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Detecting work-related stress with a wearable device
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A B S T R A C T

Excessive stress will lower work efficiency, lead to negative emotions and even various illnesses. This
paper aims at detecting work-related stress based on physiological signals measured by a wearable
device. Different from common binary stress detection, this study detects three levels of stress, i.e., no
stress, moderate stress and high perceived stress. The Montreal Imaging Stress Task (MIST) is used to
simulate the different stress conditions, including both mental stress and psychosocial stress factors that
are relevant at the workplace. A sensor-based wearable device is used to acquire the electrocardiogram
(ECG) and respiration (RSP) signals from 39 participants. We extract stress-related features from ECG and
RSP, and the Random Forest is used to select the optimal feature combination, which is later fed to the
classifier. Four classifiers are investigated about their ability to predict the three stress levels. Finally, the
combination of Random Forest and Support Vector Machine (SVM) achieve the best performance. With
this method, the accuracy is improved from 78% to 84% in three states classification. And in binary stress
detection, the accuracy is 94%.
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1. Introduction

Work-related stress has drawn great interest in modern society.
In 2007, stress was identified to be one of the most common health
problem inducements in the European Union [1]. The poor match
between people’s working ability and demands leads to work-
related stress [2]. Moderate stress can stimulate people’s potential,
while chronic and heavy stress may cause a series of negative
effects including depression and even health problems, such as
cardiovascular diseases, cerebrovascular diseases and musculo-
skeletal disorders [1–5]. Excessive workload and stress may make
employees absent from job, which results in high economic costs
[3]. If high work-related stress could be detected and monitored in
time, it is less possible to cause health problems. Further, if the
moderate level of stress could be recognized, it could help people
maintain the appropriate working state. Therefore detection of
different levels of stress is meaningful.
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Physiological response corresponds to psychological change
and can’t be manipulated by people. The mechanism to maintain
the body under a stable condition is realized by the autonomic
nervous system (ANS), which contains sympathetic nervous
system (SNS) and the parasympathetic nervous system (PNS).
It’s known that stress can activate the SNS [6]. And the PNS can
bring the body back to a rest state. Intuitively, SNS activation
increases the heart rate, whereas PNS decreases it. Activity of SNS
and PNS can be monitored through some physiological signals,
such as heart rate, heart rate variability (HRV), blood pressure and
so on. Also, the respiration under stress is short and rapid, whereas
it’s deep and slow at a rest state. In our study, we select ECG and
respiration signal to measure stress.

There have been many studies on stress detection. Liao used
mental arithmetic and an alphabetic task to emulate mental stress.
They used facial, physiological signals (heart rate, skin tempera-
ture, galvanic skin response), behavioral and task performance
(e.g., error rate) as factors [7]. Zhai and Barreto used an interactive
‘Paced Stroop Test’ to emulate stress. In the test, participants had to
select the font color of a word shown on the screen and the word
itself named a color [8]. Katsis simulated car races to detect high
stress, low stress, disappointment, optimistic and neutral state.
They extracted features from facial electromyogram, RSP, electro-
dermal activity and ECG [9].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2017.05.004&domain=pdf
undefined
undefined
http://dx.doi.org/10.1016/j.compind.2017.05.004
http://dx.doi.org/10.1016/j.compind.2017.05.004
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind


L. Han et al. / Computers in Industry 90 (2017) 42–49 43
Muaremi combined the recording of smartphones with
subjective assessments and voice messages during workday and
recording of HRV data during night. From the smartphone, they
extracted audio (microphone), physical activity (accelerometer
and GPS) and social interaction (phones calls, address book,
calendar and battery) features. They got an accuracy of 55% using
only smartphone features, while 59% using HRV features [10].
McDuff measured physiology parameters of Heart Rate and HRV
captured at a distance of 3 m using a digital camera. Ball control
and card sorting tasks were used to emulate mental stress [11]. In
this work, the head or body motions and changes of ambient light
might easily impact the accuracy in stress detection.

In stress emulating, the mental arithmetic, alphabetic task,
‘Paced Stroop test’ and other forms of mental stress were often
used. Most studies used only mental workload to elicit mental
stress, which is certainly an important stress factor in office.
However, there are other factors that can elicit psychosocial stress,
such as social threat from leaders and colleagues. In our study, to
recognize work-related stress, we pick an experiment setting that
is very close to a real office situation. Therefore we consider both
mental and psychosocial factors by using the MIST which is a
standardized task based on computer and psychology [12].
Furthermore, the MIST contains a no stress condition, a moderate
stress condition and a high stress condition. As moderate stress is
beneficial to work efficiency, one highlight of our study is to detect
three levels of stress rather than simply binary stress condition
(with or without stress).

After data collection, different algorithms were used to detect
stress. Setz compared performances of Linear Discriminant
Analysis (LDA), nearest class center and SVM with linear, quadratic,
polynomial and rbf kernels in stress detection. With the features
extracted from electrodermal activity, they achieved a maximum
accuracy of 82.8% by LDA [13]. Liao used a Dynamic Bayesian
Network to estimate a continuous stress level [7]. Researchers
from the University of Memphis developed a Bayesian Network
model of self-reported stress and used a SVM model to predict the
instantaneous self-report. With ECG and RSP features, they
obtained an accuracy of 72% on filed data [14,15].

In most studies, they only investigated the appropriate classifier
to adapt to some kind of feature set. However, the combination of
features was often neglected. In our study, we use the Random
Forest to find the optimal feature combination, which help
improving the performance of classifiers. And to get the best
performance, four different classifiers are investigated.

Until now, there is no universally accepted definition of stress or
standard database for stress recognition both in lab and in field. In
our study, to detect different levels of work-related stress, we make
contributions from four aspects.

Firstly, we combine both mental and psychosocial stress
factors closing to a real-life office condition. Secondly, we try to
detect three levels of stress (no, moderate and high stress) rather
than simple binary classification between rest and stress. Thirdly,
we use a wearable device to collect ECG and respiration signals,
which can provide continuous measurement of stress levels.
Finally, we use the Random Forest to find the optimal feature
combination, which help improving the performance of
classifiers. And to get the best performance, four different
classifiers are investigated.
Fig. 1. The experiment procedure for inducing stress. After each conditio
2. Data collection

In this study, we consider both mental and psychosocial stress
by using the MIST to make the experiment closer to the real office
situation. During the experiment, the participants wear the
wearable device for collecting ECG and RSP signals.

There are total 39 healthy participants (male: 24; female: 15;
mean age: 23.9) participating in the experiments. To ensure the
validity and authenticity, the participants are told that they are
taking part in an experiment investigating the relationship
between cognitive performance and physiological characteristics.
Actually, they are confronted with both mental and psychosocial
stress.

2.1. Experiment

The Montreal Imaging Stress Task was originally created to
evaluate the effects of psychological stress on physiology and brain
activity [12]. It has been shown to induce moderate stress response
[12]. MIST is an experimental paradigm based on computer and
psychological, which mainly consists of four processes: rest,
moderate stress, high stress and recovery. The no stress condition
is just a rest state. The high stress condition consists of mental
arithmetic under time pressure and social-evaluative threat,
whereas the moderate stress condition contains only mental
arithmetic and moderate social evaluation without any other
pressure, which is similar to working under moderate stress.

Fig.1 shows the experiment procedure for inducing stress in our
study. After each condition, we will ask the subjects to give a self-
report and questionnaires, which serve as the ground-truth stress
level. In 39 subjects, 38 self-reports are consistent with the MIST
processes.

We develop the MIST program using the Visual Studio
application for Windows. The basic algorithm of the program
creates the arithmetic tasks. The algorithm uses up to 4 numbers
ranging from 0 to 99 and up to 4 operands containing addition,
subtraction, multiplication and division. It is designed to create
arithmetic tasks automatically and the solution will be an integer
between 0 and 9. The arithmetic tasks are divided into 5 categories.
For the first two easiest categories, tasks are only about 2 or 3 one-
digit integers and the operands are only addition or subtraction, for
example: 6 + 8–9. For the medium two categories, tasks are about 3
or 4 integers with up to 2 integers in 2-digit range and
multiplication is allowed, for example: 64–5*11. For the most
difficult category, tasks are about 4 integers that can be in 2-digit
range. Multiplication and division will be used, for example: 12*14/
21-2.

During the rest condition (for 5 min), the participants do not
have any task, which is the most relaxing condition.

The moderate stress condition (for 4 min) contains only mental
arithmetic and moderate social evaluation, which is similar to
working on a computer under moderate stress. When the
participant submits the answer, the screen will display “Right!”
or “Wrong!” as a feedback. And the leader will give some friendly
and moderate giveback, such as “Just do as much as you can!” or “Is
there a problem for solving the tasks?”. During moderate stress
condition, only mild social stress is induced, whereas strong social
stress is induced during high stress condition. During the moderate
n, we will ask the subjects to give a self-report and questionnaires.
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stress condition, the program will record the subject’s average time
needed to solve problems at various difficulty categories. And the
recorded time is used to set a time limit for the high stress
condition.

During the high stress condition (for 4 min), the participants do
mental arithmetic tasks under a time limit. The time limit is 10%
less than the subject’s average response time recorded in the
moderate stress condition. In addition, the program will continu-
ously record the number of correct responses and average response
time. The program reduces the time limit to 10% less than the
average time for 3 correctly solved tasks, if the subject correctly
solves 3 consecutive arithmetic tasks. The program can adaptively
adjust time constraints and difficulties in order that the
participants can only solve 45%–50% of the problems correctly.
This is similar to the high stressful work situation where the work
requirements do not match one’s ability. Fig. 2 shows the computer
program display during the high stress condition. Besides
arithmetic tasks and the numbers for submitting answer, a time
bar reminds the participant of the remaining time for this task and
“Time Out!” will be displayed on the screen when time is out.
When the participant submits the answer before the given time,
the screen will also display “Right!” or “Wrong!” as a feedback. The
color bar indicates the performance of the participant and a
simulated average performance level. The participants will be told
that the experiment will fail if his performance can’t reach the blue
area of the bar, which will help add the factor of social evaluative
threat. Additionally, after some task the study leader will give a
feedback about the subject’s performance, such as “Your math is
really poor!”, “Make more effort to solve more!” or other similar
words to increase the stress level. It is similar to the real-life
situation when the boss or leader complains about the subject’s
working performance.

The last condition of recovery (for 5 min) helps the subjects to
return to normal.

2.2. Devices

During the experiment, the subjects wear a sensor-based
wearable device. The device mainly consists of a MCU micro-
controller, biomedical sensors and a wireless transmission module.
The MCU contains an ARM Cortex-M micro-controller which
reduces the power consumption of the device. The biomedical
sensors include a three-lead ECG sensor, a 9-axis accelerometer, a
body temperature sensor and a photoplethysmography sensor. The
three-lead ECG sensor can also measure respiratory according to
the impedance pneumography. The measurements of the sensors
are transmitted wirelessly using Bluetooth communication proto-
col controlled by the micro-controller.
Fig. 2. MIST screen during high stress condition. 
To balance the power consumption and quality of the signals,
we set the sampling rate for the sensor to 250 Hz and the samples
are transmitted at the rate of 25 packets/s. The format of data frame
is an HCI command, an identification code, the data length and
information field. After receiving the samples, we distinguish
different kinds of data according to the identification code. Then
we parse the data according to the data length and information
field. The device can work around 5 days normally between
successive battery recharges. The appearance of the device is
shown in Fig. 3.

3. Data processing and model development

In this part, some details of data processing will be described,
including feature extraction, feature selection and classifier
training.

With the MIST experiment, we collect ECG and RSP from 39
participants. The collected data is segmented into one-minute
intervals. We extract features from ECG and RSP for each interval.
To find the highly correlated features with the stress, we use the
Random Forest to sort the significance of the features and select
the optimal feature combination. Finally, the optimal features are
used to train and test the classifier. The overview of our model
development is shown in Fig. 4.

3.1. Feature extraction

The received data is segmented into one-minute intervals. For
each interval, we will calculate base features from time and
frequency domains. Based on these base features, statistical
features such as mean, variance, standard deviation are
calculated.

3.1.1. ECG features
According to the characteristics of ECG as shown in Fig. 5, R

peaks are all automatically detected and extracted using Pan and
Tompkins’s algorithm [16]. The time difference between two
successive R peaks is called RR interval or inter beat interval (IBI)
[15]. The missed R peak will lead to RR interval invalid, which can’t
be detected by PT algorithm. In order to improve the accuracy of RR
interval extraction, we filter the extracted RR intervals according to
the criterion beat difference (CBD) [17]. Combined with this
algorithm, the accuracy of RR intervals extraction can be increased
from 98.6% to 99.04% [15].

To eliminate the personal specific components from the RR
intervals distribution, we use the z-score normalization for the RR
Fig. 3. The appearance of the wearable device.



Fig. 5. ECG signal and valid or invalid IBI. The accuracy of RR intervals extraction is
increased by detecting the missed R peaks and filtering the invalid IBI.

Fig. 6. Respiratory signal and calculation of base respiration features.

Fig. 4. Overview of our model development. It mainly contains data collection,
feature extraction, feature selection, classifier and parameters selection, classifier
training and model testing.
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intervals. Then there is no need to construct a personalized model
after extensive training. Anyone who is not in the training set can
use this model.

The z-score normalization is calculated as in (1). In the formula,
x is the value of the original feature, z is the z-score normalized
Table 1
All ECG features, extracted using the filtered and normalized RR intervals. They are us

Base
Features

Statistical Features

Time Domain 

RR Interval mean, median, variance, quartile deviation, 20th percentile, 80th
percentile, heart-rate
value, m is the mean of the feature and s is the standard deviation
of the feature.

z ¼ ðx � mÞ
s

ð1Þ

Then we calculate the statistical features of RR intervals for all
one-minute windows based on the normalized RR intervals. All
ECG features are listed in Table 1. They are used for training and
testing the model of stress recognition together with RSP features.
Specially, the quartile deviation is one half of the difference
obtained by subtracting the first quartile from the third quartile in
a feature set. The nth percentile of a set of features is the value at
which n% of the features are below it, for example the 20th
percentile is the value at which 20% of the features are below it.

3.1.2. Respiration features
The peaks and valleys of the respiration signal are detected

firstly and then each cycle is identified [18]. As in Fig. 6, we
calculate the moving average curve according to the period T and
the amplitude of the RSP. The RSP frequency f can be estimated by
the peak location in the power spectrum. Consequently, the period
T (T = 1/f) can be obtained. Then the inspiratory (up) and expiratory
(down) phases can be determined. The peaks and valleys are the
maximum and minimum values between pairs of the inspiration
and expiration phases. If the respiration amplitude is less than 20%
of the mean amplitude, the pair of peak and valley will be deleted.
In addition, the upper limit of the respiration cycle is set to be 12.5 s
and the lower limit to be 0.9 s [19,20].

The base features extracted from the RSP are shown in Table 2.
As shown in Fig. 6, the inspiration duration is the time of
inspiration, the expiration duration is the time of expiration and
the respiration duration is the total time of the respiration cycle. I/E
ratio is the ratio of the inspiration and expiration duration. Stretch
is the difference of the peaks and valleys within a cycle. In Fig. 7, we
can see that respiration under stress is short and rapid, whereas it’s
deep and slow at a rest state.

The excitability of the SNS and PNS changes during the breath,
which leads to the changes of RR interval. That’s the respiratory
sinus arrhythmia (RSA). So we also calculate RSA feature combined
ECG with RSP. RSA is calculated by computing the difference
ed for training and testing the stress classifier with RSP features.

Frequency Domain

low frequency energy (0.04–0.15 Hz), high frequency (0.15–0.4 Hz), low/high
frequency energy ratio



Table 2
All RSP features. The statistical features are calculated using the normalized base features. They are used for training and testing the stress classifier with ECG features.

Base Features Statistical Features

Inspiration duration, expiration duration, respiration duration, I/E ratio, stretch, respiratory sinus arrhythmia
(RSA), breath rate

Mean, median, 80th percentile, 20th percentile, quartile
deviation

Fig. 7. The respiratory signals of rest, moderate stress, high stress and recovery conditions. (a) is the respiratory signal of rest condition, (b) is the respiratory signal of
moderate stress condition, (c) is the respiratory signal of high stress condition, (d) is the respiratory signal of recovery.
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between the longest RR interval and the shortest RR interval within
every respiratory cycle [21].

The base features of the RSP are also normalized in a similar way
with the RR intervals. We calculate the statistical features for each
one-minute phrase as listed in Table 2. As with ECG, these
parameters are all used as the final features to train and test the
stress model.

3.2. Feature selection

After normalized by the Min-Max method, the features are
calibrated according to the results of self-reports and question-
naires. To find the highly correlated features with the stress, we use
the Random Forest to sort the significance of the features. And the
Random Forest also helps us to select the small number of features
that can predict stress states sufficiently.

For each decision tree in a Random Forest, the corresponding
out-of-pocket (OOB) data is used to calculate its out-of-pocket data
error, denoted as errOOB1. And then, adding random noise to the
characteristic X of all samples of the OOB, which can change the
value of the sample at feature X randomly. Again we calculate the
out-of-pocket data error, denoted as errOOB2. Assuming N trees in
a random forest, then the significance of the feature X is [22]:

x ¼
X

ðerrOOB2 � errOOB1Þ=N ð2Þ

Firstly, the Random Forest sorts the features in a descending
order according to the significance. Then it removes some
unimportant features to obtain a new feature set. It creates a
new random forest using the new feature set and repeats the above
steps to obtain some new feature sets. According to each new
feature set and new random forest, we calculate the errOOB1 and
select the feature set with the lowest errOOB1 as the final feature
set [23].
3.3. Classifier training

Four classifiers are investigated in our study. They are SVM,
Linear Discriminant Analysis (LDA), Adaboost and Nearest
Neighbors (KNN).

The principle of KNN method is to find a number of training
samples closest to the test sample in distance and predict it from
these training samples. The number of samples can be a user
defined constant or vary based on the local density of samples. The
KNN is a non-generalizing machine learning method for only
remembering all of training samples. However, it’s often useful
when the decision boundary is irregular [24].

The Adaboost classifier is a meta-estimator. It starts by fitting
the classifier on the original dataset and fits the additional copies
on the same dataset. But the weights of the incorrectly classified
samples will be adjusted so that the classifiers later focus more on
these cases [25]. And the LDA is a classifier with a linear decision
boundary. The fitted LDA model can be used to reduce the
dimensionality of the input [26].

The SVM is a kind of classification algorithm based on statistics.
It will map the features to high dimension spaces and then use a
simple linear model to classify. Given training dataset in two
classes xi; yif g; i = 1, 2, � � � n, x 2 RD, yi 2 1; �1f g. For a linear
problem, there is a hyperplane of w�x + b = 0 that can classify the
dataset. To non-linear problem, the optimal hyperplane for
classification is [27]:

min
w; b; ji

1
2
k w k2 þ C

Xn

i¼1
ji ð3Þ

Then the optimization problem for SVM is:

yi ðw � FðxiÞÞ þ b
� � � 1 � ji;ji � 0;i ¼ 1; 2; 3; � � � ; n ð4Þ



Fig. 8. Scores of top 5 and last 5 features calculated by the Random Forest.

Table 3
The results of four classifiers before and after the feature selection in three
conditions classification.

Feature set Classifier Precision Recall F1-score Accuracy

All Features (41) SVM 0.78 0.79 0.78 0.78
LDA 0.77 0.78 0.77 0.78
KNN 0.72 0.72 0.72 0.72
Adaboost 0.79 0.77 0.77 0.77

Remaining Features (36) SVM 0.83 0.84 0.83 0.84
LDA 0.80 0.80 0.80 0.80
KNN 0.74 0.72 0.73 0.72
Adaboost 0.79 0.79 0.79 0.79

Table 4
Predictive power of different feature sets in two states classification with SVM.

Feature set Data set Precision Recall FPR Accuracy

All Train 0.96 0.96 0.01 0.96
Test 0.94 0.94 0.01 0.94

ECG Train 0.87 0.87 0.05 0.87
Test 0.85 0.85 0.06 0.85

RSP Train 0.94 0.94 0.02 0.94
Test 0.93 0.93 0.03 0.93

Table 5
The result of SVM classifier in three conditions classification with the remaining 36
features in training and testing.

Data set Precision Recall F1-score Accuracy

Train 0.89 0.89 0.89 0.89
Test 0.83 0.84 0.83 0.84
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Its dual is:

min
a

1
2
aTQa � eTa ð5Þ

Subject to:

yTa ¼ 0; 0 � ai � C;i ¼ 1; 2; � � � ; n ð6Þ
Where e is the vector of all ones, Q is an n by n positive matrix, a is
the Lagrangian coefficient, ji is the slack variable. Training vectors
are implicitly mapped into a higher dimensional space by the
kernel function K(xi). The penalty coefficient C determines the
degree of penalty when a sample is misclassified [27].

The SVM has a good performance in solving non-linear
problems. However, it’s sensitive to parameters and kernels.
Different kernel functions can be used for various usages.

Among the four classifiers, the SVM classifier achieves the best
performance in training and testing. So we use the SVM to train the
classifier model. 80% of the data set is used as the training set and
the remaining 20% as the testing set. In training, the RBF Kernel is
used. And the RBF Kernel function is:

�gjx � x’j2 ð7Þ
In three states classification, we use the OneVsRestClassifier

function [28]. Namely, in training, three estimators are created to
distinguish each state from the other two states. The learned model
is a hyper-plane defined in high-dimensional function space and
selected by the SVM algorithm to maximize the margin of
separation. The performance of the SVM model is highly sensitive
to the penalty coefficient C and RBF g. In order to select the best
value of C and g, the grid-search method is used. And we use the
cross-validation to evaluate the model performance. Namely, we
use the features of each participant in testing and use all other
participants’ features to train the model. The output of the learned
model is the probability that the input belongs to.

After training, we chose the following parameters to evaluate
the performance of the model. TPR is the true positive rate. FPR is
the false positive rate. ROC curve is the receiver operating
characteristic. AUC is the area under ROC curve which will be a
value between 0.5 and 1. And the AUC is larger, the performance of
the classifier is better. F1-score is the weighted average of the
precision and recall, where an F1-score reaches its best value at 1
and worst at 0. Its value is:

F1 � score ¼ 2
1=precision þ 1=recall

ð8Þ

4. Results

In this section, we present the results of feature selection
and classification. The Random Forest gets the significance of
each feature set based on the score. Among all the feature sets,
the scores of mean of RR interval, 80th percentile of RR interval,
mean of expiration duration, mean of respiration duration, 80th
percentile of respiration duration are relatively low. We remove
the five highly correlated features. Fig. 8 shows the scores of the
top five and last five features. And Table 3 shows the results of
the four classifiers before and after the feature selection in
three conditions classification. With the SVM classifier, the
accuracy is increased from 78% to 84% with Random Forest
feature selection.

Then we compare the predictive power of different feature sets,
including the whole set of ECG and RSP features, only ECG features
and only the RSP features with SVM classifier. Table 4 shows
performance of different feature sets in classification of rest and
stress conditions with the SVM classifier. Compared to using only
ECG or RSP feature, the combination of ECG and RSP features
achieves a higher accuracy.

Most importantly, we can not only distinguish between rest and
stress conditions, also can discriminate three levels of stress that
contains no stress, moderate stress and high perceived stress. After
feature selection, with the remaining 36 features, the results of the
four classifiers in three states classification are listed in Table 3.
From it we can see that the SVM classifier gets the best
performance. In Table 5, it’s the result of SVM in three states
classification. And in Table 6, it’s the confusion matrices in three
states classification with SVM. In Fig. 9, it shows the ROC curve for



Table 6
Test confusion matrix of three conditions classification with SVM.

Classified by Model

No Stress Moderate Stress High Stress Total

Actual No Stress 73 (99%) 0 (0%) 1 (1%) 74
Moderate Stress 2 (6%) 25 (71%) 8 (23%) 35
High Stress 9 (28%) 2 (6%) 21 (66%) 32
Total 84 27 30 141

Fig. 9. ROC curve for high stress condition with SVM classifier.
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prediction of high stress condition with SVM. And Fig.10 shows the
ROC curves for three classes with SVM.

In the studies of stress detection, scholars use various kinds of
experiments to eliminate stress. For example, public speaking,
mental arithmetic and physical stimulation are all commonly used
experimental methods. Setz also used the MIST experiment to
induce stress. They achieved a maximum accuracy of 82.8% for
discriminating stress from cognitive load. However, they measured
the electrodermal activity to detect stress [13]. So the results
cannot be compared directly.

5. Discussion, conclusion and outlook

As presented in the previous section, 36 features are selected by
Random Forest. After feature selection, the accuracy is increased
from 78% to 84% in three states classification with SVM classifier. In
testing, the accuracy of 94% is achieved in distinguishing only
between rest and stress conditions with SVM classifier. Further-
more, in discriminating three stress levels of no, moderate and
high stress conditions, the SVM classifier performs best compared
Fig. 10. ROC curve for three classes with SVM classifier.
to LDA, Adaboost and KNN classifier. Its accuracy is 84%. The
performance of classification model is better with the combination
of ECG and RSP features.

However, there is no universally accepted definition of stress.
The widely used methods to assess stress are cortisol and self-
reporting. But the correlations between them are only limited to
0.26–0.36 [29,30]. Furthermore, there is no standard database for
stress recognition either in lab or in field. Scholars use various
kinds of experiments to eliminate stress and different types of
physiological data and features to recognize stress. And many
physiological signals are collected using various wearable devices,
such as ECG, blood pressure, electrodermal activity, photople-
thysmogram. So it’s not possible to compare the accuracy among so
many different studies directly.

In this work, we have got an accuracy of 84% in discriminating
three stress levels. However, this work has several limitations and
significant potential for future works. Firstly, we achieve this in an
experimental setting. As the MIST represents a closer to real-life
work stress condition, we expect similar results in real-life and
long-term work experiments for field usage. Secondly, several
approaches could be adopted to improve the accuracy such as
better processing of data normalization, handling of physical
activity confounds and combining with more physiological signals
such as skin temperature and galvanic skin response. Thirdly, real-
time detection and effective visualizations could be developed that
permit users to visualize their stress patterns on mobile devices.
This will give feedback to the users and remind them to pay
attention to break. Finally, since stress may be private information
for someone, we should pay more attention to privacy manage-
ment for the sensor data.

In conclusion, in our study, we combine both mental and
psychosocial stress factors closing to a real-life office condition. In
our experiment, the monitoring of ECG and RSP signals can
discriminate no, moderate and high stress levels rather than only
distinguishing between rest and stress conditions. It’s more
meaningful. We achieve a higher accuracy by combining Random
Forest feature selection with SVM classifier. Totally we got an
accuracy of 84% in discriminating three stress levels in a more
comfortable way by using a wearable device.
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