, we employ maximum
likelihood to capture this kind of nodes, as in

L(u, t) =
∑

oi∈OS

ln(PS(u, t|oi)) +
∑

oj∈OI

ln(PI(u, t|oj))

+
∑

ok∈OR

ln(PR(u, t|ok)),

(2)

where PS(u, t|oi), PI(u, t|oi) and PR(u, t|oi) denote
the probabilities of u to be susceptible, infected or
recovered after time t, respectively, given that the
reverse dissemination started from oi.

3.1.4 Sensor

For sensor observations, according to our previous
discussion, we let infected sensor oi ∈ OI start to
reversely disseminate copies of the rumor at time
t̂i = T − ti, where T = max{ti|oi ∈ OI}. We also
let the susceptible sensors oj ∈ OS start to reversely
disseminate copies of rumors at time t=0. To match a
sensor observation, it is expected a suspect u needs
to satisfy the following two principles at time t.
First, copies of rumors disseminated from susceptible
sensors oi ∈ OS cannot reach node u at time t (i.e.,
node u is still susceptible). Second, copies of rumors
disseminated from all infected sensors oj ∈ OI can be
received by node u at time t (i.e., node u becomes con-
tagious). Mathematically, we determine the suspects
by computing their maximum likelihood, as in

L(u, t) =
∑

oi∈OI

ln(PC(u, t+ t̂i|oi))

+
∑

oj∈OS

ln(PS(u, t|oj)).
(3)

The values of PS(u, t|oi), PC(u, t|oi), PI(u, t|oi) and
PR(u, t|oi) will be calculated by the model introduced
in Section 4.2. We summarize the reverse dissemina-
tion method in Algorithm 1.

3.2 Performance Evaluation

We evaluate the performance of the reverse dissemi-
nation method in real time-varying social networks.

Similar to Lokhov et. al’s work [18], we consider
the infection probabilities and recovery probabilities
to be uniformly distributed in (0,1), and the average
infection and recovery probabilities are set to be 0.6
and 0.3. We also use α to denote the ratio of suspects
over all nodes, α = |U |/N , where N is the number of
all nodes in a time-varying social network. The value
of α ranges from 5% to 100%. We randomly choose
the real source in 100 runs of each experiment. The
number of 100 comes from the wrok in [14].

We consider four real time-varying social networks
in Table 1: The MIT reality [19] dataset captures
communication from 97 subjects at MIT over the
course of the 2004-2005 academic year. The Sigcom09
[20] dataset contains the traces of Bluetooth device
proximity of 76 persons during SIGCOMM 2009 con-
ference in Barcelona, Spain. The Enron Email [21]
dataset contains record of email conversations from
143 users in 2001. The Facebook [22] dataset contains
communications from 45,813 users during December
29th, 2008 and January 3rd, 2009. All of these datasets
reflect the physical mobility and online/offline fea-
tures of time-varying social networks. According to
the study in [2], an appropriate temporal resolution
∆t is important to correctly characterize the dynami-
cal processes on time-varying networks. Therefore, we
need to be cautious when we choose the time interval
of size ∆t. Furthermore, many social networks have
been shown small-world, i.e., the average distance l
between any two nodes is small, generally l ≤ 6. Pre-
vious extensive works show that rumors can spread
quickly in social networks, generally after 6-10 time
ticks of propagation (see [5]). Hence, we divided the
social networks into 6-10 time windows. Therefore, for
the datasets used in this paper, we uniformly divide
each into 6-10 discrete time windows [2]. For other
division of temporal resolution, readers could refer to
[2] for further discussion.

Fig. 5 shows the experiment results in the four real
datasets. We find the proposed method works quite
well in reducing the number of suspects. Especially
for snapshots, the searching scale can be narrowed
to 5% of all users for the MIT dataset, 15% for the
Sigcom09 dataset, and 20% for the Enron Email and
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Facebook datasets. The number of suspects can be
reduced to 45% of all users in the MIT reality dataset
under snapshot and wavefront observations. For the
Enron Email and Facebook datasets, the number of
suspects can be reduced to 20% of all users. The
worst case occurred in the Sigcom09 dataset with
wavefronts, but our method still achieved a reduction
of 35% in the total number of users.

The experiment results on real time-varying social
networks show that the proposed method is efficient
in narrowing down the suspects. Real-world social
networks usually have a large number of users. Our
proposed method addresses the scalability in source
identification, and therefore is of great significance.

4 DETERMINING THE REAL SOURCE

Another bottleneck of identifying rumor sources is to
design a good measure to specify the real source. Most
of the existing methods are based on node centralities,
which ignore the propagation probabilities between
nodes. Some other methods consider the BFS trees
instead of the original networks. These violate the
rumor spreading processes. In this section, we adopt
an innovative method to identify the real source from
the suspects. A novel rumor spreading model will
also be introduced to model rumor spreading in time-
varying social networks.

4.1 ML-based Method

4.1.1 Rationale

The key idea of the ML-based method is to expose the
suspect from set U that provides the largest maximum
likelihood to match the observation. It is expected
that the real source will produce a rumor propagation
which not only temporally but also spatially matches
the observation more than other suspects. Given an
observation O = {o1, o2, ..., on} in a time-varying
network, we let the spread of rumors start from an
arbitrary suspect u ∈ U from the time window that
is tu before the latest time window. For an arbitrary
observed node oi, we use PS(oi, tu|u) to denote the
probability of oi being susceptible at time tu, given
that the spread of rumors starts from suspect u. Simi-
larly, we have PC(oi, tu|u), PI(oi, tu|u) and PR(oi, tu|u)
representing the probabilities of oi being contagious,
infected and recovered at time tu, respectively. We
use L̃(tu, u) to denote the maximum likelihood of
obtaining the observation when the rumor started

TABLE 1

Comparison of Data Collected in the Experiments.

Dataset MIT Sigcom09 Email Facebook
Device Phone Phone Laptop Laptop

Network type Bluetooth Bluetooth WiFi WiFi
Duration (days) 246 5 14 6
# of devices 97 76 143 45,813
# of contacts 54,667 69,189 1,246 264,004

Algorithm 2: Targeting the suspect

Input: A set of suspects U , a set of observed nodes O, and a
threshold tmax.
Initialize: Lmax = 0, u∗ = ∅, t∗ = 0.
for (ũ: any node in set U ) do

for (t starts from 1 to a given maximum value tmax) do
Disseminate the rumor from suspect ũ.
if (We can obtain the observation O) then

Compute the maximum likelihood value L̃(t, ũ).
if (L̃(t, ũ) > Lmax) then

Lmax = L̃(t, ũ);
u∗ = ũ;
t∗ = t.

end

if (L̃(t, ũ) < L̃(t− 1, ũ)) then
Stop.

end
end

end
end
Output: The rumor source u∗ and propagation time t∗ .

from suspect u. Among all the suspects in U , we can
estimate the real source by choosing the maximum
value of the ML, as in

(u∗, t∗) = arg max
u∈U

L̃(tu, u). (4)

The result of Eq. (4) suggests that suspect u∗ can
provide a rumor propagation not only temporally
but also spatially matches the observation better than
other suspects. We also have an estimation of infection
scale I(t∗, u∗) as a byproduct, as in

I(t∗, u∗) =

N∑

i=1

PI(i, t
∗|u∗). (5)

Later, we can justify the effectiveness of the ML-based
method by examining the accuracy of t∗ and I(t∗, u∗).

4.1.2 Wavefront

In a wavefront, all observed nodes are contagious in
the time window when the wavefront is captured.
Supposing suspect u is the rumor source, the maxi-
mum likelihood L̃(tu, u) of obtaining the wavefront
O is the product of the probabilities of any observed
node oi ∈ O being contagious after time tu. We also
adopt a logarithmic function to present the compu-
tation of the maximum likelihood. Then, we have
L̃(tu, u) for a wavefront, as in

L̃(tu, u) =
∑

oi∈O

ln(PC(oi, tu|u)). (6)

4.1.3 Snapshot

In a snapshot, the observed nodes can be suscepti-
ble, infected or recovered in the time window when
the snapshot is taken. Supposing suspect u is the
rumor source, the maximum likelihood of obtaining
the snapshot is the product of the probabilities of any
observed node oi ∈ O being in its observed state.
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Then, we have the logarithmic form of the calculation
for L̃(tu, u) in a snapshot, as in

L̃(tu, u) =
∑

oi∈OS

ln(PS(oi, tu|u))+

∑

oj∈OI

ln(PI(oj , tu|u)) +
∑

ok∈OR

ln(PR(ok, tu|u)).
(7)

4.1.4 Sensor

In a sensor observation, each infected sensor oi ∈ OI

records its infection time ti. Although the absolute
time ti cannot directly suggest the spreading time of
the rumor, we can derive the relative infection time of
each sensor. Supposing suspect u is the rumor source,
for an arbitrary infected sensor oi, its relative infection
time is t̃i = ti − t̃ + tu where t̃ = min{ti|oi ∈ OI},
and tu is obtained from Algorithm 1. For suspect
u ∈ U , the maximum likelihood L̃(tu, u) of obtaining
the observation is the product of the probability of
any sensor oi to be in its observed state at time t̃i.
Then, we have the logarithmic form of the calculation
for L̃(tu, u) in a sensor observation, as in

L̃(tu, u) =
∑

oi∈OI

ln(PC(u, t̃i|oi)) +
∑

oj∈OS

ln(PS(u, tu|oj)).

(8)

Note that, PS(u, t|oi), PC(u, t|oi), PI(u, t|oi), and
PR(ũ, t|oi) can be calculated in the rumor spreading
model in Section 4.2. We summarize the method of
determining rumor sources in Algorithm 2.

4.2 Propagation Model

In this subsection, we introduce an analytical model
to present the spreading dynamics of rumors in time-
varying social networks. The state transition of each
node follows the SIR scheme introduced in Section
2.2. For rumor spreading processes among users, we
use this model to calculate the probabilities of each
user in various states.

In the modeling, every user is initially susceptible.
We use ηji(t) to denote the spreading probability from
user j to user i in time window t. Then, we can
calculate the probability of a susceptible user being
infected by his/her infected neighbors as in

v(i, t) = 1−
∏

j∈Ni

[1− ηji(t) · PI(j, t− 1)], (9)

where, Ni denotes the set of neighbors of user i. Then,
we can compute the probability of an arbitrary user
to be susceptible at time t as in

PS(i, t) = [1− v(i, t)] · PS(i, t− 1). (10)

Once a user gets infected, he/she becomes contagious.
We then have the probability that an arbitrary user is
contagious at time t as in

PC(i, t) = v(i, t) · PS(i, t− 1). (11)

Since an infected user can be either contagious or
misled, we can obtain the value of PI(i, t) as in

PI(i, t) = PC(i, t) + (1− qi(t)) · PI(i, t− 1). (12)

Then, the value of the PR(i, t) can be derived from

PR(i, t) = PR(i, t− 1) + qi(t) · PI(i, t− 1). (13)

This model analytically derives the probabilities of
each user in various states in an arbitrary time t.
This in addition constitutes the maximum likelihood
L(u, t) of an arbitrary user u being a suspect in time
window t in Section 3.1. This also supports the calcu-
lation of the maximum likelihood L̃(t, u) to match the
observation in time window t, given that the rumor
source is the suspicious user u in Section 4.1.

5 EVALUATION

In this section, we evaluate the efficiency of our source
identification method. The experiment settings are the
same as those presented in Section 3.2. Specifically, we
let the sampling ratio α range from 10% to 30%, as the
reverse dissemination method has already achieved a
good performance with α dropping in this range.

5.1 Accuracy of Rumor Source Identification

We evaluate the accuracy of our method in this sub-
section. We use δ to denote the error distance between
a real source and an estimated source. Ideally, we
have δ = 0 if our method accurately captures the
real source. In practice, we expect that our method
can accurately capture the real source or a user very
close to the real source (i.e., δ is very small). As
the user close to the real source usually has similar
characteristics with the real source, quarantining or
clarifying rumors at this user is also very significant
to diminish the rumors [6].

Our method shows good performances in the four
real time-varying social networks. Fig. 6 shows the
frequency of the error distances (δ) in the MIT reality
dataset under different categories of observations.
When the sampling ratio α ≥ 20%, our method can
identify the real sources with an accuracy of 78%
for the sensor observations, more than 60% for the
snapshots, and around 36% for the wavefronts. For
the wavefronts, although our method cannot identify
real sources with very high accuracy, the estimated
sources are very close to the real sources, and are
generally 0-2 hops away. Fig. 7 shows the frequency
of the error distances δ in the Sigcom09 dataset. When
the sampling ratio α ≥ 20%, the proposed method can
identify the real sources with an accuracy of more
than 70% for the snapshots. For the other two cate-
gories of observations, although our method cannot
identify real sources with very high accuracy, the
estimated sources are very close to the real sources,
with an average of 1-2 hops away in the sensor obser-
vations, and 1-3 hops away for the wavefronts. Fig. 8
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Fig. 6. The distribution of error distance (δ) in the MIT Reality dataset. (A) Sensor; (B) Snapshot; (C) Wavefront.
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Fig. 7. The distribution of error distance (δ) in the Sigcom09 dataset. (A) Sensor; (B) Snapshot; (C) Wavefront.

shows the performance of our method in the Enron
Email dataset. When the sampling ratio α ≥ 20%, our
method can identify the real sources with an accuracy
of 80% for the snapshots, and more than 45% for the
wavefronts. The estimated sources are very close to
the real sources, with an average 1-3 hops away in the
sensor observations. Fig. 9 shows the performance of
our method in the Facebook dataset. Similarly, when
the sampling ratio α ≥ 20%, the proposed method can
identify the real sources with an accuracy of around
40% for the snapshots. The estimated sources are very
close to the real sources, with an average of 1-3 hops
away from the real sources under the sensor and
wavefront observations.

Compared with previous work, our proposed
method is superior because our method can work
in time-varying social networks rather than static
networks. Our method can achieve around 80% of
all experiment runs that accurately identify the real
source or an individual very close to the real source.
However, the previous work of [8] and [23] has theo-
retically proven their accuracy was at most 25% or
50% in tree-like networks, and their average error
distance is 3-4 hops away.

5.2 Effectiveness Justification

We justify the effectiveness of our ML-based method
from three aspects: the correlation between the ML of
the real sources and that of the estimated sources, the
accuracy of estimating rumor spreading time, and the
accuracy of estimating rumor infection scale.

5.2.1 Correlation between real sources and esti-
mated sources

We investigate the correlation between the real
sources and the estimated sources by examining the
correlation between their maximum likelihood values.
For different types of observation, the maximum like-
lihood of an estimated source can be obtained from
Eq. (6), Eq. (7) or Eq. (8), i.e., L̃(t∗, u∗). The maximum
likelihood of a real source is obtained by replacing u∗

and t∗ as the real source and the real rumor spreading
time, respectively. If the estimated source is in fact the
real source, their maximum likelihood values should
present high correlation.

The correlation results of the maximum likelihood
values when α = 20% in the four time-varying social
networks are shown from Fig. 10 to Fig. 13. We
see that the maximum likelihood values of the real
sources and that of the estimated sources are highly
correlated with each other. Their maximum likelihood
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Fig. 8. The distribution of error distance (δ) in the Enron Email dataset. (A) Sensor; (B) Snapshot; (C) Wavefront.
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values approximately form linear relationships to each
other. Fig. 10 shows the results in the MIT reality
dataset. We can see that the maximum likelihood
values of the real sources and that of the estimated
sources are highly correlated in both sensor and
snapshot observations. The worst results occurred in
wavefront observations, however the majority of the
correlation results still tend to be clustered in a line.
These exactly reflect the accuracy of identifying rumor
sources in Fig. 6. The results in the Sigcom09 dataset
are shown in Fig. 11. We see that the maximum
likelihood values are highly correlated in both snap-
shot and wavefront observations. The worst results
occurred in sensor observations, however the majority
of the correlation results still tend to be clustered in a
line. These exactly reflect the accuracy of identifying
rumor sources in Fig. 7. The results in the Enron Email
dataset are shown in Fig. 12. We see that the maxi-
mum likelihood values are highly correlated in both
snapshot and wavefront observations, and slightly
correlated in sensor observations. These exactly reflect
the accuracy of identifying rumor sources in Fig. 8.
The results in the Facebook data are presented in
Fig. 13. Similar results can be found in the Facebook
dataset in Fig. 13, which precisely reflects the accuracy
of identifying rumor sources in Fig. 9.

The strong correlation between the ML values of
the real sources and that of the estimated sources in
time-varying social networks reflects the effectiveness
of our ML-based method.

5.2.2 Estimation of spreading time

As a byproduct, our ML-based method can also es-
timate the spreading time (in Eq. (4)) of rumors.
In order to justify the effectiveness of our proposed
method, we further investigate the effectiveness of
this byproduct. We expect the estimate can accurately
expose the real spreading time of rumors. We let the
real spreading time vary from 2 to 6 in four real time-
varying social networks. The experiment results are
shown in Table 2.

As shown in Table 2, we analyze the means and the
standard deviations of the estimated spreading time.
We see that the means of the estimated spreading
time are very close to the real spreading time, and
most results of the standard deviations are smaller
than 1. Especially when the spreading time T = 2,
our ML-based method in sensor observations and
wavefront observations can accurately estimate the
spreading time in the MIT reality, Sigcom09 and Enron
Email datasets. The results are also quite accurate in
the Facebook dataset. From Table 2, we can see that
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Sigcom09 dataset. (A) Sensor observation; (B) Snapshot observation; (C) Wavefront observation.

our method can estimate the spreading time with
extremely high accuracy in wavefront observations,
and relatively high accuracy in snapshot observations.

Both the means and standard deviations indicate
that our method can estimate the real spreading time
with high accuracy. The accurate estimate of the
spreading time indicates that our method is effective
in source identification from a different aspect.

5.2.3 Estimation of infection scale

We further justify the effectiveness of our ML-based
method by investigating its accuracy in estimating
the infection scale of rumors provided by the second
byproduct in Eq. (5). We expect that the ML-based
method can accurately estimate the infection scale
of each propagation incident. Particularly, we let the
rumor spreading initiate from the node with largest
degree in each full time-varying social network and
spread for 6 time windows in experiments.

In Fig. 14, we show the real infection scales at
each time tick, and also the estimated infection scales
in different types of observations. We can see that
the proposed method can provide a fairly accurate
estimate of on the infection scales of rumors in the
MIT reality dataset, the Sigcom09 dataset and the

Facebook dataset in different types of observations.
As shown in Fig. 14(C), the worst result occurred in
the Enron Email dataset after time tick 4. According
to our investigation, this was caused by a great deal
of infected nodes that tend to be in the recovered
stage in the SIR scheme, which leads to a fairly large
uncertainty in the estimate.

To summarize, all of the above evaluations reflect
the effectiveness of our method from different aspects:
the high correlation between the ML values of the real
sources and that of the estimated sources, the high
accuracy in estimating spreading time of rumors, and
the high accuracy of the infection scale.

6 FURTHER DISCUSSION

In this paper, we adopt a microscopic SIR model to
simulate the rumor dynamics over each user (see
Fig. 2 for the state transition graph of an arbitrary
user). There are also many other models of rumor
propagation, such as the models in [15]–[17]. These
models can be basically divided into two categories:
the macroscopic models and the microscopic models.
The macroscopic models, which are based on differen-
tial equations, only provide the overall infection trend
of rumor propagation, such as the total number of
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Fig. 13. The correlation between the maximum likelihood of the real sources and that of the estimated sources in the
Facebook dataset. (A) Sensor observation; (B) Snapshot observation; (C) Wavefront observation.

infected nodes [14]. The microscopic models, which
are based on difference equations, not only provide
the overall infection status of rumor propagation, but
they also can estimate the probability of an arbitrary
node being in an arbitrary state [10]. In the field of
identifying propagation sources, researchers generally
choose microscopic models, because it requires to
estimate which specific node is the first one getting
infected. As far as we know, so far there is no work
that is based on the macroscopic models to identify ru-
mor sources in social networks. Future work may also
investigate combining microscopic and macroscopic
models, or even adopting the mesoscopic models [24],
[25], to estimate both the rumour sources and the
trend of the propagation. There are also many other
microscopic models other than the SIR model adopted
in this paper, such as the SI, SIS, and SIRS models [9],
[10]. As we discussed in Section 2.2, people generally
will not believe the rumor again after they know the
truth, i.e., after they get recovered, they will not transit
to other states. Thus, the SIR model can reflect the
state transition of people when they hear a rumor.
We also evaluate the performance of the proposed
method on the SI model. Since the performance of our
method on the SI model is similar to that on the SIR

model, we only present the results on the SIR model
in this paper.

Furthermore, there is another challenging and prac-
tical problem. In this paper, we considered rumor
spreading in a single network. In the real world,
rumors can spread across various social network-
ing sites. For example, a rumor started to spread
from Facebook. Later, people who saw the rumor
on Facebook and post it on Twitter or some other
public networking sites. Finally, the rumor spreads
quickly among different social networking sites. Iden-
tifying rumour sources across different networking
sites involves information propagation through var-
ious media, i.e., information diffusion among inter-
connected networks. These interconnected networks
can be connected through users who have accounts in
two or more networking sites, i.e., the overlaps among
different networks. Therefore, we need to know the
overlaps among interconnected network. This part of
work is out of the scope of this paper. Future work
may investigate identifying the sources of rumors
spreading across various network platforms.



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2016.2522436, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTION ON 13

TABLE 2
Accuracy of estimating rumor spreading time.

Environment settings Estimated spreading time
Observation Spreading time (T ) MIT Sigcom09 Email Facebook

Sensor
2 2±0 2±0 2±0 1.787±0.411
4 4.145±0.545 3.936±0.384 4.152±0.503 3.690±0.486
6 6.229±0.856 5.978±0.488 6.121±0.479 5.720±0.604

Snapshot
2 1.877±0.525 2.200±1.212 2.212±0.781 2.170±0.761
4 3.918±0.862 3.920±0.723 3.893±0.733 4.050±0.716
6 6.183±1.523 6.125±1.330 5.658±1.114 5.650±1.266

Wavefront
2 2±0 2±0 2±0 1.977±0.261
4 4.117±0.686 4±0 3.984±0.590 4.072±0.652
6 6±0 5.680±1.096 5.907±0.640 5.868±0.864
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Fig. 14. The accuracy of estimating infection scale in real networks. (A) MIT; (B) Sigcom09; (C) Enron Email; (D) Facebook.

7 RELATED WORK

In this section, we give a brief overview on the related
work in this field. The majority of existing work
focuses on source identification in tree networks.

The pioneer work of rumor source identification
is based on complete observations on tree-like net-
works with the SI spreading model. Shah et al. [6]
proposed the rumor center method to detect rumor
sources in tree-like networks. They claimed that the
user with maximum closeness centrality is the rumor
source. Later, the rumor center method was extended
by many other researchers, which can identify ru-
mor sources with different propagation models and
observations [17], [26]. Luo et al. [7] extended the
rumor center method by considering multiple sources
instead of a single source. Following the assumptions
of the rumor center method, Dong et al. [27] further
proposed a local rumor center method, which desig-
nates a set of nodes as suspicious sources. Therefore,
it reduces the scale of the searching area. Wang et al.
[8] extended the rumor center method to the circum-
stance of multiple observations. All of these methods
use the breadth-first-search (BFS) technique to con-
struct tree topologies upon networks. According to
previous studies, only a few runs in the experiments
can accurately capture the real sources [28].

Researchers also proposed many techniques on
source identification in tree-like networks with partial
observations. Zhu et al. [9] proposed the Jordan center
method to identify rumor sources. They claimed that,
started from the Jordan center, a rumor can construct

the optimal sample path to the observed nodes. We
can find similar work to the Jordan center method
in [29]. Chen et al. [30] extended the Jordan center
method to identify multiple sources in networks un-
der the SIR model. Zang et al. [31] introduced a score
based method extending the rumor center method
to identifying the rumor source based on snapshots.
Further, Pinto et al. [10] proposed a method based on
sensor observations. They adopted the central limit
theorem on the temporal differences on the infection
times of sensors. Louni et al. [32] improved this
method by taking community recognition techniques
into account, which could reduce 3% sensors less
than the method in [10]. In addition, some researchers
identify rumor sources through detecting influential
spreaders in a network [33]. Comin et al. [34] identi-
fied rumor sources by measuring various centralities
of users in a network. They claimed that ones who
captured the larger centrality values are more likely
to be the rumor source.

Recently, researchers also proposed many methods
for source identification in generic networks with
partial observations. For sensor observations, Agaskar
et al. [35] adopted the Monte Carlo algorithm and
extended the method in [10] from trees to generic
networks. For snapshot observations, Altarelli et al.
[36] proposed using the Bayesian belief modeling to
detect rumor source in generic networks. Further,
Prakash et al. [37] proposed to identify rumors in
generic network by minimizing the description length
of the snapshot observation. In addition, Lokhov et
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al. [38] adopted a dynamic message-passing (DMP)
method to identify the rumor source in snapshots.
For wavefront observations, Brockmann et al. [11]
proposed a concept, effective distance, which can
convert the propagation probability between nodes
to the effective distance between them. They detect
rumor sources as the node that has the same effective
distance to all the nodes in the wavefront.

8 CONCLUSION AND FUTURE WORK

In this paper, we explore the problem of rumor source
identification in time-varying social networks that
can be reduced to a series of static networks by
introducing a time-integrating window. In order to
address the challenges posted by time-varying social
networks, we adopted two innovative methods. First,
we utilized a novel reverse dissemination method
which can sharply narrow down the scale of suspi-
cious sources. This addresses the scalability issue in
this research area and therefore dramatically promotes
the efficiency of rumor source identification. Then, we
introduced an analytical model for rumor spreading
in time-varying social networks. Based on this model,
we calculated the maximum likelihood of each sus-
pect to determine the real source from the suspects.
We conduct a series of experiments to evaluate the
efficiency of our method. The experiment results in-
dicate that our methods are efficient in identifying
rumor sources in different types of real time-varying
social networks.

There is some future work can be done in identi-
fying rumor sources in time-varying social networks.
In this paper, we collect and analyze three types of
observations in networks. However, further types of
observations can be considered in future work, such
as multiple observations explored in static networks.
Further, the discrete time-integrating windows in ex-
pressing time-varying social networks may lead to
new ideas in identifying rumor sources in continuous
time windows. In addition, we considered rumor
spreading in a single network in this paper. Future
work may investigate identifying the sources of ru-
mors spreading across various network platforms.

REFERENCES

[1] F. Peter. (2013, April 23) ‘bogus’ ap tweet about explosion at
the white house wipes billions off us markets. The Telegraph,
Finance/Market. Washington.

[2] B. Ribeiro, N. Perra, and A. Baronchelli, “Quantifying the
effect of temporal resolution on time-varying networks,” Sci-
entific reports, vol. 3, 2013.

[3] M. P. Viana, D. R. Amancio, and L. d. F. Costa, “On time-
varying collaboration networks,” Journal of Informetrics, vol. 7,
no. 2, pp. 371–378, 2013.

[4] M. Karsai, N. Perra, and A. Vespignani, “Time varying net-
works and the weakness of strong ties,” Scientific reports, vol. 4,
2014.

[5] B. Doerr, M. Fouz, and T. Friedrich, “Why rumors spread so
quickly in social networks,” Commun. ACM, vol. 55, no. 6, pp.
70–75, Jun. 2012.

[6] D. Shah and T. Zaman, “Detecting sources of computer viruses
in networks: Theory and experiment,” in Proceedings of the
ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, ser. SIGMETRICS ’10. ACM,
2010, pp. 203–214.

[7] W. Luo, W. P. Tay, and M. Leng, “Identifying infection sources
and regions in large networks,” Signal Processing, IEEE Trans-
actions on, vol. 61, no. 11, pp. 2850–2865, 2013.

[8] Z. Wang, W. Dong, W. Zhang, and C. W. Tan, “Rumor source
detection with multiple observations: Fundamental limits and
algorithms,” in The 2014 ACM International Conference on Mea-
surement and Modeling of Computer Systems, ser. SIGMETRICS
’14. ACM, 2014, pp. 1–13.

[9] K. Zhu and L. Ying, “Information source detection in the sir
model: A sample path based approach,” in Information Theory
and Applications Workshop (ITA), 2013, pp. 1–9.

[10] P. C. Pinto, P. Thiran, and M. Vetterli, “Locating the source
of diffusion in large-scale networks,” Phys. Rev. Lett., vol. 109,
Aug 2012.

[11] D. Brockmann and D. Helbing, “The hidden geometry of
complex, network-driven contagion phenomena,” Science, vol.
342, no. 6164, pp. 1337–1342, 2013.

[12] B. A. Prakash, J. Vreeken, and C. Faloutsos, “Spotting culprits
in epidemics: How many and which ones?” in Proceedings of
the 2012 IEEE 12th International Conference on Data Mining, ser.
ICDM ’12. Washington, DC, USA: IEEE Computer Society,
2012, pp. 11–20.

[13] C. Cattuto, W. Van den Broeck, A. Barrat, V. Colizza, J.-F.
Pinton, and A. Vespignani, “Dynamics of person-to-person
interactions from distributed rfid sensor networks,” PloS one,
vol. 5, no. 7, p. e11596, 2010.

[14] C. C. Zou, D. Towsley, and W. Gong, “Modeling and simula-
tion study of the propagation and defense of internet e-mail
worms,” IEEE Transactions on Dependable and Secure Computing,
vol. 4, no. 2, pp. 105–118, 2007.

[15] D. H. Zanette, “Dynamics of rumor propagation on small-
world networks,” Physical review E, vol. 65, no. 4, p. 041908,
2002.

[16] Y. Moreno, M. Nekovee, and A. F. Pacheco, “Dynamics of
rumor spreading in complex networks,” Physical Review E,
vol. 69, no. 6, p. 066130, 2004.

[17] W. Luo, W. P. Tay, and M. Leng, “Rumor spreading and
source identification: A hide and seek game,” arXiv preprint
arXiv:1504.04796, 2015.

[18] Y. Li, P. Hui, D. Jin, L. Su, and L. Zeng, “Optimal distributed
malware defense in mobile networks with heterogeneous de-
vices,” Mobile Computing, IEEE Transactions on, 2013, accepted.

[19] N. Eagle and A. Pentland, “Reality mining: sensing complex
social systems,” Personal and ubiquitous computing, vol. 10,
no. 4, pp. 255–268, 2006.

[20] A.-K. Pietilainen, “CRAWDAD data set
thlab/sigcomm2009 (v. 2012-07-15),” Downloaded from
http://crawdad.org/thlab/sigcomm2009/, Jul. 2012.

[21] J. Shetty and J. Adibi, “The enron email dataset database
schema and brief statistical report,” Information Sciences Insti-
tute Technical Report, University of Southern California, vol. 4,
2004.

[22] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On
the evolution of user interaction in facebook,” in Proceedings
of the 2nd ACM workshop on Online social networks, ser. WOSN
’09, 2009, pp. 37–42.

[23] D. Shah and T. Zaman, “Rumors in a network: Who’s the
culprit?” IEEE Transactions on Information Theory, vol. 57, pp.
5163 – 5181, 2011.

[24] Y. Ma, X. Jiang, M. Li, X. Shen, Q. Guo, Y. Lei, and Z. Zheng,
“Identify the diversity of mesoscopic structures in networks:
A mixed random walk approach,” EPL (Europhysics Letters),
vol. 104, no. 1, p. 18006, 2013.

[25] S. Meloni, A. Arenas, S. Gómez, J. Borge-Holthoefer, and
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