
Contents lists available at ScienceDirect

INTEGRATION, the VLSI journal

journal homepage: www.elsevier.com/locate/vlsi

Customizable embedded processor array for multimedia applications

Mehmet Tükela,⁎,1, Arda Yurdakulb, Berna Örsa

a Department of Electronics & Communication Engineering, Istanbul Technical University, Istanbul, Maslak TR-34469, Turkey
b Department of Computer Engineering, Boğaziçi University, Istanbul, Bebek TR-34342, Turkey

A R T I C L E I N F O

Keywords:
Customizable Processor Array
Flexible instruction
Image processing hardware
Domain specific computing
Time-to-market

A B S T R A C T

We are proposing a Customizable Embedded Processor Array for Multimedia Applications (CPAMA). This
architecture can be used as a standalone image/video processing chip in consumer electronics. Its building
blocks are all designed to achieve low power and low area, thus it is a good candidate for low cost consumer
electronics. Our contribution is, designing a configurable embedded multimedia processor array considering the
nature of image/video processing applications. This approach is considered in all the basic blocks of the
architecture. Because of its configurable architecture and ability to connect with other devices, it may be used in
a large domain of applications. Our architecture is purely implemented with VHDL. It is not dependent on any
technology or design software. We have implemented our architecture for different applications on a Xilinx
Virtex-5 device and as a number of Application Specific Integrated Circuits (ASIC) by using 90 nm CMOS
technology. Experimental case studies show that CPAMA has better or comparable results to the existing similar
architectures in terms of performance and energy consumption. Our studies show that throughput of CPAMA is
0.3x–2.4x times better than ADRES. Energy consumption of CPAMA is 31–50% less than ADRES. On the other
hand, in one configuration of IDCT application, CPAMA provides 56% less throughput and consumes 55% more
energy than ADRES.

1. Introduction

Computing hardware design methodology has evolved significantly
over the years. As chips get larger and complexity of each design
increases, flexibility and quick time to market in the form of repro-
grammable/reconfigurable chips and systems increase in importance
[1]. Several Multi Processor System on a Chip (MPSoC) and Coarse-
Grained Reconfigurable Architectures (CGRA) have been proposed in
recent years [2–4]. Using CGRAs may be preferred for several reasons
such as speed, area, power or IP re-usability [3]. Furthermore,
comparing to Field Programmable Gate Arrays (FPGA), CGRAs have
a shorter reconfiguration time. CGRAs are suitable for systems that
require intensive computations. By adjusting the number and structure
of processing elements on a CGRA, we can obtain an architecture that
meets the requirements of the computation.

Image/video processing is an area where algorithms need intensive
computation with high performance. Handling this kind of computation
usually requires custom hardware [5]. Considering today's technology,
every portable device tends to have a camera, e.g. glasses, watches, smart
phones, etc. Each device has its own configuration and requires mostly
different features. Designing dedicated hardware for image processing tasks

for every device is time consuming and not economically feasible at all. In
most devices, image processing tasks are handled using System-on-Chips
(SoC) with DSP or GPU cores. If a designer chooses to use commercial
SoCs, he/she has to accept what the chip offers, in terms of speed and
power dissipation. Those architectures may include redundant parts that
might not be used at all. This redundancy leads to extra chip area usage and
power dissipation. On the other hand, implementing an image processing
task on a CGRA yields efficient results in terms of area, power dissipation,
or speed comparing to commercial SoCs [6]. Time-to-market of an image/
video processing system, which is implemented on customizable cores like
CGRAs, is less than that of a custom Application Specific Integrated Circuit
(ASIC) [7]. Besides, it is easy to adopt such systems for later alterations.
Consequently, we can say that CGRAs are suitable for image/video
processing tasks of low power, low cost consumer electronics.

In this paper, we introduce a Customizable Embedded Processor
Array for Multimedia Applications (CPAMA). CPAMA consists of a
processor array for intensive computation, and a host processor for
control and coordination with other devices. Our configurable archi-
tecture is designed by considering the nature and requirements of
image processing algorithms:

http://dx.doi.org/10.1016/j.vlsi.2017.09.009
Received 25 January 2017; Received in revised form 6 August 2017; Accepted 29 September 2017

⁎ Corresponding author.

1 Anka Microelectronic Systems.
E-mail addresses: tukel@itu.edu.tr, mehmet.tukel@ankasys.com (M. Tükel), yurdakul@boun.edu.tr (A. Yurdakul), orssi@itu.edu.tr (B. Örs).

INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

0167-9260/ © 2017 Elsevier B.V. All rights reserved.

Please cite this article as: Tukel, M., INTEGRATION the VLSI journal (2017), http://dx.doi.org/10.1016/j.vlsi.2017.09.009

http://www.sciencedirect.com/science/journal/01679260
http://www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2017.09.009
http://dx.doi.org/10.1016/j.vlsi.2017.09.009
http://dx.doi.org/10.1016/j.vlsi.2017.09.009

• CPAMA processes a multimedia application in sequences of image
blocks. Hence, we design a configurable processor array which
concurrently processes all pixels in an image block.

• Each processor of CPAMA can also be configured according to the
position of a pixel in an image block depending on the application.

This architecture can be used for domains that require intensive
computation such as image/video processing, and scientific computa-
tions that can be mapped onto a 2 dimensional (2D) processor array.

This paper is organized as follows: In Section 2 we mention the
related architectures in literature and demonstrate the differences with
the proposed CPAMA. In Section 3, we explain the basic concepts that
we refer in CPAMA design. In Section 4 we present the configurable
hardware architecture of CPAMA in details. In Section 5, we present
our case study implementations and make comparisons with the
existing similar architectures. Finally in Section 6, we make our
remarks on the CPAMA architecture and conclude the paper.

2. Related works

Mei et al. [3] proposed a template-based CGRA called Architecture
for Dynamically Reconfigurable Embedded System (ADRES). Coarse
grained reconfiguration refers to reconfiguration in relatively high level
modules, not in logic blocks or in Look Up Tables(LUT) as in an FPGA.
A design tool, namely Dynamically Reconfigurable Embedded System
Compiler (DRESC) [8], is used for this architecture to generate the
design. Propagating data, in other words performing iterations, is
implemented in a stream manner. Total performance of the array is
strictly related to the effectiveness of scheduling and mapping of the
application code onto processing elements, which is handled by DRESC
tool. It is known that optimum scheduling in DRESC is an NP-Hard
problem. Therefore, the outcome of the scheduler, which is implemen-
ted using a heuristic method, is expected to be a sub-optimal solution.
Another work related to ADRES [6] suggests that a failure in
performance increase despite increasing the size of the array may be
caused by a lack of scalability of the scheduling algorithm.

Marshall et al. [9] proposed another CGRA called CHESS, where
multimedia applications are taken into account. Despite the reconfi-
guration word in its definition, most of the features of this array are
kept fixed, e.g., number of registers, processors, instructions, etc. The
reconfiguration is performed by only changing the program memory.
CHESS can be considered as predecessor of ADRES.

Related to CGRAs, data partitioning and instruction scheduling
techniques are also studied [10]. The target architecture is a variant of
ADRES. Moreover, a recent study [11] focuses on power optimizations
on the same target architecture. In these two studies [10,11], the
emphasis is not on proposing a new architecture, but on instruction
scheduling, data partitioning techniques for a CGRA like ADRES in
order to achieve better speed and power consumption results.

Eichel [12] proposed MEP architecture for developing multimedia
applications. The architecture consists of a RISC processor and an
accompanying VLIW co-processor. The architecture has only instruc-
tion level parallelism. The configurable part of the architecture is the
VLIW part. It is explained that, the RTL definition of the configurable
part is generated based on a customised instruction-set architecture.

Chu et al. [13] proposed a programmable architecture called
UniCore. This design is optimised for MPEG4 encoding. The whole
architecture is not reconfigurable. It is composed of a 32-bit conven-
tional processor, DSP like units and 4 co-processors. Programmability
is achieved by the firmware that runs on the processor and co-
processors.

Başsoy et al. [14] proposed an FPGA based customizable processor
architecture called SHARF. SHARF has multiple ALU units controlled
by the same control unit. ALUs receive instruction addresses from the
same bus which is driven by the control unit. ALUs are tightly coupled
with the control unit. In this architecture, tightly coupling may cause

communication overhead, and moreover may restrict scalability.
Masselos et al. [15] concentrated on low power mapping of multi-

media applications on VLIW multimedia processors. They searched
methods for mapping tasks on the commercial processors rather than
designing their own architectures.

Sanghai and Gentile [16] explored software parallelism in multi-
media applications using a dual-core DSP. It is expressed that devel-
oping scalable parallel software greatly depends on the efficient use of
the interconnect network, memory hierarchy, and the peripheral
resources. While designing our CPAMA architecture, we have consid-
ered the methods which are proposed for software parallelism in [16].

Rashid et al. [17] proposed implementation of an application
specific instruction set processor using a software called LISATek,
which is now owned by Synopsys [18]. In this study, the speed-up relies
on instruction level parallelism only. A RISC processor provided by
LISATek is extended by processor data-path extension using the
mechanisms in the tool. In CPAMA, not only instruction level
parallelism, but also processor level parallelism is targeted.

Göhringer and Becker [19] proposed a runtime reconfigurable
architecture called Runtime Adaptive Multi-Processor System-on-a-
Chip (RAMPSoC). Parallel processing elements of the architecture are
connected through a Network-on-Chip (NoC) called Star Wheels. This
network is composed of groups that may have different number of
processing elements. Processing elements of a group can communicate
with each other through a switch, and processing elements of different
groups can communicate through other larger switches.

Different digital implementations of Cellular Neural Network,
which is an analog image processing structure, are proposed in several
studies [20–23]. These architectures are capable of filter based image/
video processing algorithms.

A configurable video decoder architecture [7] was proposed for
mobile terminals. This architecture consists of a conventional applica-
tion processor accompanied by a co-processor. The co-processor is
composed of basic functions (hardware blocks) of H.264 decoder such
as loop filter, motion compensation and integer transformation.
Communication between the application processor and co-processor
is implemented with a bus architecture. This study aims to decrease the
time-to-market of a system that requires video decoding, and proposes
an adaptable architecture for future standards by making configurable
parts.

STP engine [24] is a multi processor accelerator IP, currently
provided by Renesas Inc. It is used with a compiler tool called
Musketeer [25]. Different stream applications [25,26] are implemented
using STP engine. The current version [24] has 256 processing cores
with 8-bit word length. STP engine can be considered as a fixed size
CGRA with fixed word length.

The literature can be classified into three groups: (1) CGRAs, (2)
architectures essentially built for specific applications, and (3) technol-
ogy/device dependent architectures.

The difference between proposed CPAMA and CGRAs [3,9–11] is
that CPAMA consists of fully customizable processors, whereas CGRAs
consist of configurable functional units, like Arithmetic Logic Units
(ALU). Besides, data are shared by multi-port register files in CGRAs,
yet this task is handled through NoC with packets in CPAMA. Some
CGRAs [3] have scalability issues. It is hard to comment on perfor-
mance values in some studies [10,11], because the results are given as
normalized values. Last but not least, the problem that needs to be
solved on ADRES [8] is stated as a loop expansion problem. Instead in
CPAMA, the nature of image processing algorithms is considered as
explained in Section 3. Since STP [24] is a hard IP, the number of
processing cores and the word length are fixed. On the other hand, in
CPAMA, the full architecture is compile-time configurable, including
the number of processing cores, word-length, array size and dimen-
sions. Yet, contexts of CPAMA are also generated offline as it is done in
STP.

The architectures mentioned in [7,13,20,21,22,22] are essentially

M. Tükel et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

2

designed for a specific purpose or an application. These architectures
are configurable for implementing that specific application, such as
filtering, encoding, etc. On the other hand, CPAMA is designed to
support several types of image/video processing applications as
explained in Section 3.

Some architectures are tailored for a specific device or technology
[14,19]. For instance RAMPSoC [19] uses FPGA primitives like
reconfiguration ports. This type of primitives make the architecture
dependent on even some specific FPGA vendors. The other architecture
Sharf [14] is targeting FPGAs as well but not necessarily dependent on
them. However, tightly coupling between the controller and the
processor elements makes Sharf hardly scalable. Our proposed archi-
tecture does not rely on a specific technology or a device, and it is easily
scalable. CPAMA is a soft IP. It is written in pure VHDL. Hence, FPGA
is only a target platform for our architecture and we do not explicitly
use any primitives of an FPGA device. However, when CPAMA is
mapped onto an FPGA, the synthesizer maps adders, multipliers,
memories, etc. onto primitives of the FPGA. The same design concept
also applies for mapping CPAMA to ASIC. Experimental results are
given about scalability of our architecture in Section 5 of this paper.

3. Basic concepts of CPAMA

CPAMA is mainly designed to be vastly generic and flexible. In
every development cycle of CPAMA, requirements and characters of
image processing applications have been considered. Register files of
the processors, data-path design, instruction set of the processors,
communication among the processors, and FIFO structures are all
studied considering the image processing domain. CPAMA has a
template-based configurable structure. As any template structure,
CPAMA has both fixed and configurable parts in its design. We have
primarily considered supporting as many image processing algorithms
as possible, while making a decision about whether a unit should be
fixed or configurable. For instance, the number of ports of Constant
Memory is fixed, however bit width of the address input of Constant
Memory depends on the number of different constant instances. This is
further explained in Fig. 7 and in Section 4.1.

Images are processed block by block on CPAMA. Each block size is
equal to size of the processor array, i.e. processor array height ×
processor array width. Due to advantages of hardware & software co-
design methods, CPAMA is designed in two parts; hardware and
software. Conceptual architecture of CPAMA is shown in Fig. 1. The
names in Fig. 1 are selected to present basic, abstract structure of
CPAMA. In Fig. 1, upper dashed blocks are implemented on the same
chip, that are hardware parts of a target design. However, the host
processor in the lower dashed block can be implemented on or off the
same chip. Software running on the host processor would be the
software part of a target design. Global memory should be implemen-
ted on a separate chip in most cases due to its size. In this paper,
modules presented as work items in Fig. 1 will be mostly referred as
processors. Hence, the network that is composed of processor nodes
will be called as processor array. Every work item has a private memory
which may be registers that are available only for the work item itself.
In addition, there is a local memory available for data sharing between
the work item and global data cache. Local memory represents the
FIFO registers of a processor.

To clarify which image/video processing algorithms are targeted,
we would like to address classification of image processing algorithms
that have been made earlier [27,28]. Although there are differences in
expression of the classifications, these studies classify image processing
algorithms into three categories:

1. Point: The output value at a specific coordinate is dependent only on
the input value at that same coordinate.

2. Local: The output value at a specific coordinate is dependent on the
input values in the neighborhood of that same coordinate.

3. Global: The output value at a specific coordinate is dependent on all
the values in the input image.

With CPAMA, we target to cover the algorithms described in 1 and 2
above. We do not focus on the third class in this study although it can
be achieved through our architecture. Besides, one should note that;
although the classification is given for still image processing algo-
rithms, CPAMA supports video processing and image processing
algorithms that are defined by more than one input image. This
classification is presented only to demonstrate what kind of processing
we are dealing with, regardless of the number of the input images or
whether images/frames are received continuously.

In CPAMA, the whole raw image is assumed to be stored on a RAM
to avoid standard image representations. A dedicated memory manage-
ment unit is responsible for sending and receiving the blocks of an
image. An image is assumed to be like the one in Fig. 2.

Surrounding pixels of a block are called neighboring pixels [29].
They may be needed in an algorithm which calculates the result pixel
by its neighboring pixels, e.g. filtering algorithms. To explain basic
parameters in our architecture, a sample algorithm is given in Eq. (1).

∑y u c x u c x u[] = * 1 [] + * 2 [] + …i j
n r

r

i n j n i n j n,
=−

1 + , + 2 + , +
(1)

Throughout the text unless otherwise stated; r represents the neigh-
borhood depth, x represents images (frames), ci represents constants
and u represents time. The number of different xs (e.g. x x1, 2, etc.)

Fig. 1. Conceptual device architecture of CPAMA.

M. Tükel et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

3

determines the number of images (frames) that are used in the
algorithm. In filtering applications the number of images can be just
one. However, in motion detection [30], and block-match [31] algo-
rithms, there can be two or more successive frames of a video.

Depth of the neighborhood is indeed an important parameter, since
it affects the amount of data to be sent. This parameter is equal to one
for the upper block and two for the lower block in Fig. 2. If a series of
algorithms are implemented on the same design, r only can be zero or
the same positive value in each algorithm, because r affects the size of
the FIFO which is explained in Section 4.1.1. However one can change
it before compilation.

When considering local image processing algorithms, each block
may not have real neighboring pixels like the upper block shown in
Fig. 2. Mentioned block is on the boundary of the frame so its
neighboring imaginary pixels should be chosen in a specific way.
They may be chosen as their own values (zero-flux method), fixed
value (e.g. zero), or pixels of a different block even in a different frame.
The last option may be needed if the algorithm is performed by using
more than one frame.

Imaginary pixels - non-real pixels - may be needed in other
algorithms which use windows as well. Fig. 3 shows how an algorithm
may need non-existent pixels when they do not use neighboring pixels.
Window is basically a sub-block of an image which the algorithm is
defined in. In Fig. 3, p represents the window width. Main difference
between the algorithms that are defined by using neighboring pixels
and windowing is the amount of required data. In an algorithm that is
defined by an r neighborhood, processing one block of an image
requires N r M r(+ 2)*(+ 2) number of pixel data, where N and M are
width and height of a block, respectively. However, when a window is
used, N M* number of pixel is enough to do the processing. The top left
block in Fig. 3 shows the necessity of imaginary pixels when we do not
use neighboring pixels.

As explained in Figs. 2 and 3, processing a block requires pixels of
the block itself and some extra pixels due to neighboring, etc. To
allocate the pixels required for the computation, a data structure is
created. We can assume each image object has an accompanying data
structure instance in the cache that stores the block that is ready to be
processed. In order to support different neighboring configurations, we
propose a FIFO communication that sends cache content to processor
array. These hardware blocks are discussed in Section 4.1.1.

4. Hardware design

Hardware side of CPAMA consists of a 2D grid network structure as
shown in Fig. 4. Considering the nature of image processing, there is a
strong similarity between a 2D signal (image) and a 2D Mesh NoC.
Therefore, we preferred this type of network in CPAMA.

One processor is connected to each node. Data communication
among processors is done by routers. Image is delivered by FIFOs or
routers through the network. FIFOs are placed in processors, and
deliver the data in one (vertical) direction. Synchronization of the
FIFOs is handled by global commands which are sent from host

Fig. 2. Assumed image and primitive definitions of image processing.

Fig. 3. Image processing using windows. p represents the window width.

Fig. 4. Network on chip communication and basic blocks of hardware.

M. Tükel et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

4

processor. FIFO communication is built separately. In other words,
delivering one block of an image may not be carried out by routers. In
this way, processing elements on the network and FIFO elements,
which are responsible from sending-receiving data, can operate con-
currently.

We need to show how one block of an image is allocated among our
processor array architecture. Fig. 5 explains the relation between the
locations of pixels and the names of registers together with their
hosting processors. Fig. 5 shows one block of an image. Each small
square represents a pixel. Inner square (blue) represents center pixels
of the processors. Outer (pink) pixels are neighboring pixels. Pi j,
represents the processors in the array. Rk represents the registers
storing the related pixel. Each register stores one pixel. In short, each
pixel is stored in a register Rk which is located in a processor Pi j, . From
Fig. 5, one can see that each Pi j, has to store different number of pixels,
so each one of them has different number of registers. Processors which
are not located on the boundaries have just one register to store one
pixel of the related image.

For a better understanding, we show data communication through
FIFOs in Fig. 6. The connections between FIFO registers (FR) are
shown in Fig. 6. Here, coordinates (ids) of the processors are defined by
colors and written at the bottom of each colored rectangle. So, registers
with the same color belong to the same processor. For instance, red
registers belong to the top left most processor, i.e. P11. The connec-
tions between the FIFO registers are in one vertical direction. Figs. 5
and 6 should be considered together. In both figures, r = 2, and we
assumed our design to have a 4 × 4 processor array. We have
mentioned that synchronization in the FIFO is handled by global
commands. When the FIFO receives all the data of a block, global
processor emits a command for copying content of the FIFO into
registers of processors. Thus, processors get ready to operate, and FIFO
gets ready to receive a new block. Further information about FIFO and
the register file is given in Section 4.1.1.

We have a serial-to-parallel data converter at the input of the FIFO and
a parallel to serial data converter at the output of the FIFO. In this way, we
send and receive data serially to and from FIFO. Sending cache content to
the FIFO needs to be done accordingly. In order to deliver the pixels to their
corresponding locations, the pixel that should be sent first, has to be the last
pixel of the block. We also provide multiple data input and output capability
instead of a data converter. This option has to be chosen accordingly in
CPAMA design. We left this feature optional to the user, because there
might be no need to deliver all data in parallel in an application if
computation takes more time than the communication. The area shaded
with gray in Fig. 6 shows FIFO registers that are required for center pixels

of the processors. Rest of them are needed for neighboring pixels, when r is
assumed as 2. Synchronization signals sent from software part are not
shown here for the sake of simplicity.

4.1. Processor

The processor has been implemented as a Very Long Instruction
Word (VLIW) architecture able to execute parallel instructions. It
supports all the basic ADD, MULT, AND, JUMP, etc., instructions.
Before giving our processor model, first we would like to discuss
similarities between our processor and a conventional 32-bit processor
(single cycle 32-bit MIPS) [32]. MIPS processor has a Program Counter
(PC), Instruction Memory, Register File, ALU, Data Memory and
MUXes for input selection related to these blocks. Our simplified
processor model is presented in Fig. 7.

MIPS and the processor model proposed in this work have the same
blocks except two differences: our model has a Constant Memory for
storing constants and does not have a Data Memory.

MIPS Register File has two read data outputs and accompanying
two selection inputs; one write data input and one accompanying
selection input. MIPS architecture can only execute one ALU or register
operation in one cycle. We design our processor such that it can execute
ALU and register operations simultaneously in one cycle.

As seen in Fig. 7, ACC is a special purpose register (accumulator).
One of its purposes is to provide concurrent ALU and register
operations. When an ALU operation is being executed, a value can be
fetched concurrently from PortIn and stored in a register. In order to
make concurrent ALU and register MOVE operations, the register file
has to have another read port. This feature is provided and optional in
the architecture, but is not shown in Fig. 7 for the sake of simplicity.

Colored signals in Fig. 7 represent control signals derived from
instruction bits and other signals. Bit width of almost any signal is
variable. They vary depending on the application that is implemented.
Number of the registers that are needed by the implementation deter-
mines the value of R in Fig Fig 7. The variable Z is determined by how
many different instructions are used in the application. Therefore, this
feature provides a variable opcode width. ALUSrc chooses the inputs of
ALU unit; in other words, it acts like a selection signal of a MUX.

Fig. 5. Pixel allocation method for a block of image. r = 2 on a 4 × 4 processor array.

Fig. 6. Communication of FIFO registers. r = 2 on a 4 × 4 processor array.

M. Tükel et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

5

Constant values are not embedded in the instruction in our
processor model. Instead, we provide each different constant an
address and store them in a Constant Memory. For instance, if we
had two 32-bit constants, we would address them with a single bit.
Thus, 1 bit would occupy a space in the instruction word. Note that,
this feature also provides the ability of using different precision for
constants. Variable W represents the word length of the processor, i.e.
precision of the ALU operations. Typically we are taking W as the width
of constants. C is the address width of Constant Memory and varies
depending on the number of different constant instances.

The address calculation of the program counter, PCSrc chooses
either the very next address, the JUMP address, or the address that is
delivered by FIFO. In the last case GCtrl command must be set
accordingly for external address jump. This ability can be regarded as
a function call, which is ordered by the host processor.

The processor has two kinds of communication. One of them is
handled by FIFO and will be explained thoroughly in Section 4.1.1. The
other communication, inter-processor communication, is handled
through routers from the ports PortIn and PortOut. These ports have
accompanying addresses which determines the destination of the
packet. These addresses are not shown in Fig. 7 for simplicity.

All the blocks, wires and registers are instantiated on a need-to-
have basis. Without redundant blocks, we may obtain an efficient
circuit in terms of power consumption and area utilization.

Processors have some differences in their designs according to their
locations. They are named as corner, edge and middle processors
(middle processors are the ones that are not located on the boundaries
of the array).

4.1.1. Register File and FIFO
Register File is designed to support register and ALU operations in

one cycle. As shown in Fig. 8, the number of registers depends entirely
on the application program. This prevents usage of redundant and
unnecessary hardware. In Fig. 8 there are n k− registers for computa-
tion and k registers for FIFO. Besides, width and depth of the FIFO can
change according to the place of the processor in the network. SI, EI,
SO, EO are selection and enable signals for input and output of register
file, respectively.

Recall that r is the neighborhood depth of the image processing
algorithm and a is the argument number, i.e. the number of the frames

that are used to calculate one result frame;

• FIFO of the processors (FR) that is placed on the corners of the
network has r(+ 1)2 registers. Depth and width of the FIFO are
r(+ 1). For instance, top left registers in Fig. 6; these are the FIFO
registers for P11 (processor 11).

• FR that is placed on the north and south borders of the network has
r(+ 1) registers. Width of the FIFO is 1 and depth of the FIFO is
r(+ 1). For instance, the registers colored with black at the bottom
of Fig. 6; these are the FIFO registers for P43.

• FR that is placed on the west and east borders of the network has
r(+ 1) registers. Width of the FIFO is r + 1 and depth of the FIFO is
1. For instance, the registers colored with orange at the left side of
Fig. 6; these are the FIFO registers for P21.

• FR of the other processors has 1 register. Depth and width of the
FIFO are 1. For instance, the brown register in the middle of Fig. 6;
this is the FIFO register for P23.

Number of FIFO registers (FR) depends on the placement of the
processors in the network, however number of the registers in register
file that are related to the FIFO, i.e. k, depends on the argument
number, i.e. a, as well. Note that a is taken as 1 in Fig. 8.

While designing the FIFO-register file structure, we have also
considered power consumption in multi-port register files. As sug-

Fig. 7. Main blocks of the processor.

Fig. 8. Detailed model of Register File and FIFO. Data exchange between FIFO (FRs)
and registers is synchronized by global command (GCtrl).

M. Tükel et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

6

gested in studies [33,34], there will be a significant increase in power
consumption of register files if the number of the ports of the register
file increases. Especially when the size of the register file gets bigger,
power consumption of the register file should be taken into account
more seriously. It is suggested that power consumption will be
proportional to N3 where N is the number of the ports of the register
file [34]. To conclude, register files of the processors should have as
minimum number of ports and minimum size as possible. In our
approach, sizes of register files are decided completely on a need-to-
have basis. Middle processors can get their neigboring pixels from
neighboring nodes through routers. Therefore, they just store their
center pixels. However, processors on the edges have to store neigh-
boring pixels since no other unit stores it. Keeping in mind that most of
the nodes are placed in the middle, we think that this effective usage of
registers yields us better results in terms of chip area and power
consumption. Essentially, register files have two input (one for FIFO
one for computation) and one output port. In case a type of processor
needs an extra port for register file due to user program, an extra port
will be generated only for that specific type of processor. Main goal here
is to keep the register file capacity and the number of the ports small.

4.1.2. Arithmetic logic unit
In this architecture, arithmetic unit is designed as a template

structure. It is designed to instantiate only the necessary operations.
In future versions of CPAMA, we are planning to enhance its config-
urability by generating it from the algorithm definition.

In our arithmetic unit design, we have followed resource sharing
approach similarly done in multi-mode digital signal processing
[35,36]. For example, an ALU that can execute one addition and
multiplication in one cycle, and as separate instructions, is designed
sharing common hardware blocks.

In each target image processing application the implementation
code may be different. Thus, the selected ALU operations may change.
Therefore, we have designed a flexible instruction set that has variable
opcodes.

4.2. Router

Routers shown in Fig. 4 have North, South, East, West and
processor connections. A router basically decides which packet will
be sent to which channel according to the address values accompanied
with the packet. A packet consists of a pixel, a destination address and
an argument number. In the network, it is assumed that there are no
conflicts in communication, i.e., more than one packet is never sent to
same port of a router at the same time. To eliminate possible temporary
conflicts and make a stable system, a priority is assigned to each port of
the router. Even if two channels try to send data to a processor at the
same time, router will only pass the packet which comes from the
channel that has higher priority. A schematic of the router is given in
Fig. 9.

Router is basically composed of one multiplexer and one de-
multiplexer unit. Data and address pair to be sent to next node is sent
by the processor through the de-multiplexer unit. Incoming channels
are selected by the multiplexer according to their priority and are
delivered to the processor.

4.3. Reconfiguration in CPAMA

If the user wants to change between two or more programs at run-
time due to chip area restrictions; at first, he/she has to have CPAMA's
Assembler instantiated all the instructions and registers that are used
in those programs in the processor architecture. Then, changing
content of the Instruction and Constant memories will result in
changing the program memory. If CPAMA is implemented on an
FPGA, run-time programmability can be performed by partially
reconfiguring memory blocks.

As explained in [37,38], maximum bandwidth for configuration
ports of a Xilinx Virtex-5 FPGA is 3.2 Gbps. Partial reconfiguration BIT
file of a ROM consisting 64 × 32-bit words took 63 frames (smallest
unit that can be reconfigured) in our experiment. Size of a frame in
Virtex-5 is 41 32-bit words [39]. Note that, in our processors total
Instruction and Constant memory size is normally smaller than this
size (64 × 32-bit). Including fix parts of the BIT file, reconfiguration
bit-stream length is 12,073 Bytes. Therefore, reconfiguration time of
the memory block takes bits Gbps(12, 073 × 8) ÷ 3.2 = 30.2 microse-
conds. The reconfiguration time scales fairly linearly as the partial
BIT file size grows with the number of frames, with small variances
depending on the location and contents of the frames [38]. Hence, total
reconfiguration time of CPAMA changes linearly with respect to the
number of the processors that are used in CPAMA.

In the ASIC case, the memory contents can be delivered through
FIFO and written into the Instruction and Constant Memory. This
method can be used in the FPGA as well. The architectural features
related to programmability in ASIC case have not been implemented
yet.

5. Case studies

We have evaluated performance of CPAMA by implementing four
different algorithms; which are dot product, TIFF to gray level image
transformation (TIFF2BW) [40], Inverse Discrete Cosine Transform
(IDCT) and block-match.

5.1. Dot product

Dot product is the core of many image processing algorithms, e.g.
filtering based image processing. According to the classification made
in Section 3, dot product algorithm fits in the second group (local). We
have implemented dot product on a Xilinx Virtex-5 FPGA (xc5vtx240t)
using ISE 14.7 [41]. We have analyzed performance of CPAMA
changing the number of processors in the network, both horizontally
and vertically. We have evaluated 86 different configurations. Figs. 10
and 11 show how size of the network affects the area occupation; and
Figs. 12 and 13 show how size of the network affects the period of the
circuit.

Fig. 9. (a) Inputs and outputs of the router are shown. Each channel (North, South, etc)
has data and address input-output. (b) The relations between inputs and outputs of the
router are shown.

M. Tükel et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

7

In these charts the neighborhood depth r is equal to 1. Height and
width of the network are presented on the legend of the charts. Moreover,
area and period results for a subset of the above configurations are given
in Table 1 to express actual numbers. This time r = 1, 2. While doing this
analysis, since manually doing each synthesis, place & route would take
long, we have written a script to change network size and initiate the
synthesize, place & route software. In the script, we adaptively change the
period constraints to find the possible best value. However, the achievable
best result for a given configuration might be better than the value that the
script finds, because we had to limit the iteration count of the script due to
long execution times. As seen in Table 1, our architecture is scalable.
Table 1 also shows that area can be utilized more efficiently when the
network is like a square, i.e #horizontal nodes≈ #vertical nodes. Because,
neighboring pixels are necessary to compute dot product. As explained in
Section 4.1.1, a processor needs extra registers to store neigboring pixels

when it is placed on the corner or edge of the network. When a network is
close to square, it has fewer edge processors. Therefore, reducing the
number of edge nodes yields a better result in terms of chip area
occupation. Moreover, when the number of the processors gets large,
the capability of synthesis, place & route tools are more dominant on the
performance values. To calculate throughput of CPAMA, Eq. (2) can be
used. This equation is valid for all kinds of applications that use FIFO for
delivering the data, including dot product.

CT NW r NH r BW
BT CT PT HS
fps IS NS BT T

= (+ 2 ×) × (+ 2 ×)/
= max{ , } +
= 1/((/) × ×) (2)

Terms in Eq. (2) represent the following:

• IS: Image size, (width of the image) × (height of the image)

• NH: Network height, height of the processor array

• NW: Network width, width of the processor array

• NS: NW × NH

• r: neighborhood depth

• BW: Bandwidth between the processor array and data cache in
terms of ”pixel per cycle”

• CT: Communication time, cycle count that is spent for delivering
pixels to the network

• PT: Process time, cycle count that is spent by the processor array
performing instructions

• HS: Handshaking delay in terms of cycles, typically 3

• T: period, duration of one cycle in seconds

• fps: frame per second

• BT: Cycle count that is needed to process a block. Time that is spent
for handshaking is included.

Eq. (2) implies that CPAMA's throughput is determined by either
computation or communication time. Since computation and commu-
nication are performed concurrently on the processor array, the longer
latency determines throughput of the architecture. If process time is

Fig. 10. Area occupation with respect to number of horizontal nodes.

Fig. 11. Area occupation with respect to number of vertical nodes.

Fig. 12. Period with respect to number of horizontal nodes.

Fig. 13. Period with respect to number of vertical nodes.

Table 1
Performance results of several CPAMA configuration for dot product application.

#Processor Width Height Period (ns) Area (Slice)

r = 1 r = 2 r = 1 r = 2

16 2 8 6.599 6.626 1771 2466
4 4 6.595 6.768 1496 2191

64 2 32 8.815 8.673 7976 8887
4 16 8.059 9.212 4950 5965
8 8 9.190 8.93 4628 5434

200 10 20 9.755 9.965 20,227 21,811
4 50 9.290 9.418 19,635 22,646

M. Tükel et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

8

less than communication time, which is usually the case especially for
large networks, then CPAMA works like a stream processor. In other
words, it produces the result pixel/data as soon as it gets a new pixel/
data. Furthermore, if bandwidth between data cache and processor
array is larger than 1 pixel per cycle, this will affect the throughput
favorably.

5.2. TIFF2BW

We have implemented TIFF2BW application on CPAMA to make a
comparison with the performance values of ADRES architecture [6].
We have chosen ADRES because it is not dependent on a specific device
like RAMPSoC [19]. In addition, ADRES is well analyzed as a CGRA
architecture in literature [2]. More importantly the TIFF2BW test that
was done on ADRES [6] is repeatable. TIFF2BW application fits in the
first group of image processing applications (point) mentioned in
Section 3. We have implemented three different CPAMA instances by
using the same CMOS technology (90 nm) as ADRES. To make a fair
comparison between two architectures, we have selected the same
configurations, e.g. frequency, array size, precision (32-bits), etc. Our
results are shown in Table 2. Here, we refer the CPAMA instance
(CPAMA 4 × 4*) which has the same configurations as ADRES. The
other instances in Table 2 are presented to show the performance of
CPAMA for different size of arrays and for different frequencies.

We have implemented the design by using TSMC90GP standart cell
library [42] and Cadence [43] tools. First, we have synthesized VHDL
code of CPAMA by Cadence's RTL Compiler. Synthesized circuit was
placed and routed automatically by Cadence's Encounter. Placed and
routed design worked at a frequency of 300 MHz. We have made a back
annotated simulation at 300 MHz to obtain switching activities for
CPAMA. Simulation was performed by Cadence's NCSim. When
generating switching activity file, we have used the same picture
obtained from [40] as the input for CPAMA, thus we eliminated the
effect of input on power measurement. Measurement of dynamic power
consumption of CPAMA was done by Cadence's Encounter. As a result,
Encounter measured 65.35 mW for dynamic power consumption of
CPAMA. This number includes power consumption of all the parts of
the 4×4 processor array. Since global memory and host processor are
not part of the processor array, they are not included in power
measurement. Similar exclusions were made in the compared study
[6] too. Dynamic power of ADRES is 71.69 mW for TIFF2BW applica-
tion [6]. TIFF2BW application for an 1520 by 1496 image can be
performed in 1.71 million cycles on 4×4 CPAMA however the best
value 4 × 4 ADRES can achieve is 2.25 million cycles for the same size
image. We can measure the energy that the architectures consume as
follows:

Energy cyclecount clockperiod power= × × .

According to our comparison regarding TIFF2BW application,
CPAMA architecture consumes 31% less energy, and provides 32%
more throughput than ADRES.

5.3. Inverse DCT

We have implemented 2D inverse DCT (IDCT) algorithm too, to

compare the performance of our architecture with other ADRES im-
plementations [44]. In this ADRES architecture, pipeline mechanism is
enabled and the register file structure is changed. Both 4 × 4 and 8 × 8
array architectures are implemented and their performance results are
given. These ADRES instances are implemented by using a 90 nm low
power CMOS library to lower the power consumption.

To make a fair comparison with this study [44], we implemented
4 × 4 and 8 × 8 CPAMA instances by using TSMC90LP (low power)
library.

One should note that, IDCT algorithm does not fit into the two
categories (point, local) that are mentioned in Section 3. As mentioned,
although we focus on image/video algorithms that are in the first and
second category, other applications may still be done. Here, by
implementing IDCT, we give an example to the third category. While
implementing IDCT, we used similar partitioning and matrix multi-
plication approaches to the studies in literature [45,46]. Details of the
ASIC implementation are similar to the TIFF2BW implementation. So,
they are not repeated here.

Since the method followed for IDCT implementations of ADRES is
not stated, we have implemented IDCT on CPAMA by using two
different methods. In this way, we aim to demonstrate two features of
CPAMA: 1) Algorithm selection truly effects performance of CPAMA. 2)
CPAMA is scalable. In 4 × 4 CPAMA instance, we implemented IDCT
by using row-column decomposition, i.e. two 1D-IDCT. In 4 × 4
CPAMA, we selected Chen-Wang [45] approach for 1D-IDCT imple-
mentation. On the other hand, for 8 × 8 CPAMA instance, we used
usual 8 × 8 matrix multiplication instead of Chen-Wang approach. We
selected cross-wired mesh array [46] approach for matrix multiplica-
tion. This approach is proposed to multiply two variable matrices.
However in IDCT, one multiplier is always constant. Hence, by re-
arranging the array structure of the cross-wired mesh array, we
mapped constant-variable matrix multiplication onto CPAMA without
cross connections. In 8×8 CPAMA instance, we delivered the input data
through routers by doing a minor modification. We could have used
FIFO as usual for delivering the data; but, in this instance, control of
the network is easier this way.

Performance values of CPAMA and ADRES are compared in
Table 3.

In Table 3, throughput is given in terms of block/us. This is the
number of 8 × 8 blocks that are calculated in one micro second. In
ADRES implementations, the IDCT execution time is given for 396
units of 8 × 8 blocks. So, in Table 3, the throughput column is
calculated dividing 396 by execution time values.

Execution time and energy values for 8 × 8 ADRES implementation
are taken from the graph shown in [44]. Because their exact values are
not given in that study.

As shown in Table 3, for IDCT application, 8 × 8 CPAMA is more
efficient than 8 × 8 ADRES in terms of energy consumption and
throughput. CPAMA provides 2.4× more throughput and consumes
50% less energy than ADRES in this configuration. On the other hand,
for 4 × 4 array size, ADRES is more efficient than 4 × 4 CPAMA in
terms of energy consumption and throughput, except area occupation.
This time, CPAMA provides 56% less throughput and consumes 55%
more energy than ADRES. According to Table 3, it can be deduced that
scalability is not an issue for CPAMA. Otherwise, the throughput

Table 2
Comparison of performance values of CPAMA and ADRES for TIFF2BW application.

Architecture Frequency Throughput Energy Area
(MHz) (pixel/us) (mJ) mm()2

ADRES 4 × 4 300 303 0.54 NA
CPAMA 4 × 4* 300 400 0.37 0.40
CPAMA 4 × 4 350 466 0.40 0.42
CPAMA 8 × 8 333 1641 0.54 1.45

Table 3
Comparison of performance values of CPAMA and ADRES for IDCT application.

Architecture Frequency Throughput Energy Area Technology
(MHz) (block/us) (uJ) mm()2

CPAMA 4 × 4 400 0.74 29.6 0.39 90 nm LP
ADRES 4 × 4 312 1.70 19.1 1.08 90 nm LP
CPAMA 8 × 8 303 5.60 21.7 1.41 90 nm LP
ADRES 8 × 8 294 1.65 43.2 NA 90 nm LP

M. Tükel et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

9

wouldn't be higher for the larger array. The method used in imple-
menting the application has direct effect on the performance of the
architecture. Second method that we have used is more suitable to
implement on CPAMA.

There is a significant difference in throughput between two CPAMA
instances. Because, in the first approach that is used for 4 × 4 CPAMA,
1D-IDCT is applied to each row and then column one by one. This
spends a significant amount of handshaking time. Besides, the proces-
sor array cannot be utilized well while using this method. On the other
hand, the second method that is used for 8 × 8 CPAMA needs some
hand work to be efficiently mapped.

5.4. Block-match application

We have implemented block-match algorithm as a proof-of-concept
for multiple frames. Block-match algorithm is used in video encoding.
Since it requires extensive computation, it is generally implemented as
a dedicated hardware unit [31,47]. Fig. 14 presents how block-match
algorithm works and motion vectors are computed. In Fig. 14, N
represents the block size and p represents the search window size. In
our application, the sum of absolute differences (SAD) of pixels is
computed to find the similarity between two blocks. Three different
instances of CPAMA are presented in Table 4. Size of the blocks for
matching algorithm is taken the same as the network size. The word-
length of the processors are selected as 16-bits in each configuration.
Frames are delivered to the network as multiple words, i.e., one row of
data is fed to the network at a time. Each instance is implemented on a
Xilinx Virtex-5 FPGA (xc5vtx240t) using ISE 14.7. Changing config-
uration of these three CPAMA instances is managed by only changing
the size of the network parameter.

In Table 4, CPAMA 4 × 4 has a better throughput, but image block
size processed by CPAMA 4 × 4 is smaller than that of CPAMA 8 × 8
and CPAMA 16 × 16 configurations.

6. Conclusion

Our proposed architecture CPAMA is a highly configurable processor
array targeted for low power, low cost image/video processing devices. In
comparison with ADRES, CPAMA has shown better performance in
TIFF2BW and comparable performance in IDCT application in terms of
energy consumption, throughput and area occupation. We think, this is
because it occupies only the necessary hardware for a given application.
This is achieved by considering the image processing nature in every
development cycle of CPAMA.

In the first and second group of multimedia processing applications
(point and local), CPAMA is quite reusable and easily configurable. For
these application groups, configuration can be done by just changing
the parameters of the array or/and processor program. In consumer
electronics, improving time-to-market of a low cost and low power
image/video processing chip is a significant goal. Due to re-usability of
our design, design and verification cycle of an implementation using
CPAMA will be shorter. In addition, we have a toolchain project in its
final stages to automatically generate design files of the CPAMA. This
toolchain also accelerates the design process. Consequently, we think
CPAMA is a good candidate for consumer devices that exploit image/
video processing tasks.

Acknowledgment

The authors would like to thank Mr. Gökhan Işık for his recom-
mendations on ASIC implementation, and Dr. Salih Bayar for his help
on partial reconfiguration techniques in FPGAs.

References

[1] D. Macmillen, R. Camposano, D. Hill, T. Williams, An industrial view of electronic
design automation, IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 19 (12)
(2000) 1428–1448. http://dx.doi.org/10.1109/43.898825.

[2] B. De Sutter, P. Raghavan, A. Lambrechts, Coarse-grained reconfigurable array
architectures, in: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (Eds.),
Handbook of Signal Processing Systems, Springer, US, 2010, pp. 449–484. http://
dx.doi.org/10.1007/978-1-4419-6345-1_17.

[3] B. Mei, S. Vernalde, D. Verkest, H. De Man, R. Lauwereins, Adres: An architecture
with tightly coupled vliw processor and coarse-grained reconfigurable matrix, in: P.
Y. K. Cheung, G. Constantinides (Eds.), Field Programmable Logic and Application,
Vol. 2778 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2003,
pp. 61–70. 〈http://dx.doi.org/10.1007/978-3-540-45234-8_7〉.

[4] D. Gohringer, M. Hubner, J. Beck, Adaptive multiprocessor865 system-on-chip
architecture: new degrees of freedom in systemdesign and runtime support, in:
M. Hubner, J. Becker (Eds.), , Multiprocessor System-on-Chip, Springer, New York,
2011, pp. 127–151. http://dx.doi.org/10.1007/978-1-4419-6460-1_6.

[5] S. Pedre, T. Krajnk, E. Todorovich, P. Borensztejn, Accelerating embedded image
processing for real time: a case study, J. Real-Time Image Process. (2013) 1–26.
http://dx.doi.org/10.1007/s11554-013-0353-2.

[6] M. Hartmann, V. Pantazis, T. Vander Aa, M. Berekovic, C. Hochberger, Still image
processing on coarse-grained reconfigurable array architectures, J. Signal Process.
Syst. 60 (2) (2010) 225–237. http://dx.doi.org/10.1007/s11265-008-0309-0.

[7] B. Stabernack, K.-I. Wels, H. Hubert, A system on a chip architecture of an h.264/
avc coprocessor for dvb-h and dmb applications, IEEE Trans. Consum. Electron. 53
(4) (2007) 1529–1536. http://dx.doi.org/10.1109/TCE.2007.4429248.

[8] B. Mei, M. Berekovic, J.-Y. Mignolet, Adres & dresc: Architecture and compiler for
coarse-grain recon gurable processors, in: S. Vassiliadis, D. Soudris (Eds.), Fine-
and Coarse-Grain Recon- gurable Computing, Springer, The Netherlands, 2007, pp.
255–297. http://dx.doi.org/10.1007/978-1-4020-6505-7_6.

[9] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, B. Hutchings, A reconfigur-
able arithmetic array for multimedia applications, in: Proceedings of the 1999
ACM/SIGDA Seventh International Symposium on Field Programmable Gate
Arrays, FPGA ’99, ACM, New York, NY, USA, 1999, pp. 135–143. 〈http://dx.doi.
org/10.1145/296399.296444〉.

[10] C. Jang, J. Kim, J. Lee, H.-S. Kim, D.-H. Yoo, S. Kim, H.-S. Kim, S. Ryu, An
instruction-scheduling-aware data partitioning technique for coarse-grained re-
configurable architectures, in: Proceedings of the 2011 SIGPLAN/SIGBED
Conference on Languages, Compilers and Tools for Embedded Systems, LCTES ’11,
ACM, New York, NY, USA, 2011, pp. 151–160. 〈http://dx.doi.org/10.1145/
1967677.1967699〉.

[11] N.R. Miniskar, R.R. Patil, R.N. Gadde, Y.C.R. Cho, S. Kim, S.H. Lee, Intra mode
power saving methodology for cgra-based reconfigurable processor architectures,
in: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016,
pp. 714–717. 〈http://dx.doi.org/10.1109/ISCAS.2016.7527340〉.

[12] H. Eichel, Customising a processor architecture for multimedia applications,

Fig. 14. Block-matching and computation of motion vector.

Table 4
CPAMA instances for block-match application.

Architecture Frequency Throughput Area #Pixels
(MHz) (block/us) (slice) in a block

CPAMA 4 × 4 140 6.94 1797 16
CPAMA 8 × 8 125 3.45 7233 64
CPAMA 16 × 16 83 1.21 26,575 256

M. Tükel et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

10

http://dx.doi.org/10.1109/43.898825
http://dx.doi.org/10.1007/978-1-4419-6345-1_17
http://dx.doi.org/10.1007/978-1-4419-6345-1_17
doi:10.1007/978-3-540-45234-8_7
http://dx.doi.org/10.1007/978-1-4419-6460-1_6
http://dx.doi.org/10.1007/s11554-013-0353-2
http://dx.doi.org/10.1007/s11265-008-0309-0
http://dx.doi.org/10.1109/TCE.2007.4429248
http://dx.doi.org/10.1007/978-1-4020-6505-7_6
http://dx.doi.org/10.1145/296399.296444
http://dx.doi.org/10.1145/296399.296444
doi:10.1145/1967677.1967699
doi:10.1145/1967677.1967699
doi:10.1109/ISCAS.2016.7527340

Electron. Syst. Softw. 1 (4) (2003) 29–33. http://dx.doi.org/10.1049/
ess:20030406.

[13] J.-C. Chu, C.-W. Huang, H.-C. Chen, K.-P. Lu, M.-S. Lee, J.-I. Guo, T.-F. Chen,
Design of customized functional units for the vliw-based multi-threading processor
core targeted at multimedia applications, in: 2006 IEEE International Symposium
on Circuits and Systems, 2006, pp. 2389–2392. 〈http://dx.doi.org/10.1109/ISCAS.
2006.1693103〉.

[14] C.S. Bassoy, H. Manteuffel, F. Mayer-Lindenberg, Sharf: An fpga-based customiz-
able processor architecture, in: 2009 International Conference on Field
Programmable Logic and Applications, 2009, pp. 516–520. 〈http://dx.doi.org/10.
1109/FPL.2009.5272447〉.

[15] K. Masselos, F. Catthoor, C. E. Goutis, H. DeMan, Low power mapping of video
processing applications on vliw multimedia processors, in: IEEE Alessandro Volta
Memorial Int. Workshop on Low Power Design, 1999, pp. 52–60.

[16] K. Sanghai, R. Gentile, Multi-core programming frameworks for embedded multi-
media applications, 2017. https://www.ll.mit.edu/HPEC/agendas/proc07/Day3/
17_Sanghai_Abstract.pdf.

[17] M. Rashid, L. Apvrille, R. Pacalet, Application specific processors for multimedia
applications, in: 2008 11th IEEE International Conference on Computational
Science and Engineering, 2008, pp. 109–116. 〈http://dx.doi.org/10.1109/CSE.
2008.26〉.

[18] Synopsys, 2017. 〈http://www.synopsys.com〉.
[19] D. Göhringer, J. Becker, High performance reconfigurable multi-processor-based

computing on fpgas, in: Parallel Distributed Processing, Workshops and Phd
Forum (IPDPSW), 2010 IEEE International Symposium on, 2010, pp. 1–4. 〈http://
dx.doi.org/10.1109/IPDPSW.2010.5470800〉.

[20] M. Tukel, M. Yalcin, A new architecture for cellular neural network on reconfi-
gurable hardware with an advance memory allocation method, in: Cellular
Nanoscale Networks and Their Applications (CNNA), 2010 12th International
Workshop on, 2010, pp. 1–6. 〈http://dx.doi.org/10.1109/CNNA.2010.5430316〉.

[21] N. Yildiz, E. Cesur, K. Kayaer, V. Tavsanoglu, M. Alpay, Architecture of a fully
pipelined real-time cellular neural network emulator, IEEE Trans. Circuits Syst. I:
Reg. Pap. 62 (1) (2015) 130–138.

[22] S. Malki, L. Spaanenburg, A cnn-specific integrated processor, EURASIP J. Adv
Signal Process. 2009 (2009) 1–14.

[23] Z. Voroshazi, Z. Nagy, A. Kiss, P. Szolgay, Implementation of embedded emulated-
digital cnn-um global analogic programming unit on fpga and its application,
International J. Circuit Theory Appl. 36 (2008) 589–603.

[24] Stp engine ip core, 2017. 〈https://www.renesas.com/en-us/products/
programmable/stp-engine.html〉.

[25] M. Suzuki, Y. Hasegawa, Y. Yamada, N. Kaneko, K. Deguchi, H. Amano, K. Anjo, M.
Motomura, K. Wakabayashi, T. Toi, T. Awashima, Implementation and evaluation
of aes/adpcm on stp and fpga with high-level synthesis, in: SASIMI 2015
Proceedings, 2015, pp. 415–420.

[26] M. Suzuki, Y. Hasegawa, Y. Yamada, N. Kaneko, K. Deguchi, H. Amano, K. Anjo, M.
Motomura, K. Wakabayashi, T. Toi, T. Awashima, Stream applications on the
dynamically reconfigurable processor, in: Proceedings. 2004 IEEE International
Conference on Field- Programmable Technology (IEEE Cat. No.04EX921), 2004,
pp. 137–144. 〈http://dx.doi.org/10.1109/FPT.2004.1393261〉.

[27] Fundamentals of image processing, 2017. http://homepages.inf.ed.ac.uk/rbf/
CVonline/LOCAL_COPIES/TUDELFT/FIP2_3.pdf.

[28] G.A. Baxes, Digital Image Processing: principles and Applications, 1st edition,
Wiley, USA, 1994.

[29] R.C. Gonzalez, R.E. Woods, Digital Image Processing, 2nd edition, Prentice Hall,
New Jersey, USA, 2002.

[30] S.-C. Huang, An advanced motion detection algorithm with video quality analysis
for video surveillance systems, IEEE Trans. Circuits Syst. Video Technol. 21 (1)
(2011) 1–14. http://dx.doi.org/10.1109/TCSVT.2010.2087812.

[31] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation,
1st edition, John Wiley & Sons, USA, 1999.

[32] D.A. Patterson, J.L. Hennessy, Computer Organization and Design, 4th edition,
Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, 2008.

[33] V. Zyuban, P. Kogge, The energy complexity of register files, in: Low Power
Electronics and Design, 1998. Proceedings. 1998 International Symposium on,
1998, pp. 305–310.

[34] S. Rixner, W. Dally, B. Khailany, P. Mattson, U. Kapasi, J. Owens, Register
organization for media processing, in: High-Performance Computer Architecture,
2000. HPCA-6. Proceedings. Sixth International Symposium on, 2000, pp. 375–
386. 〈http://dx.doi.org/10.1109/HPCA.2000.824366〉.

[35] V.V. Kumar, J. Lach, Highly flexible multimode digital signal processing systems
using adaptable components and controllers, EURASIP J. Appl. Signal Process.
2006 (2006) 1–9.

[36] C. Chavet, C. Andriamisaina, P. Coussy, E. Casseau, E. Juin, P. Urard, E. Martin, A
design flow dedicated to multi-mode architectures for dsp applications, in:
Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International Conference
on, 2007, pp. 604–611. 〈http://dx.doi.org/10.1109/ICCAD.2007.4397331〉.

[37] S. Bayar, A. Yurdakul, A dynamically reconfigurable communication architecture
for multicore embedded systems, J. Syst. Archit. 58 (3–4) (2012) 140–159. http://
dx.doi.org/10.1016/j.sysarc.2012.02.003.

[38] Xilinx, Partial Reconfiguration User Guide.
[39] Xilinx, Virtex-5 FPGA Configuration User Guide.
[40] Mibench: Embedded benchmark suite, 2017. 〈http://wwweb.eecs.umich.edu/

mibench〉.
[41] Xilinx, 2017. http://www.xilinx.com/products/design-tools/ise-design-suite.html.
[42] Taiwan semiconductor manufacturing company, 2017. http://www.tsmc.com.
[43] Cadence, 2017. 〈http://www.cadence.com〉.
[44] F. Bouwens, M. Berekovic, B. De Sutter, G. Gaydadjiev, Architecture Enhancements

for the ADRES Coarse-Grained Reconfigurable Array, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008, pp. 66–81. 〈http://dx.doi.org/10.1007/978-3-540-
77560-7_6〉.

[45] ChenWang, Inverse two dimensional dct, in: Proceedings of the IEEE ASSP-32,
1984, pp. 803–816.

[46] S. Kak, Efficiency of matrix multiplication on the cross-wired mesh array, 2017.
arXiv:1411.3273.

[47] S. Bayar, A. Yurdakul, M. Tukel, A self-reconfigurable platform for general purpose
image processing systems on low-cost spartan-6 fpgas, in: 6th International
Workshop on Reconfigurable Communication-Centric Systems-on-Chip
(ReCoSoC), 2011, pp. 1–9. 〈http://dx.doi.org/10.1109/ReCoSoC.2011.5981513〉.

M. Tükel et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

11

http://dx.doi.org/10.1049/ess:20030406
http://dx.doi.org/10.1049/ess:20030406
doi:10.1109/ISCAS.2006.1693103
doi:10.1109/ISCAS.2006.1693103
doi:10.1109/FPL.2009.5272447
doi:10.1109/FPL.2009.5272447
https://www.ll.mit.edu/HPEC/agendas/proc07/Day3/17_Sanghai_Abstract.pdf
https://www.ll.mit.edu/HPEC/agendas/proc07/Day3/17_Sanghai_Abstract.pdf
doi:10.1109/CSE.2008.26
doi:10.1109/CSE.2008.26
http://www.synopsys.com
doi:10.1109/IPDPSW.2010.5470800
doi:10.1109/IPDPSW.2010.5470800
doi:10.1109/CNNA.2010.5430316
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref9
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref9
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref9
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref10
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref10
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref11
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref11
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref11
https://www.renesas.com/en-us/products/programmable/stp-engine.html
https://www.renesas.com/en-us/products/programmable/stp-engine.html
doi:10.1109/FPT.2004.1393261
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/TUDELFT/FIP2_3.pdf
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/TUDELFT/FIP2_3.pdf
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref12
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref12
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref13
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref13
http://dx.doi.org/10.1109/TCSVT.2010.2087812
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref15
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref15
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref16
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref16
doi:10.1109/HPCA.2000.824366
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref17
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref17
http://refhub.elsevier.com/S0167-9260(17)30047-0/sbref17
doi:10.1109/ICCAD.2007.4397331
http://dx.doi.org/10.1016/j.sysarc.2012.02.003
http://dx.doi.org/10.1016/j.sysarc.2012.02.003
http://wwweb.eecs.umich.edu/mibench
http://wwweb.eecs.umich.edu/mibench
http://www.xilinx.com/products/design-tools/ise-design-suite.html
http://www.tsmc.com
http://www.cadence.com
doi:10.1007/978-3-540-77560-7_6
doi:10.1007/978-3-540-77560-7_6
http://arXiv:1411.3273
doi:10.1109/ReCoSoC.2011.5981513

	Customizable embedded processor array for multimedia applications
	Introduction
	Related works
	Basic concepts of CPAMA
	Hardware design
	Processor
	Register File and FIFO
	Arithmetic logic unit

	Router
	Reconfiguration in CPAMA

	Case studies
	Dot product
	TIFF2BW
	Inverse DCT
	Block-match application

	Conclusion
	Acknowledgment
	References

