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a b s t r a c t 

In this paper we propose a model retraining method for learning more efficient convolutional represen- 

tations for Content Based Image Retrieval. We employ a deep CNN model to obtain the feature represen- 

tations from the activations of the convolutional layers using max-pooling, and subsequently we adapt 

and retrain the network, in order to produce more efficient compact image descriptors, which improve 

both the retrieval performance and the memory requirements, relying on the available information. Our 

method suggests three basic model retraining approaches. That is, the Fully Unsupervised Retraining, if 

no information except from the dataset itself is available, the Retraining with Relevance Information, if 

the labels of the training dataset are available, and the Relevance Feedback based Retraining, if feedback 

from users is available. The experimental evaluation on three publicly available image retrieval datasets 

indicates the effectiveness of the proposed method in learning more efficient representations for the re- 

trieval task, outperforming other CNN-based retrieval techniques, as well as conventional hand-crafted 

feature-based approaches in all the used datasets. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Image retrieval is a research area of Information Retrieval [1] of

reat scientific interest since 1970s. Earlier studies include man-

al annotation of images using keywords and searching by text

2] . Content Based Image Retrieval (CBIR), [3] , has been proposed

n 1990s, in order to overcome the difficulties of text-based image

etrieval, deriving from the manual annotation of images, that is

ased on the subjective human perception, and the time and labor

equirements of annotation. 

CBIR refers to the process of obtaining images that are rele-

ant to a query image from a large collection based on their visual

ontent [4] . Given the feature representations of the images to be

earched and the query image, the output of the CBIR procedure

ncludes a search in the feature space, in order to retrieve a ranked

et of images in terms of similarity ( e.g. cosine similarity) to the

uery representation. A key issue associated with CBIR is to extract

eaningful information from raw data in order to eliminate the so-

alled semantic-gap [5] . The semantic-gap refers to the difference

etween the low level representations of images and their higher

evel concepts. While earlier works focus on primitive features that

escribe the image content such as color, texture, and shape, nu-

erous more recent works have been elaborated on the direc-
∗ Corresponding author. 
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ion of finding semantically richer image representations. Among

he most effective are those that use the Fisher Vector descriptors

6] , Vector of Locally Aggregated Descriptors (VLAD) [7,8] or com-

ine bag-of-words models [9] with local descriptors such as Scale-

nvariant Feature Transform (SIFT) [10] . 

Several recent studies introduce Deep Learning algorithms

11] against the shallow aforementioned approaches to a wide

ange of computer vision tasks, including image retrieval [12–15] .

he main reasons behind their success are the availability of large

nnotated datasets, and the GPUs computational power and af-

ordability. Deep Convolutional Neural Networks (CNN), [16,17] , are

onsidered the more efficient Deep Learning architecture for vi-

ual information analysis. CNNs comprise of a number of convo-

utional and subsampling layers with non-linear neural activations,

ollowed by fully connected layers. That is, the input image is in-

roduced to the neural network as a three dimensional tensor with

imensions (i.e., width and height) equal to the dimensions of the

mage and depth equal to the number of color channels (usually

hree in RGB images). Three dimensional filters are learned and ap-

lied in each layer where convolution is performed and the output

s passed to the neurons of the next layer for non-linear transfor-

ation using appropriate activation functions. After multiple con-

olution layers and subsampling the structure of the deep archi-

ecture changes to fully connected layers and single dimensional

ignals. These activations are usually used as deep representations

or classification, clustering or retrieval. 

Over the last few years, deep CNNs have been established as

ne of the most promising avenues of research in the computer

https://doi.org/10.1016/j.neucom.2017.11.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.11.022&domain=pdf
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vision area due to their outstanding performance in a series of

vision recognition tasks, such as image classification [18,19] , face

recognition [20] , digit recognition [21,22] , pose estimation [23] ,

and object and pedestrian detection [24,25] . It has also been

demonstrated that features extracted from the activation of a CNN

trained in a fully supervised fashion on a large, fixed set of object

recognition tasks can be re-purposed to novel generic recognition

tasks, [26] . Motivated by these results, deep CNNs introduced in

the vivid research area of CBIR. The primary approach of applying

deep CNNs in the retrieval domain is to extract the feature repre-

sentations from a pretrained model by feeding images in the input

layer of the model and taking activation values drawn either from

the fully connected layers [27–30] which are meant to capture

high-level semantic information, or from the convolutional layers

exploiting the spatial information of these layers, using either sum-

pooling techniques [31,32] or max-pooling [33] . Current research

also includes model retraining approaches, which are more rele-

vant to our work, while other studies focus on the combination of

the CNN descriptors with conventional descriptors like the VLAD

representation. The existing related works are discussed in the fol-

lowing section. 

Our work investigates model retraining (also known as finetun-

ing) approaches in order to enhance the deep CNN descriptors for

the retrieval task. We employ a pretrained model to extract feature

representations from the activations of the convolutional layers us-

ing max-pooling, we properly adapt the model, and we subse-

quently retrain it. By retraining we mean that we use the weights

of a model pretrained for classification, and we finetune them for a

different task, instead of training from scratch with randomly ini-

tialized weights, exploiting the idea that a deep neural architecture

can non-linearly distort the feature space in order to modify the

feature representations, with respect to the available information. 

Based on the available information we propose three retraining

approaches, which are overall able to exploit any kind of available

information: 

• Fully Unsupervised Retraining (FU): if no information is avail-

able, except for the dataset itself. 

• Retraining with Relevance Information (RRI): if the labels of the

dataset or of a part of the dataset are available. 

• Relevance Feedback-based Retraining (RF): if feedback from

users is available. 

Furthermore, since the FU approach can be applied in any case,

we deploy combinatory schemes, where the RRI and RF approaches

can be applied on the FU modified model, in a pipeline. In this

fashion the FU retraining approach operates as a pretraining step

to the subsequent one. 

Finally, this method uses retargeting for the learning phase, in-

stead of triplet loss, allowing for single sample training which is

very fast and can be easily parallelized and implemented in a dis-

tributed manner. 

The remainder of the manuscript is structured as follows.

Section 2 discusses prior work. The proposed method is described

in detail in Section 3 . Experiments are provided in Section 4 . Fi-

nally, conclusions are drawn in Section 5 . 

2. Prior work 

In this Section we present previous CNN-based works for image

retrieval. Firstly, an evaluation of CNN features in various recogni-

tion tasks, including image retrieval that improve the baseline per-

formance using spatial information is presented in [28] . In [27] an

image retrieval method, where a CNN pretrained model is re-

trained on a different dataset with relevant image statistics and

classes to the dataset considered at the test time and achieves im-

proved performance, is proposed. From a different viewpoint, in
30,34] , CNN activations at multiple scale levels are combined with

he VLAD representation. In [31] , a feature aggregation pipeline is

resented using sum pooling. while in [32] a cross-dimensional

eighting and aggregation of deep convolutional neural network

ayer output is proposed. An approach that produces compact fea-

ure vectors derived from the convolutional layer activations that

ncode several image regions is proposed in [33] . In [35] , a three-

tream Siamense network is proposed to optimize the weights of

he so-called R-MAC representation, proposed in [33] , for the re-

rieval task, using a triplet ranking loss. The public Landmarks

ataset, that is also used in [27] , is utilized for the model training.

n [36] a pipeline that uses the convolutional CNN-features and the

ag-of-Words aggregation scheme is proposed, while in [37] the

uthors propose to exploit complementary strengths of CNN fea-

ures of different layers outperforming the concatenation of multi-

le layers. In [38] , the bilinear CNN-based architectures [39] are in-

roduced in the CBIR domain where a bilinear root pooling is pro-

osed to project the features extracted from the two parallel CNN

odels into a small dimension and the resulting model is trained

n image retrieval datasets using unsupervised training. In [40] a

ew distance metric learning algorithm, namely weakly-supervised

eep metric learning, is proposed, for social image retrieval by

xploiting knowledge from community contributed images asso-

iated with user-provided tags. The learned metric can well pre-

erve the semantic structure in the textual space and the visual

tructure in the original visual space simultaneously, which can en-

ble to learn a semantic-aware distance metric. In [41] , a Weakly-

upervised Deep Matrix Factorization framework is proposed for

ocial image tag refinement, tag assignment and image retrieval,

hat uncovers the latent image representations and tag representa-

ions embedded in the latent subspace by collaboratively exploit-

ng the weakly-supervised tagging information, the visual structure

nd the semantic structure. 

A deep CNN is retrained with similarity learning objective func-

ion, considering triplets of relevant and irrelevant instances ob-

ained from the fully connected layers of the pretrained model,

n [29] . A related approach has also been proposed in the face

ecognition task which, using a triplet-based loss function, achieves

tate-of-the-art performance, [42] , while a relevant idea recently

uccessfully introduced in the cross-modal retrieval domain [43] .

hese approaches are using triplet sample learning which is dif-

cult to be implemented in large scale, and usually active learn-

ng is used in order to select meaningful triplets that can in-

eed contribute to learning [42] . In our approach we extend these

ethodologies by considering multiple relevant and multiple irrel-

vant samples in the training procedure for each training sample.

dditionally, we boost the training speed by defining representa-

ion targets for the training samples and regression on the hid-

en layers, instead of defining more complex loss functions that

eed three samples for each training step. That is, our approach

ses single sample training allowing for very fast and distributed

earning. Furthermore, the proposed method is also able to ex-

loit the geometric structure of the data using unsupervised learn-

ng, as well as to exploit the user’s feedback using relevance feed-

ack. Finally, since our focus is to produce low-dimensional de-

criptors, which improve both the retrieval time and the memory

equirements, we apply our method on convolutional layers using

ax-pooling techniques, as opposed to the previous methodologies

hich utilize the fully-connected layers. 

. Proposed method 

In this work we consider image and video retrieval applications

hat should be employed in machines with restricted resources in

erms of memory and computational power, such as drones, robots,

martphones and other embedded systems. In these cases, there
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Fig. 1. Overview of the CaffeNet architecture. 
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re restrictions in terms of memory ( e.g. only 2 Gb of RAM in cur-

ent state of the art GPUs for embedded systems) and in terms of

omputational power ( e.g. restricted number of processing cores in

PUs) since energy efficiency and compactness constitutes a ma-

or issue. For the above reasons current deep learning architectures

hat use a huge number of parameters are inappropriate to be used

n such applications even if the training procedure is performed

ffline. For example, in the context of the media coverage of a cer-

ain event with drones, a desirable operation would be to retrieve

nd show relevant images to the ones captured from the drones of

oints of particular interest ( e.g. landmark buildings, monuments).

his application would impose smaller and faster architectures that

ould be deployed easier on-drone. 

Towards this end, we exploit the ability of a deep CNN to

odify its internal structure, and we propose a model retraining

ethod that suggests three approaches relying on the available

nformation, aiming at producing efficient low-dimensional image

epresentations for the retrieval task, which improve both the re-

rieval performance and the memory requirements. 

We utilize the BVLC Reference CaffeNet model, 1 which is an im-

lementation of the AlexNet model trained on the ImageNet Large

cale Visual Recognition Challenge (ILSVRC) 2012 to classify 1.3

illion images to 10 0 0 ImageNet classes, [18] . The model consists

f eight trained neural network layers; the first five are convolu-

ional and the remaining three are fully connected. Max-pooling

ayers follow the first, second and fifth convolutional layers, while

he ReLU non-linearity ( f (x ) = max (0 , x ) ) is applied to every con-

olutional and fully connected layer, except the last fully connected

ayer (denoted as FC8). The output of the FC8 layer is a distribu-

ion over 10 0 0 ImageNet classes. The softmax loss is used during

he training. An overview of the CaffeNet architecture is provided

n Fig. 1 . 

In general, the neural network accepts an RGB image as

 three dimensional tensor of dimensions W 1 × H 1 × D 1 . Subse-

uently three dimensional filters are learned and applied in each

ayer where convolution is performed, and output a three dimen-
1 https://github.com/BVLC/caffe/tree/master/models/bvlc _ reference _ caffenet . 

q  

l  

o  
ional tensor of dimensions W 2 × H 2 × D 2 , where D 2 is equal to the

umber of filters. The two-dimensional feature maps W 2 × H 2 , con-

ain the responses of each filter at every spatial position. We em-

loy the CaffeNet model to directly extract feature representations

rom a certain convolutional layer. We consider the activations af-

er the ReLU layer. Since the representations obtained from a CNN

odel for a set of input images are adjustable by modifying the

eights of the model, we retrain the parameters of the layer of in-

erest relying on the available information. To this aim, we adapt

he pretrained model by removing the layers following the con-

olutional layer utilized for the feature extraction, and we add an

xtra pooling layer, the so-called Maximum Activations of Convo-

utions (MAC) layer, which implements the max-pooling operation

ver the width and height of the output volume, for each of the D 2 

eature maps, [33] . Subsequently, we use the representations ob-

ained from the MAC layer in order to build the new target repre-

entations for each image according to the retraining scheme, and

e retrain the neural network using the Euclidean Loss for the for-

ulated regression task. The retargeting procedure for each of the

roposed approaches is described in the following subsections. 

As mentioned previously, the proposed method utilizes the

onvolutional layers for the feature extraction, against the fully-

onnected ones [44] . The underlying reasons behind this follow be-

ow. First, by definition the convolutional layers preserve spatial in-

ormation due to the spatial arrangement of the activations, as op-

osed to the fully-connected ones which discard it since they are

onnected to all the input neurons. Furthermore, usually the fully-

onnected layers of CNNs occupy the most of the parameters, for

nstance, the fully-connected layers of the utilized network contain

9M parameters out of a total of 61M parameters, whereas in VGG

45] the fully connected layers contain 102M parameters out of a

otal of 138M parameters. Thus, by discarding the fully-connected

ortion of the network we drastically reduce the amount of the

arameters and consequently we restrict the storage requirements

nd the computational cost. Furthermore, this modification also al-

ows arbitrary-sized input images, since the fixed-length input re-

uirement concerns the fully-connected layers, and hence this al-

ows for using low-resolution images, which can be very useful in

rder to make our application to comply with the limitations of

https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
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Fig. 2. The proposed retraining method. 

Table 1 

UKBench-2: Top-3 score for various pooling methods. 

Pooling method Score 

Max 2.615 

Sum 2.50 

Stochastic 2.572 
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various embedded systems, since it can further restrict the com-

putational cost. The advantages of the fully convolutional neural

networks are also discussed in [46] . Finally, we should also note

that state-of-the-art algorithms in the object detection task, like

YOLO90 0 0 [47] and SSD [48] , also use fully convolutional architec-

tures, in order to improve the detection speed. 

More specifically, in our experiments we use either the last

convolutional layer, denoted as CONV5, or the forth convolutional

layer denoted as CONV4. The dimension of the CONV5 layer is

13 × 13 × 256 features, while the dimension of the CONV4 layer

is 13 × 13 × 384 features. Thus, the MAC layer outputs either a

256-dimensional coarse detailed feature representation, or a 384-

dimensional fine-detailed one, for each image, based on the uti-

lized convolutional layer. 

The proposed retraining method is schematically described in

Fig. 2 . 

We should note that various pooling methods could also be

used in the proposed approach. Some works in the literature

utilize sum-pooling for aggregating the convolutional features to

compact descriptors ( e.g. [31] ), while other use max-pooling ( e.g.

[33] ). In our investigation we found that max-pooling is superior

over sum and stochastic pooling. For example, in Table 1 we show

the baseline CaffeNet’s results on the CONV5 layer for different

pooling methods, in the UKBench-2 dataset. This is consistent with

[31] , which states that max-pooling achieves better performance,
s compared to sum-pooling, while sum-pooling performs better

nly when the feature descriptors are PCA-whitened. These obser-

ations are also drawn in [32,33] . 

The three basic proposed retraining approaches are presented

n detail in the following subsection. 

.1. Fully unsupervised retraining 

In the FU approach, we aim to amplify the primary retrieval

resumption that the relevant image representations are closer to

he certain query representation in the feature space. The ratio-

ale behind this approach is rooted to the cluster hypothesis which

tates that documents in the same cluster are likely to satisfy the

ame information need [49] . That is, we retrain the pretrained CNN

odel on the given dataset, aiming at maximizing the cosine sim-

larity between each image representation and its n nearest repre-

entations, in terms of cosine distance. 

Let us denote by I = { I i , i = 1 , . . . , N} the set of N images to be

earched, by X = { x i , i = 1 , . . . , N} their corresponding feature rep-

esentations emerged in the L layer, and by μi the mean vector

f the n ∈ { 1 , . . . , N − 1 } nearest representations to x i , denoted as

 

i = { x i 
l 
, l = 1 , . . . , N − 1 } . That is, 

i = 

1 

n 

n ∑ 

l=1 

x 

i 
l (1)

The new target representations for the images of I can be de-

ermined by solving the following optimization problem: 

ax 
x i ∈X 

J = max 
x i ∈X 

N ∑ 

i =1 

x T

 

i 
μi 

‖ x i ‖ ‖ μi ‖ 

(2)

We solve the above optimization problem using gradient de-

cent. The first-order gradient of the objective function J is given
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y: 

∂J 

∂x i 

= 

∂ 

∂x i 

( 

N ∑ 

i =1 

x T

 

i 
μi 

‖ x i ‖ ‖ μi ‖ 

) 

= 

μi 

‖ x i ‖ ‖ μi ‖ 

− x T

 

i 
μi 

‖ x i ‖ 

3 ‖ μi ‖ 

x i (3) 

he update rule for the v th iteration for each image can be formu-

ated as: 

 

(v +1) 
i 

= x 

(v ) 
i 

+ η

(
μi 

‖ x 

(v ) 
i 

‖ ‖ μi ‖ 

− x 

(v ) T  
i 

μi 

‖ x 

(v ) 
i 

‖ 

3 ‖ μi ‖ 

x 

(v ) 
i 

)
, x i ∈ X 

(4) 

Finally, we introduce a normalization step, in order to control

etter the learning rate, as follows: 

 

(v +1) 
i 

= x 

(v ) 
i 

+ η‖ x 

(v ) 
i 

‖ ‖ μi ‖ 

(
μi 

‖ x 

(v ) 
i 

‖ ‖ μi ‖ 

− x 

(v ) T  
i 

μi 

‖ x 

(v ) 
i 

‖ 

3 ‖ μi ‖ 

x 

(v ) 
i 

)
,

x i ∈ X (5)

Using the above representations as targets in the layer of inter-

st, we formulate a regression task for the neural network, which

s initialized on the CaffeNet’s weights and is trained on the uti-

ized dataset, using back-propagation. The Euclidean loss is used

uring training for the regression task. Thus, the procedure is in-

egrated by feeding the entire dataset into the input layer of the

etrained adapted model and obtaining the new representations. 

.2. Retraining with relevance information 

In this approach we propose to enhance the performance of the

eep CNN descriptors exploiting the relevance information deriving

rom the available class labels. To achieve this goal, considering a

abeled representation ( x i , y i ), where x i is the image representa-

ion and y i is the corresponding image label, we adapt the convo-

utional neural layers of the CNN model used for the feature ex-

raction, aiming to maximize the cosine similarity between x i and

he m nearest relevant representations, and simultaneously to min-

mize the cosine similarity between x i and the l nearest irrelevant

epresentations, in terms of cosine distance. We define as relevant

he images belonging to same class, while as irrelevant the images

elonging to different classes. 

Let I = { I i , i = 1 , . . . , N} be a set of N images of the search set

rovided with relevance information, and x = F L (I ) the output of

he L layer of the pretrained CNN model on an input image I . Then

e denote by X = { x i , i = 1 , . . . , N} the set of N feature represen-

ations emerged in the L layer, by R 

i = { r k , k = 1 , . . . , K 

i } the set

f K 

i relevant representations of the i th image and by C i = { c j , j =
 , . . . , L i } the set of L i irrelevant representations. We compute the

ean vector of the m nearest representations of R i to the certain

mage representation x i , and the mean vector of the l nearest rep-

esentations of C i to x i , and we denote them by μi + and μi − , re-

pectively. Then, the new target representations for the images of

can be determined by solving the following optimization prob- 

ems: 

ax 
x i ∈X 

J 

+ = max 
x i ∈X 

N ∑ 

i =1 

x T

 

i 
μi 

+ 
‖ x i ‖ ‖ μi + ‖ 

, (6) 

in 

x i ∈X 
J 

− = min 

x i ∈X 

N ∑ 

i =1 

x T

 

i 
μi 

−
‖ x i ‖ ‖ μi −‖ 

, (7) 

The normalized update rules for the v th iteration can be formu-

ated as: 
 

(v +1) 
i 

= x 

(v ) 
i 

+ ζ1 ‖ x 

(v ) 
i 

‖ ‖ μi 
+ ‖ 

×
(

μi 
+ 

‖ x 

(v ) 
i 

‖ ‖ μi + ‖ 

− x 

(v ) T  
i 

μi 
+ 

‖ x 

(v ) 
i 

‖ 

3 ‖ μi + ‖ 

x 

(v ) 
i 

)
, x i ∈ X (8) 

nd 

 

(v +1) 
i 

= x 

(v ) 
i 

− β1 ‖ x 

(v ) 
i 

‖ ‖ μi 
−‖ 

×
(

μi 
−

‖ x 

(v ) 
i 

‖ ‖ μi −‖ 

− x 

(v ) T  
i 

μi 
−

‖ x 

(v ) 
i 

‖ 

3 ‖ μi −‖ 

x 

(v ) 
i 

)
, x i ∈ X (9) 

Consequently, the combinatory normalized update rule, deriv-

ng by adding the Eqs. (8) and (9) can be formulated as: 

 

(v +1) 
i 

= x 

(v ) 
i 

+ ζ‖ x 

(v ) 
i 

‖ ‖ μi 
+ ‖ 

(
μi 

+ 
‖ x 

(v ) 
i 

‖ ‖ μi + ‖ 

− x 

(v ) T  
i 

μi 
+ 

‖ x 

(v ) 
i 

‖ 

3 ‖ μi + ‖ 

x 

(v ) 
i 

)

−β‖ x 

(v ) 
i 

‖ ‖ μi 
−‖ 

(
μi 

−
‖ x 

(v ) 
i 

‖ ‖ μi −‖ 

− x 

(v ) T  
i 

μi 
−

‖ x 

(v ) 
i 

‖ 

3 ‖ μi −‖ 

x 

(v ) 
i 

)
, x i ∈ X 

(10) 

Thus, as in the previous approach, using the above target repre-

entations we retrain the neural network on the images provided

ith relevance information using backpropagation. 

.3. Relevance feedback based retraining 

The idea of this proposed approach is rooted in the relevance

eedback philosophy. In general, relevance feedback refers to the

bility of users to impart their judgement regarding the relevance

f search results to the system. Then, the system can use this in-

ormation to ameliorate its performance [50,51] . In this proposed

etraining approach we consider information from different users’

eedback. This information consists of queries and relevant and ir-

elevant images to these queries. Then, our goal is to modify the

odel parameters in order to maximize the cosine similarity be-

ween a specific query and its relevant images and minimize the

osine similarity between it and its irrelevant ones. 

Let us denote by Q = { Q k , k = 1 , . . . , K} a set of queries, I k + =
 I i , i = 1 , . . . , Z} a set of relevant images to a certain query, by

 

k − = { I j , j = 1 , . . . , O } a set of irrelevant images, by x = F L (I ) the

utput of the L layer of the pretrained CNN model on an input

mage I , and by q = F L (Q ) the output of the L layer on a query.

hen we denote by X 

k + = { x i , i = 1 , . . . , Z} the set of feature repre-

entations emerged in L layer of Z images that have been qualified

s relevant by a user, and by X 

k − = { x j , j = 1 , . . . , O } the set of O

rrelevant feature representations. 

The new target representations for the relevant and irrelevant

mages can be, respectively, determined by solving the following

ptimization problems: 

ax 
 i ∈X k + 

J 

+ = max 
x i ∈X k + 

Z ∑ 

i =1 

x T

 

i 
q 

k 

‖ x i ‖ ‖ q 

k ‖ 

, (11) 

min 

 j ∈X k −
J 

− = min 

x j ∈X k −

O ∑ 

j=1 

x T

 

j 
q 

k 

‖ x j ‖ ‖ q 

k ‖ 

, (12) 

The normalized update rules for the v th iteration can be formu-

ated as: 

 

(v +1) 
i 

= x 

(v ) 
i 

+ α‖ x 

(v ) 
i 

‖ ‖ q 

k ‖ 

(
q 

k 

‖ x 

(v ) 
i 

‖ ‖ q 

k ‖ 

− x 

(v ) T  
i 

q 

k 

‖ x 

(v ) 
i 

‖ 

3 ‖ q 

k ‖ 

x 

(v ) 
i 

)
, 

x i ∈ X 

k 
+ (13) 
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Fig. 3. Sample images of the Paris 6k dataset. 

Fig. 4. Sample images of the UKBench dataset. 
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x 

(v +1) 
j 

= x 

(v ) 
j 

− α‖ x 

(v ) 
j 

‖ ‖ q 

k ‖ 

( 

q 

k 

‖ x 

(v ) 
j 

‖ ‖ q 

k ‖ 

−
x 

(v ) T  
j 

q 

k 

‖ x 

(v ) 
j 

‖ 

3 ‖ q 

k ‖ 

x 

(v ) 
j 

) 

, 

x j ∈ X 

k 
− (14)

Similar to the other approaches, using the above representa-

tions as targets in the layer of interest, we retrain the neural net-

work on the set of relevant and irrelevant images. 

4. Experiments 

In this section we present the experiments conducted in or-

der to assess the performance of the proposed method. Firstly, a

brief description of the evaluation metrics and the datasets is pro-

vided. Subsequently, we describe the experimental details of each

approach, and finally we demonstrate the experimental results. 

4.1. Evaluation metrics 

Throughout this paper we use 4 evaluation metrics: precision,

recall, mean Average Precision (mAP), and top-N score. The defini-

tions of the above metrics follow below: 

P recision = 

n. of Rele v ant Retrie v ed Images 

n. of Retrie v ed Images 
(15)

Recall = 

n. of Rele v ant Retrie v ed Image 

n. of Rele v ant Images 
(16)

Mean Average Precision is the mean value of the Average Preci-

sion (AP) of all the queries. The definition of AP for the i th query

is formulated as follows: 

AP i = 

1 

Q i 

N ∑ 

n =1 

R 

n 
i 

n 

t i n , (17)

where Q i is the total number of relevant images for the i th query,

N is the total number of images of the search set, R n 
i 

is the num-

ber of relevant retrieved images within the n top results; t i n is an

indicator function with t i n = 1 if the n th retrieved image is relevant

to the i th query, and t i n = 0 otherwise. 

Finally, top- N score refers to the average number of same-object

images, within the top- N ranked images. 

4.2. Datasets 

Paris 6k [52] : Consists of 6392 images (20 of the 6412 provided

images are corrupted) collected from Flickr by searching for partic-

ular Paris landmarks. The collection has been manually annotated

to generate a comprehensive ground truth for 11 different land-

marks, each represented by 5 possible queries. Images are assigned

one of four possible queries: good, ok, junk and absent. Good and

ok images are considered as positive examples, absent as nega-

tive examples while junk images as null examples. Following the

standard evaluation protocol we measure the retrieval performance

in mAP. Like in most CNN-based works [27–29,31,34] we use the

full queries for the retrieval. The query images are not considered

in the search set in the retrieval procedure, and neither used in

the phase of model retraining. We show some example images in

Fig. 3 . 

UKBench [53] : Contains 10,200 images of objects divided into

2550 classes. Each class consists of 4 images. All 10,200 images are

used as queries. The performance is reported as top-4 score, which

is a number between 0 and 4. Samples are provided in Fig. 4 . 

UKBench-2 : Since our method performs learning and the UK-

Bench dataset does not provide a discrete set of queries, we hold
ut one image per class, forming a search set of 7650 images and

 set of 2550 queries. As in UKBench, we use the top-3 score for

he evaluation, which is a number between 0 and 3. 

.3. Experimental setup 

The proposed method was implemented using the Caffe Deep

earning framework, [54] . As mentioned before, in our experiments

e utilize either the CONV5 or the CONV4 layer for the feature

xtraction. Additionally, in the model retraining phase we replace

he ReLU layer, that follows the utilized convolutional layer with

 PRELU layer [55] which is initialized randomly. Furthermore,

ince the first layers of CaffeNet trained on ImageNet learned more

eneric feature representations, all the previous convolutional lay-

rs remain unchanged, and we train only the layer of interest, re-

tricting significantly the training cost. Finally, we use the adaptive

oment estimation algorithm (Adam) [56] , instead of the simple

radient descent for the network optimization, with the default pa-

ameters. All results obtained using cosine distance. 

In Table 1 we present the results of our investigation regard-

ng the pooling methods. That is, we report the top-3 Score for

KBench-2 dataset on the CONV5 layer, using different pooling

ethods. As it is shown the max-pooling attains superior perfor-

ance over the sum and stochastic pooling. 

We note that we can also utilize other distance metrics. Existing

BIR approaches usually use either cosine distance, e.g. [29,36] , or

uclidean distance [27,28] . We also conducted experiments using

he Euclidean distance. The choice of the distance metric, affects
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Fig. 5. UKBench-2: Comparison of Euclidean and Cosine distances, on the FU ap- 

proach on CONV5 layer. 
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Fig. 6. Paris 6k: Comparison of Euclidean and Cosine distances, on the FU approach 

on CONV5 layer. 

Fig. 7. UKBench-2: Score for different values of η in (5) . 
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o  
he optimization objective for the retargeting procedure. That is,

f we consider the Euclidean distance e.g. in the FU approach, the

ptimization problem of (2) , is replaced by the following one: 

in 

x i ∈X 
J = min 

x i ∈X 

N ∑ 

i =1 

‖ x i − μi ‖ 

2 
2 (18)

Hence, following the gradient, the update rule for the v th itera-

ion for each image can then be formulated as: 

 

(v +1) 
i 

= x 

(v ) 
i 

− 2 η(x 

(v ) 
i 

− μi ) , x i ∈ X (19)

here the parameter η ∈ [0, 0.5] controls the desired distance from

he n nearest representations. 

Correspondingly, the update rule for the v th iteration for each

mage, for the RRI approach is given by the equation: 

 

(v +1) 
i 

= x 

(v ) 
i 

−(1 −β)(x 

(v ) 
i 

− μi 
+ ) + β(x 

(v ) 
i 

− μi 
−) , x i ∈ X (20)

here the parameter β = 1 − ζ , ∈ [0 , 1] controls the desired dis-

ance both from the relevant and the irrelevant representations. 

Finally, the update rules for the v th iteration for each image, for

he RF approach are given by the following equations: 

 

(v +1) 
i 

= x 

(v ) 
i 

− 2 α(x 

(v ) 
i 

− q 

k ) , x i ∈ X 

k 
+ (21)

nd 

 

(v +1) 
j 

= x 

(v ) 
j 

+ 2 α(x 

(v ) 
j 

− q 

k ) , x j ∈ X 

k 
− (22)

here the parameter α ∈ [0, 0.5] controls the desired distance from

he query representation. 

The baseline CaffeNet’s results on the CONV5 layer utilizing the

uclidean distance is 0.5227 against 0.5602 in Paris 6k dataset, and

.5286 against 2.6154 in UKBench-2 dataset. We also applied the

roposed FU approach on the CONV5 layer, setting the same pa-

ameters, on both the UKBench-2 and Paris 6k datasets. The ex-

erimental results are illustrated in Figs. 5 and 6 . As we can ob-

erve the cosine similarity attains superior performance over the

uclidean distance in both the considered cases. 

In the following we present the selected parameters for each of

he proposed approaches. 

.3.1. Fully unsupervised 

First, in the UKBench-2 dataset, we fix the number of nearest

epresentations, n , in (1) to 1 and the retargeting step to 20 0 0 iter-

tions, and we examine the effect of the parameter η in (5) . Thus,
n Fig. 7 we illustrate the top-3 Score at each iteration of the train-

ng process for different values of η. Next, we fix the parameter η
o 0.6, and we perform experiments for different numbers of near-

st representations, n . Experimental results are shown in Fig. 8 . Fi-

ally, for fixed values of η and nearest representations, we vary

he step of retargeting. That is, we re-determine the targets for the

odel retraining, (5) , with a certain step of iterations. The experi-

ental results are illustrated in Fig. 9 . Thus, we set the value η to

.6, the number of nearest representations to 1, and the retargeting

tep to 10 0 0 iterations. The same parameters are also used in the

KBench dataset. Finally, in the Paris 6k dataset, we also set the

arameter η in (5) to 0.6 and for fixed retargeting step set of 20 0 0

terations, we examine the appropriate number of nearest repre-

entations. Experimental results are shown in Fig. 10 . Then, for the

ptimal number of nearest representations, we examine the retar-

eting step. Experimental results are shown in Fig. 11 . Hence, in

aris 6k dataset we set the value η to 0.6, the number of nearest

epresentations to 20, and the retargeting step to 10 0 0 iterations.

egarding the number of the nearest representations, n , in many

atasets it is bounded by the number of samples that are avail-

ble. For example, in the UKBench-2 the limit for the value of n is

, since there are only three samples per class. Thus, in Fig. 8 , we

bserve that when the value n exceeds the number of images per
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Fig. 8. UKBench-2: Score for different numbers of nearest representations, n , in (1) . 

Fig. 9. UKBench-2: Score for different retargeting steps. 

Fig. 10. Paris 6k: mAP for different numbers of nearest representations, n , in ( 1 ). 

Fig. 11. Paris 6k: mAP for different retargeting steps. 
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lass, the performance drops. In the case of Paris 6k dataset, where

here are more samples available, we see in Fig. 10 that the perfor-

ance improves, as the value of n increases. However, an increased

alue of the parameter n comes with the cost of finding the n near-

st neighbors of each training sample. For a big dataset this cost is

ritical, but it can be reduced using approximate nearest neighbor

echniques. However, this research direction is beyond the scope of

his work. Consequently, for a totally unknown dataset an investi-

ation for the value of n between 5 and 10 is a good compromise,

owever there is also the most safe choice of setting the value 1,

hich improves the performance in any case. 

.3.2. Retraining with relevance information 

In the experiments of this approach, since the number of rele-

ant representations varies meaningfully across datasets, we for-

ulate the new target representations for the model retraining

ith respect to each relevant and 5 nearest irrelevant images of

ach image. The retargeting step is set to 20 0 0 iterations, the pa-

ameter ζ in (10) is set to 0.8, and the parameter β is set to 0.2. 

.3.3. Relevance feedback based retraining 

In the experiments that conducted to validate the performance

f the Relevance Feedback based approach, we consider for each

f 2550 different users 1 relevant and 1 irrelevant images for the

KBench-2 dataset, which forms a training set of 5100 images. In

aris 6k dataset, 40 relevant (or equal to the number of relevant,

f less) and 40 irrelevant images are considered for each of 55 dif-

erent users. The parameter α in (13) and (14) is set to 0.5. 

.4. Experimental results 

We illustrate the evaluation results for the three basic model

etraining approaches, as well as for the combinatory ones, where

he RRI and RF approaches are applied on the FU optimized model.

In the following we denote by CONV5 and CONV4 the feature

epresentations obtained from the CONV5 and CONV4 layer of

he CNN model, respectively. We denote by FU( L T ) the fully un-

upervised retraining on the layer L T with target representations

btained from the L T layer, by RRI( L T ) the retraining with relevance

nformation on the layer L T with target representations obtained

rom the L T layer, and correspondingly by RF( L T ) the relevance

eedback based retraining. We use consecutive arrows to describe

he retraining pipeline of our approaches, and the implication

rrow to show the final feature representation employed for the
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Table 2 

UKBench. 

Feature representation Dimension Score 

1 CaffeNet ⇒ CONV4 384 3.3608 

2 CaffeNet −→ FU(CONV4) ⇒ CONV4 384 3.6999 

3 CaffeNet −→ RRI(CONV4) ⇒ CONV4 384 3.9122 

4 CaffeNet −→ FU(CONV4) −→ RRI(CONV4) ⇒ CONV4 384 3.9511 

5 CaffeNet ⇒ CONV5 256 3.5595 

6 CaffeNet −→ FU(CONV5) ⇒ CONV5 256 3.8323 

7 CaffeNet −→ RRI(CONV5) ⇒ CONV5 256 3.8941 

8 CaffeNet −→ FU(CONV5) −→ RRI(CONV5) ⇒ CONV5 256 3.9710 

Table 3 

UKBench-2. 

Feature representation Dimension Score 

1 CaffeNet ⇒ CONV4 384 2.4389 

2 CaffeNet −→ FU(CONV4) ⇒ CONV4 384 2.70 

3 CaffeNet −→ RRI(CONV4) ⇒ CONV4 384 2.8624 

4 CaffeNet −→ RF(CONV4) ⇒ CONV4 384 2.4792 

5 CaffeNet −→ FU(CONV4) −→ RRI(CONV4) ⇒ CONV4 384 2.9058 

6 CaffeNet −→ FU(CONV4) −→ RF(CONV4) ⇒ CONV4 384 2.7627 

7 CaffeNet ⇒ CONV5 256 2.6154 

8 CaffeNet −→ FU(CONV5) ⇒ CONV5 256 2.8106 

9 CaffeNet −→ RRI(CONV5) ⇒ CONV5 256 2.8831 

10 CaffeNet −→ RF(CONV5) ⇒ CONV5 256 2.72 

11 CaffeNet −→ FU(CONV5) −→ RRI(CONV5) ⇒ CONV5 256 2.9086 

12 CaffeNet −→ FU(CONV5) −→ RF(CONV5) ⇒ CONV5 256 2.8361 

Table 4 

Paris 6k. 

Feature representation Dimension mAP 

1 CaffeNet ⇒ CONV4 384 0.4589 

2 CaffeNet −→ FU(CONV4) ⇒ CONV4 384 0.7337 

3 CaffeNet −→ RRI(CONV4) ⇒ CONV4 384 0.9837 

4 CaffeNet −→ RF(CONV4) ⇒ CONV4 384 0.6325 

5 CaffeNet −→ FU(CONV4) −→ RRI(CONV4) ⇒ CONV4 384 0.9715 

6 CaffeNet −→ FU(CONV4) −→ RF(CONV4) ⇒ CONV4 384 0.8030 

7 CaffeNet ⇒ CONV5 256 0.5602 

8 CaffeNet −→ FU(CONV5) ⇒ CONV5 256 0.8347 

9 CaffeNet −→ RRI(CONV5) ⇒ CONV5 256 0.9854 

10 CaffeNet −→ RF(CONV5) ⇒ CONV5 256 0.7101 

11 CaffeNet −→ FU(CONV5) −→ RRI(CONV5) ⇒ CONV5 256 0.9859 

12 CaffeNet −→ FU(CONV5) −→ RF(CONV5) ⇒ CONV5 256 0.9023 
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Fig. 12. Paris 6k: precision recall. 
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etrieval procedure. Thus, CaffeNet ⇒ CONV5 implies that we obtain

he CONV5 representations from the CaffeNet model and we use

hem for the retrieval procedure, while CaffeNet −→ RRI(CONV4)

 CONV4 denotes that we formulate the target representations

sing the features emerged in the CONV4 CaffeNet layer and we

etrain with relevance information the CONV4 layer of the Caf-

eNet, then we extract the CONV4 representations of the modified

odel, and we use them for the retrieval. 

Tables 2–4 summarize the experimental results on all the

atasets. The best performance is printed in bold. From the pro-

ided results several remarks can be drawn. Firstly, we observe

hat each retraining approach improves the baseline results of Caf-

eNet in all the used datasets. Furthermore, we can notice that in

ll the datasets the CONV5 retraining achieves better performance.

dditionally, we observe that the FU approach accomplishes re-

arkable results, while in UKBench dataset this approach leads

o state-of-the-art performance. We also see that the other pro-

osed methodologies applied on the modified via the FU approach

odel indeed yield better retrieval results, as compared to the Caf-

eNet’s employment, in any considered case except for the CONV4

odification in Paris 6k dataset. Finally, we can observe that re-

ned with relevance information model accomplishes state-of-the-

rt performance in all the datasets, while the relevance-feedback
ased model achieves considerably improved results in all the used

atasets. 

More specifically, in Table 2 we show the experimental results

f the proposed retraining approaches in the UKBench dataset.

irst, we see that the baseline CaffeNet’s performance of the

ONV5 representations is superior over the CONV4 one. Further-

ore we observe that both the RRI and FU approaches improve

ignificantly the baseline performance, and also the RRI achieves

etter results than the FU one, which is reasonable since the FU

pproach utilizes no information for the model retraining. Finally

e can see that the FU pretraining step boosts the performance of

he RRI approach on both the CONV5 and CONV4 layers. 

Similar remarks can be drawn for the UKBench-2 dataset, in

able 3 . Regarding the RF approach, we can see in the 4 th and 10 th

ows that the method indeed improves the CaffeNet retrieval re-

ults on both the CONV5 and CONV4 layers, but we observe that

he improvement of the RF approach is not as notable as the FU

nd RRI ones. We attribute this to the comparatively small training

et of the RF approach (5100 against 10,200 images). In general,

he number of the relevant and irrelevant images that create the

ew dataset for the model retraining, appears to be the key factor

f the RF improvement. 

Finally, in Table 4 we illustrate the experimental results on the

aris 6k dataset. As previously, it is shown that the proposed ap-

roaches improve the CaffeNet retrieval results. It is also shown,

hat the RRI approach in a single training step can accomplish

tate-of-the-art performance (9 th row). The FU retraining scheme

oosts the RF results, while in the case of the RRI retraining on

he FU modified model, the results are marginally improved for

he CONV5 layer (9 th and 11 th rows), and are slightly inferior for

he CONV4 (3 rd and 5 th rows). Finally, we observe that the RF ap-

roach performs comparatively poorly. 

In Fig. 12 we provide the Precision-Recall curves of all the con-

idered approaches for the Paris 6k datasets, utilizing the CONV5

ayer. It is shown that the proposed approaches can indeed achieve

ignificantly enhanced results against the baseline. It is also shown

hat the RF approach applied on the FU modified model can ac-

omplish considerably improved performance as compared to the

F approach on the CaffeNet model, while this is not confirmed in

he case of the RRI approach on the FU retrained model, where the

erformance is almost identical. 

In Figs. 13 and 14 we provide some examples of the top three

etrieved images for certain queries of UKBench-2 dataset, using

he baseline CONV5 CaffeNet’s features, and features obtained from
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Fig. 13. For each of the three sets of images the query image is the first one of the 

top row and the images that follow in the top row are the first 3 retrieved using the 

baseline CONV5 representation. The top 3 retrieved images using the FU approach 

on the CONV5 layer are shown in the second row for the same query. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. For each of the three sets of images the query image is the first one of the 

top row and the images that follow in the top row are the first 3 retrieved using 

the baseline CONV5 representation. The top 3 retrieved images using the FU → RRI 

approach on the CONV5 layer are shown in the second row for the same query. 

Table 5 

Comparison against other supervised methods. 

Method Dim Paris 6k UKBench 

Neural Codes [27] 4096 – 3.56 

Neural Codes [27] 256 – 3.35 

ReDSL.FC1 [29] 4096 0.9474 –

Deep Image Retrieval [35] 512 0.871 –

Ours 256 0.9859 3.9710 

a  

m  

t  

t  

m  

a  
our FU and RRI on FU retrained models, respectively. As it is illus-

trated, the proposed approaches improve the retrieval results. Ad-

ditionally we can see in the third example of the two figures that

the FU retrained model returns two out of three relevant images,

while the RRI approach applied on the FU one, returns all the rel-

evant images to the specific query. 

Finally, we compare our method against other CNN-based, as

well as hand-crafted feature-based methods, on image retrieval.

First, we provide a comparison against methods that utilize super-

vised learning with the proposed RRI approach, which utilizes su-

pervised learning too, in Table 5 . Second, we compare the proposed

FU approach against other methods that do not utilize supervised

learning in Table 6 . Since the proposed RF approach is novel, and

the competitive methods do not utilize information derived from

users’ feedback, the results are reported only in Tables 3 and 4 ,
nd we do not include it in the comparisons. We compare our

ethod with the competitive ones, regardless the dimension of

he compared feature representations. We also note that among

he provided results, there are methods, that use information from

ultiple regions of the image, as in the case of R-MAC, [33] ,

nd Deep Image Retrieval [35] . To the best of our knowledge, the
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Table 6 

Comparison against other unsupervised methods. 

Method Dim Paris 6k UKBench 

CVLAD ∗ [57] 64k – 3.62 

BOW 

∗ [58] 200k 0.46 2.81 

CNNaug-ss [28] 4k–15k 0.795 3.644 

Spoc [31] 256 – 3.65 

Fine-residual VLAD [8] 256 – 3.43 

Multi-layer [37] 100k – 3.69 

CNN-VLAD [34] 128 0.694 –

R-MAC ∗ [33] 512 0.83 –

R-MAC ∗ [33] 256 0.729 –

CroW 

∗ [32] 256 0.765 –

CRB-CNN-16 [38] 512 – 3.56 

Ours 256 0.8347 3.8323 
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roposed method outperforms every other competitive method.

ethods marked with 

∗ use the cropped queries in Paris 6k

ataset. 

. Conclusions 

In this paper we proposed a model retraining methodology

or enhancing the deep convolutional representations in the re-

rieval domain. The proposed method suggests three retraining ap-

roaches relying on the available information. Thus, if no infor-

ation is available, the Fully Unsupervised retraining approach is

roposed, if the labels are available the Retraining with Relevance

nformation, and finally if users’ feedback is available the Rele-

ance Feedback based retraining is proposed. We utilize a deep

NN model to obtain the convolutional representations and build

he target representations according to each approach, and then we

etrain appropriately the network’s weights. We also proposed a

ombinatory retraining strategy, where the FU retraining approach

an be utilized as a pretraining step in order to boost the perfor-

ance of the RRI and RF approaches. We note that all the pro-

osed approaches are applicable to the fully connected layers too,

s well as to other CNN architectures. We should also note that the

roposed methodology is applicable to any other CNN-based im-

ge retrieval method that utilizes a CNN model to directly extract

eature representations. Experimental results indicate the effective-

ess of our method, with superior performance over the state of

he art approaches, either via a single retraining approach, or by

tilizing successive retraining processes. 
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