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Nowadays, people are more and more concerned about accuracy, rapidity and convenience 

in the process of personal identification. In the field of biology and computer vision, a va- 

riety of methods have been proposed, while a proper method for face recognition is still 

a challenge. Although some reliable systems and advanced methods have been introduced 

under relatively controlled conditions, their recognition rate or speed is not satisfactory in 

the general settings. This is especially true when there are variations in pose, illumina- 

tion, and facial expression. This paper proposed a fast face recognition method based on 

fractal theory. This method is to compress the facial images to obtain fractal codes and 

complete face recognition with these codes. Experimental results on Yale, FERET and CMU 

PIE databases demonstrate the high efficiency of our method in runtime and correct rate. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Recently, a large number of biological features have been are applied to identity recognition, such as iris recognition,

fingerprint recognition, gait recognition and face recognition. These biological features are easy to use, to distinguish and

difficult to forge. Compared with other methods, non touching and aggression are the biggest advantages and features of

face recognition. As a hot topic, more and more attention has been focused on the face recognition. Face recognition is

considered to have broad application prospects in video surveillance, access control system, criminal investigation and other

fields [1–7] . 

General face recognition methods can be broadly divided into two categories of local and global approaches [8] . The task

of those local methods is to extract different local features. For another, global approaches process the entire image and

make a general template for the face [8] . It should be noted that some deep learning methods such as Convolution Neural

Network (CNN) and tensor face also achieve good results. 

Global approaches usually adopt a projection technique to manipulate the image as a whole and create a general tem-

plate for each face pattern. The main work is to find the best template which can describe the test object. Eigenface and

Fisherface are the most famous methods in this category. In the eigenface, Principle Component Analysis (PCA) is proposed

and can reduce the dimension effectively. It projects images into a low-dimension space and seeks a linear transformation

matrix that maximizes the data variance in the projection subspace [9] . Another linear projection is insensitive to variation

in lighting direction and facial expression which is implemented by Fisher’s Linear Discriminant Analysis (LDA). LDA is a

supervised scheme that aims at minimizing the within-class variances as well as maximizing the between-class distances

in the projection subspace [9] . However, we often meet the problems of small sample size or high dimensional data in face
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classification and recognition tasks. Therefore, the traditional LDA is not generally available for our direct use due to the fact

that the within-class scatter matrix is always singular [6] . 

Local methods take another path. These approaches process different parts of the image to obtain salient features which

are used to learn patterns of different people. Support Vector Machine (SVM) is proposed and used to classify the features

extracted from a set of facial components in a component-based system. To extract local topographic representations for

objects, Local Feature Analysis (LFA) was mentioned in [8] . 

For the deep learning methods, CNN is capable of learning local features from the input images and complete recogni-

tion. A typical CNN classifier is consisted of a CNN with altering sequence of convolution, sub-sampling layers for feature

extraction and a neural network in the last layer for classification [10] . For the tensor face, it is actually used for a multidi-

mensional array. The vector and matrix can be the representation of the first and second order tensors. Higher order tensors

have more information, therefore researchers want to use this ability for face recognition and gain better results [11] . 

In the respect of fractal coding, Tan and Yan have made great contributions in this field. They first put forward the

concept of Fractal Neighbor Distance (FND) which is a way of ranging. The definition of the degree of similarity between

images which have taken fractal coding is used as the classification and identification criteria [12–14] . In [13] , the speed of

target recognition is analyzed using the principle of FND is associated with ultimate compression factor of Iterated Function

System (IFS). Weighted Fractal Neighbor Distance (WFND) is proposed in [12] . The study finds that the regions of eyes and

nose of everyone contain most features of a face and further improve the original method based on different parts of the

face with different weighted coefficients. 

It should be noted that when the face image is evenly distributed in the frame, it is generally symmetrical. This feature

is especially effective for fractal compression, which can help us accelerate the encoding speed. After we complete the

process of encoding and get the corresponding fractal codes, Fractal Neighbor Distance based Classification (FNDC) which

has the direct connection to FND is presented in this paper and can meet the requirement of rapid identification. Different

people are in our training library and each person has several samples under various conditions. The difference between

the different samples from the same person is the within-class difference. The difference between different people is the

between-classes difference. By these two differences, FNDC can ensure the recognition rate and accelerate the identification

speed at the same time. 

The remaining of the paper is organized as follows: Section 2 introduces the fractal theory and the steps of fractal

encoding. Section 3 describes how to complete the face recognition based on fractal codes and presents the novel method

FDNC. Section 4 describes the experimental results and proves the validity of FNDC. Finally, the conclusion is provided in

Section 5 . 

2. Fractal coding theory and method 

2.1. Segmentation of range blocks and domain blocks 

In the whole process of image segmentation, the range blocks and domain blocks can take any shape, but generally

are rectangular. And the area of the domain block is usually larger than the range block to ensure that the corresponding

mapping is a contraction transformation. 

The whole coding process is to find the fittest domain block for the range block and seek out the corresponding contrac-

tion mapping, contrast scaling and luminance shift. Once it is hard to find the most matched object for the current range

block, we have to split it into smaller sub blocks. The above operations are repeated until the requirements are met, or the

range block cannot be divided. 

2.2. Determination of contractive mapping 

The matching process between domain blocks and range blocks occupies most of the time of fractal encoding. There

are 8 basic affine transformations for each domain block and each range block has to compare with them one by one. The

matching process is shown in Fig. 1 . 

(1) The domain block is compressed to ensure it has the same size as the range block. 

(2) The domain block after compression also has to take 8 basic affine transformations. 

(3) Calculate the values of contrast scaling and luminance shift in the matching process (least squares method can be

used here). 

The calculation procedure of values of contrast scaling and luminance shift is introduced as follows: 

Supposed { d i j ( i = 1 , 2 , ..., n j = 1 , 2 , ..., n ) } is the pixel value which is obtained by an affine transformation and

{ r i j ( i = 1 , 2 , ..., n j = 1 , 2 , ..., n ) } is the pixel value of the range block, then the contrast scaling s and luminance shift o

under the best conditions should make the R value in Eq. (1) minimum. 
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Fig. 1. The matching process between the domain and range blocks. 
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2.3. Fractal encoding 

The key to realize real time recognition of fractal image is to improve the speed of fractal coding. It should be noted

that the face image with a certain degree of symmetry is different from the general graphs. As is shown in Fig. 2 (a,b), the

matched domain block D i of the range block R i can be found in the symmetric region. It is very beneficial to encode and

save so much time that we don’t have to match all D i with R i . However, in practice, we need to pay attention to the fact

that the symmetry center is not necessarily in the center of the image. We need to enlarge the candidate region properly

like in Fig. 2 (c). 

If we cannot find the right domain block in the extended area S 0 , we have to enlarge the search scope to S 1 , S 2 or S 3
according to the current location of the range block, as shown in Fig. 2 (d,e). When R i is located in the left part, the search

scope will be in the S 2 . Conversely, if R i is located in the right part, the search scope will be in the S 1 . An alternative

condition is that R i is located in the middle, then the scope will be extended to S 3 . Of course, there will be a situation that

we cannot find the matching domain block even in S 1 , S 2 and S 3 . Once this happens, we will expand the search to the full

image. By reducing the search range, we can save a lot of coding time. 
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Fig. 2. Face image and the schematic diagram. 

 

 

 

 

 

 

 

 

 

 

 

2.3. Fractal decoding 

Before introducing fractal decoding, we need to give an outline of the compression mapping. For compression mapping

w i : F → F , there is a s(0 < s < 1) which makes d 2 ( w i ( f ), w i ( g )) ≤ s • d 2 ( f , g ), where d 2 (.,.) is a measure of the function space L 2 .

Variable values are changed in the process of integration: 

d 2 2 ( w i ( f ) , w i (g)) = | s i | 2 det ( A i ) 

∫ 
D i 

| f (x, y ) − g(x, y ) | 2 d xd y 

≤ | s 2 | 2 det ( A i ) d 
2 
2 ( f, g) (5) 

In Eq. (5) , det ( A i ) is the determinant of matrix A i , and s is the coefficient of contrast control. 

Because w i is a compression transformation, we can obtain: 

| s 2 | 2 | det ( A i ) | < 1 (6) 

The range block set { R i } represents the image of I 2 which is divided into non overlapping blocks. Namely, I 2 = ∪ R i and

R i ∩ R j = φ ( i � = j ). The domain block set { D i } is slightly different from { D i }, and it can be overlapped and each area is larger

than those in { R i }. Supposed that the mapping ˜ w i from { D i } to { D i } is on function space F , then 

w i ( f )(x, y ) = s i f ( 
−1 

w i (x, y ) ) + o i (7) 

The appropriate s i to ensure that the current w i is a compressed mapping. W : F → F is defined, and 

W (F )(x, y ) = w i (F )(x, y ) , (x, y ) ∈ R i (8)

As long as the transformation set { w i } is selected correctly, the final result will be similar to the original image through

repeated iteration of F . 

3. Face recognition based on fractal theory 

3.1. Fractal neighbor distance 

Euclidean distance can be defined as follows: Suppose M and N are two images in Euclidean space whose height and

width are H and W respectively. M (i,j) and N (i,j) are the pixel gray values of corresponding points, under the condition of

0 ≤ i ≤ H and 0 ≤ j ≤ W . Then the Euclidean distance between two images can be calculated by: 

d(M, N) = ‖ 

M − N ‖ 2 = 

√ 

H ∑ 

k =0 

W ∑ 

l=0 

(
M (k,l) − N (k,l) 

)2 
(9) 

According to Section 2 , we already know the encoding and decoding processes. Now, if the input image is P and the

target image is Q, f p is the fractal code of P and f q is the fractal code of Q . Then the FND between P and Q can be defined

as: 

d F N (P, Q ) ≡ d( f p (P ) , f q (P )) (10) 

In Eq. (10) , we decode the same image with two different fractal codes. According to Eq. (11) and Fig. 3 , we can find that

the final image is only related to the fractal code and independent of the input image. 

lim 

n →∞ 

n 

f j ( P i ) ≈ X j (11) 
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Fig. 3. Iterative process (decoding the same image with two different fractal codes). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This means that in the training library, we just need to store the fractal codes of sample images which can greatly save

storage space. Taking 100 samples in Yale database as an example, the storage space is reduced by more than half. 

The more similar the two pictures are, the shorter the distance is between the corresponding points. These two methods

are both based on this theory. There are two main reasons why we use FND to face recognition: on the one hand, the

iterative process mentioned above makes the decoding image have certain adaptability on illumination levels. And in this

way, the difference between the two images (grayscale value subtracted) must be less than the value obtained directly. On

the other hand, the operation of decoding iterations is actually a blurring process. The iterated image cannot be as clear as

the original one. The target image recovering from its fractal code will lose some details, which is called the high frequency

information. This makes the image blur to a certain extent and reduces the influence of micro-expressions and gestures on

recognition. 

3.2. Fractal neighbor distance based classification 

When FND is used for face recognition, the input image needs to be compared with each object in the training library.

There must be a suitable sample whose FND with the input image is the smallest. Then we can output the best matching

image by decoding that sample’s fractal code [15–17] . This method is becoming less and less suitable as the training library

grows larger. 

To accelerate the recognition speed, this paper presents a novel method called Fractal Neighbor Distance based Classi-

fication (FNDC). When we encode those images to construct the training library, it is important for us to classify different

samples of the same person into one class. The main flow chart is shown in Fig. 4 . We set up two thresholds: between-

classes threshold K1 and within-classes threshold K2. The following is an example which explains how we operate. 

Taking the Yale database as an example, operations are introduced below. 

There are 15 people in the Yale database and everyone has 11 different gray-scale images. Five samples of each person

are selected randomly for training and the rest for testing. A (a1, a2, a3, a4, a5), B (b1, b2, b3, b4, b5),..., O (o1, o2, o3, o4,

o5) are in the training library. There are different classes and each class has different samples. For convenience, we take the

first sample of each class as a representative of this class. Supposed that the input image is P , 

T 1 = min { d F N (P, a 1) , d F N (P, b1) , ..., d F N (P, o1) } 
= min { d( f x (P ) , f a 1 (P )) , d( f x (P ) , f b1 (P )) , ..., d( f x (P ) , f o1 (P )) } (12)

Certainly the between-classes K1 which we set will be slightly larger than this ideal value T1 , which is to make sure the

input image can enter the matching class. If P is an image of class A, the next search will take place in A class under normal

conditions. Then, 

T 2 = min { d F N (P, a 1) , d F N (P, a 2) , ..., d F N (P, a 5) } 
= min { d( f x (P ) , f a 1 (P )) , d( f x (P ) , f a 2 (P )) , ..., d( f x (P ) , f a 5 (P )) } (13)
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Fig. 4. The flow chart of face recognition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, within-classes threshold K2 which we set will be slightly larger than the ideal value too. K2 is used to prevent

us from missing the correct class. Repeating the above operation on FERET and CMU PIE databases, and then according to

Fig. 5 , we set K1 = T1 + 1.3 and K2 = T2 + 0.4. 

We use K1 to perform a fuzzy operation which can help us find the corresponding class and reduce the narrow range

effectively. If there is more than one class, then we can find the suitable object by K2 . The whole process uses the idea of

classification to reduce recognition time. 

4. Experiment results 

In this section, FNDC proposed in this paper is estimated on three databases. For comparison, some popular feature

extraction methods such as PCA, LDA, CNN and Tensor and some methods related to fractal coding such as FND and WFND

were used in our experiments. All methods in this paper were validated by computer simulation using Matlab software on

an Intel AMD A6-3420 M CPU 1.5 GHz machine with 4 G RAM. 

4.1. On the Yale database 

The Yale face database is created by computational vision and control center of Yale University, includes 165 images of

the 15 volunteers, and contains influence factors like light, facial expression and postures. For convenience, we trimmed

each image to 100 × 80 pixels. All samples of one person are shown in Fig. 6 [18] . 

There are different sample sizes (three, four, five and six samples of each person) to train and the rest to test. We ran the

whole system 10 times. The average recognition rate and the average running time of each method are shown in Table 1 .

According to the table, it is easy to find that the recognition rate is higher and higher with the increasing number of samples.

At the same time, the recognition time is getting longer and longer. The recognition rates of each method are similar while

FNDC proposed in this paper is hardly affected by the number of training samples. 

4.2. On the FERET database 

In order to promote the research and practical application of face recognition algorithm, the US Department of Defense’s

Counterdrug Technology Transfer Program (CTTP) launched a Face Recognition Technology (FERET) engineering, including a 

general face library and universal test standards. This database involves variations in facial expression, illumination, gesture

and age. We performed our method on a subset of the FERET database. The subset is consisted of 200 people, and each one

has seven images. All samples of one person are shown in Fig. 7 [18] . 
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Fig. 5. The influence of K 1 and K 2 on the recognition rate. 

Fig. 6. Samples on the Yale database. 

 

 

 

 

We randomly selected three, four and five images of everyone to train and the rest to test. The whole system was run

10 times. Table 2 lists the average recognition rate and the average running time of the seven methods. 

FERET database is larger than the Yale database. PCA and LDA cannot perform as well as in previous experiment. The

recognition rate of the remaining five methods is similar. Although recognition time used in CNN and Tensor is superior

to FND and WFND, FNDC is almost unaffected by sample size like the experiments we did on Yale database. The overall

performance of FNDC is very prominent. 
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Table 1 

Rates (%) and time (s) of each method on the Yale database. 

Three training Four training Five training Six training 

Rate Time Rate Time Rate Time Rate Time 

PCA 86.1 0.088 88.2 0.106 88.3 0.134 89.7 0.185 

LDA 86.8 0.092 88.7 0.092 89.1 0.138 91.2 0.151 

CNN 87.5 0.132 88.9 0.159 90.3 0.179 92.3 0.187 

Tensor 86.9 0.112 88.8 0.135 90.1 0.167 92.4 0.192 

FND 86.7 0.312 89.1 0.411 90.6 0.502 93.9 0.621 

WFND 86.4 0.302 89.0 0.385 90.5 0.434 92.8 0.492 

FNDC 86.4 0.185 88.7 0.197 90.5 0.201 93.6 0.224 

Fig. 7. Sample images of one person on the FERET database. 

Table 2 

Rates (%) and time (s) of each method on the FERET database. 

Three training Four training Five training 

Rate Time Rate Time Rate Time 

PCA 41.3 3.61 56.4 9.22 62.1 13.11 

LDA 43.2 2.77 62.2 4.32 66.8 6.79 

CNN 42.5 2.11 63.1 2.57 71.8 3.53 

Tensor 42.9 2.35 63.8 2.96 71.7 3.75 

FND 42.6 3.61 64.5 4.76 72.7 6.21 

WFND 42.8 3.54 63.9 4.22 71.1 6.03 

FNDC 42.5 1.57 64.2 1.68 72.3 1.83 

Fig. 8. Sample images of one person on the CMU PIE database. 

 

 

 

 

 

 

 

4.3. On the CMU PIE database 

The CMU PIE face database includes 68 subjects with 41,368 face images as a whole. Each subject contains 13 different

poses, 43 different illumination conditions, and 4 different expressions. In our experiment, 60 face images of each individual

were used and all of them were transformed to gray scale. Partial samples of one person are shown in Fig. 8 . 

Ten, fifteen and twenty images of everyone were randomly selected to train and the rest to test. The whole system was

run 10 times. Table 3 lists the average recognition rate and the average running time of the seven methods. 

The database is further expanded and the training sample library is further enlarged at the same time. Those general

methods like PCA and LDA and deep learning methods like CNN and Tensor, which are composed of four stages: simple

preprocessing, face detection, feature extraction and use the classifiers to recognize. The experiment result is similar to

what we did on the FERET database. FNDC using class information took the least amount of time and its recognition rate
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Table 3 

Rates (%) and time (s) of each method on the CMU PIE database. 

Ten training Fifteen training Twenty training 

Rate Time Rate Time Rate Time 

PCA 50.5 3.77 66.2 10.22 78.1 15.25 

LDA 54.2 2.87 68.3 5.62 81.6 7.87 

CNN 55.1 2.12 71.5 3.23 85.3 4.12 

Tensor 55.2 2.45 70.4 3.54 84.8 4.02 

FND 56.1 3.69 68.9 4.82 85.6 6.94 

WFND 55.8 3.25 67.6 4.33 84.5 6.11 

FNDC 54.0 1.62 67.2 1.72 84.9 1.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was very close to the highest one. In the comprehensive performance, especially on the respect of identification speed, FNDC

is far superior to other methods. 

4.4. Discussion 

From the above experiments, we have the following findings: 

(1) Sample images on the three databases involve variations in facial expression, pose and illumination, while the pro-

posed method is still able to perform well. It owes to fractal iteration is a blurring process. 

(2) When the number of training samples is large like on FERET and CMU PIE databases, FNDC using class information

takes the least amount of time and obtain a high recognition rate. 

(3) When compression technology is applied to face recognition as a compression technology, we just need to obtain and

store fractal codes of training samples, which can help us greatly save storage space. And it has been the key point in

face recognition when the size of the database is becoming increasingly large. 

5. Conclusions 

In this paper, a fast fractal coding method is firstly introduced. The operation of decoding iterations is actually a blur-

ring process which can omit the high frequency information and overcome the effects of illumination, occlusion and micro

expression on the experimental results. Just as important, when the fractal coding method is applied to face recognition

as a compression technology, we just need to obtain and store fractal codes of training samples, which can help us greatly

save storage space. To meet people’s requirements of fast face recognition, we propose FNDC which improves the traditional

fractal recognition methods using class information to set up between-classes and within-classes thresholds to accelerate

the recognition speed. We conducted experiments on Yale, FERET and CMU PIE databases and demonstrate the merits of

FNDC. 
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