

Accepted Manuscript

A Systematic Review of Requirements Change Management

Shalinka Jayatilleke , Richard Lai

PII: S0950-5849(17)30466-4
DOI: 10.1016/j.infsof.2017.09.004
Reference: INFSOF 5877

To appear in: Information and Software Technology

Received date: 4 May 2017
Revised date: 11 August 2017
Accepted date: 10 September 2017

Please cite this article as: Shalinka Jayatilleke , Richard Lai , A Systematic Review of Requirements
Change Management, Information and Software Technology (2017), doi: 10.1016/j.infsof.2017.09.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.infsof.2017.09.004
http://dx.doi.org/10.1016/j.infsof.2017.09.004

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A Systematic Review of Requirements Change Management

Author names and affiliations:

Shalinka Jayatilleke, Richard Lai
Department of Computer Science and Information Technology
La Trobe University,
Bundoora, Vic 3086

Australia.

sejayatilleke@students.latrobe.edu.au, r.lai@latrobe.edu.au

Corresponding author:

Richard Lai

Email: r.lai@latrobe.edu.au

Abstract

Context: Software requirements are often not set in concrete at the start of a software development

project; and requirements changes become necessary and sometimes inevitable due to changes in

customer requirements and changes in business rules and operating environments; hence,

requirements development, which includes requirements changes, is a part of a software process.

Previous work has shown that failing to manage software requirements changes well is a main

contributor to project failure. Given the importance of the subject, there‟s a plethora of research work

that discuss the management of requirements change in various directions, ways and means. An

examination of these works suggests that there‟s a room for improvement.

Objective: In this paper, we present a systematic review of research in Requirements Change

Management (RCM) as reported in the literature.

Method: We use a systematic review method to answer four key research questions related to

requirements change management. The questions are: (1) What are the causes of requirements

changes? (2) What processes are used for requirements change management? (3) What techniques are

used for requirements change management? and (4) How do organizations make decisions regarding

requirements changes? These questions are aimed at studying the various directions in the field of

requirements change management and at providing suggestions for future research work.

Results: The four questions were answered; and the strengths and weaknesses of existing techniques

for RCM were identified.

Conclusions: This paper has provided information about the current state-of-the-art techniques and

practices for RCM and the research gaps in existing work. Benefits, risks and difficulties associated

with RCM are also made available to software practitioners who will be in a position of making better

decisions on activities related to RCM. Better decisions will lead to better planning which will

increase the chance of project success.

Keywords

Requirements change management; Agile; Systematic review

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

Change is an intrinsic characteristic of the software engineering discipline compared to other

engineering disciplines. In real-world scenarios, it is difficult to specify all the requirements for

software as the need and the circumstance of the scenario is subject to change. Factors such as

customer needs, market change, global competition, government policies, etc. contribute profoundly

to the changing nature of requirements. The need for increasingly complex software is in high demand

as organizations struggle to survive in a highly competitive market. Therefore, managing change in

software development is not just important but crucial for the success of the final product.

Nurmuliani [1] defines requirements volatility as “the tendency of requirements to change over time

in response to the evolving needs of customers, stakeholders, the organisation and the work

environment”. Requirements, in principle, are the needs and wants of the users and stakeholders of the

system captured by an analyst through an elicitation process [2]. These requirements change

throughout the system development and maintenance process, which includes the whole lifecycle of a

system: requirement formation, analysis, design, evaluation and learning [1-15]. As this review

progresses, we discuss in detail the factors that can cause these requirements changes. Therefore,

requirements change management (RCM) can be defined as the management of such changing

requirements during the requirements engineering process, system development and the maintenance

process [2, 5, 16]. This definition of RCM is an adaptation of the definition provided by Sommerville

[2] who states RCM is a process of “managing changing requirements during the requirements

engineering process and system development”.

Managing such evolving changes has proved to be a major challenge [12-15]. The consequences of

unmanaged or improperly managed requirement changes can spell disaster for system development.

These negative consequences can result in software cost and schedule overrun, unstable requirements,

endless testing and can eventually cause project failure and business loss [1, 17-23]. Therefore, the

proper management of change can be both rewarding and challenging at the same time.

The research area of RCM is of importance to many parties as requirements change is a constant

factor. Many research studies on have been conducted on improving RCM and many more have been

conducted to look for answers in the knowledge gaps found in the current research. The main

motivation of this research paper is to bring together the plethora of research work done in the area of

RCM into one location. This will enable software practitioners and researchers alike a reference point

in acquiring knowledge on the current practices, benefits, risks and difficulties associated with RCM.

As a result, they can form realistic expectations before making decisions on activities related to RCM.

Better decision making will lead to better planning which will increase the chance of project success.

An equally important reason to conduct this research is to identify the knowledge gaps in the area of

RCM. Given that a lot of research work has been done in this area, we felt it is important for us as

well as other researchers to understand the future of RCM. Although this is a widely researched area,

there are many gaps still remaining that once recognized and remedied could assist organizations

immensely.

2. Research Questions

To gain an understanding of current trends, practices, benefits and challenges in RCM, we formulated

the following four questions;

RQ1: What are the causes of requirement changes?

The motivation behind this question is to understand why requirement changes occur, which leads to

the realization as to why this has been an evolving topic. To answer this question, we investigated

various events and uncertainties that have been mentioned in literature. We also investigate whether

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

there is any commonality between these events that would lead to a recognition pattern in predicting

RCs.

RQ2: What processes are used for requirements change management?

The motivation behind this question is to understand the various steps involved in managing RCs. To

answer this question, we investigated the following: (1) recommendations for semi-formal methods of

managing change; (2) formal process models available for RCM

RQ3: What techniques are used for requirements change management?

The motivation for this question is to identify and understand the state-of-the-art techniques in

managing major areas of the RCM process. To answer this question, we identify the main steps

required to manage RC based on the answer to RQ2 and then identify in the literature what techniques

have been used in each of these steps.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

RQ4: How do organizations make decisions regarding requirements changes?

The motivation behind this question is to discover what factors are involved in making decisions

regarding RCs at different organizational levels. To answer this question, we first identify the main

levels of an organization and use the information available in the literature on RCM that can be

mapped to each level.

3. Review Approach

The systematic review was designed in accordance with the systematic review procedures and

processes defined by Kitchenham [24, 25]. According to Kitchenham [24], there are 10 sections in the

structure of a systematic review: 1. Title; 2. Authorship; 3. Executive summary or abstract; 4.

Background; 5. Review questions; 6. Review Method; 7. Inclusion and exclusion of studies; 8.

Results; 9. Discussion; and 10. Conclusion. The first 5 sections have been covered so far. The review

method comprises four sections: 1. Data search strategy; 2. Study selection; 3. Data extraction; and 4.

Data synthesis. This section comprises the review method and the inclusion and exclusion of studies.

The results, discussion and conclusion are presented in the next section.

3.1. Study objectives

As noted earlier, the objective of this literature review is to thoroughly study the background and

existing methods in RCM and thereby provide a critical analysis of the relevant research work and

identify future directions for improvement.

3.2. Selected sources

In order to carry out a comprehensive analysis, search strings were established by combining the

keywords through the logical connectors “AND” and “OR”. The studies were obtained from the

following search sources: IEEE, ACM, Science Direct (Elsevier), Springer, Wiley Inter Science, and

Google Scholar. The quality of these sources guarantees the quality of the study.

3.3. Selected language

The English language is the most commonly used language in the world and most of the available

research is written in English. Therefore, only papers which are written in English were selected for

the literature review.

3.4. Data search

To answer the research question, we undertook the search using four steps;

Step 01 – Identify the fundamental areas to finalize the scope of the review.

Step 02 – Select key words / strings from the defined areas. Key words / strings were limited to seven

(see Table 1).

Step 03 – Describe search expressions based on the first two steps i.e. [Expression = (A1 OR A2 OR

A3 OR A4 OR A5 OR A6 OR A7 OR A8 OR A9 OR A10 OR A11) AND (B1 OR B2 OR B3 OR

B4 OR B5)].

Step 04 – Use the search expression in the libraries mentioned in the selected sources.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Category Area Keywords / Strings

A
Requirement Change

Management

A1 – Requirement change/volatility/creep

A2 – Requirement change difficulties

A3 – Requirement change management

A4 – Requirement change management models /

Processes

A5 – Requirement change identification/type

A6 – Requirement change analysis

A7 – Requirement change factors/causes

A8 – Requirement change decisions

A9 – Change impact analysis

A10 – Agile requirement change management

A11 – Requirement change cost estimation

B Nature of study

B1 – Case study

B2 – Experiment

B3 – Surveys

B4 – Industrial

B5 – Literature reviews
Table 1: Categories and keywords

3.5. Study selection (Inclusion and exclusion of studies)

Once the research questions and the data search mechanism were defined, we started the process of

selecting studies which fell under the defined scope and contained the keywords set out in the review

process. As shown in category A of Table 1, the area of RCM has a lot of potential as change is a

constant factor. As a result, our search yielded hundreds of research papers and studies. After

screening these papers, we came to the conclusion that 28% (184) were relevant to the study.

Papers were excluded for a number of reasons related to format (editorial, seminar, tutorial or

discussion), repetition, lack of peer review, lack of a focus on RC and RCM, redundancy and lack of

quality. Several papers appeared in more than one research repository. We eliminated the repetitions

and only considered one instance of a paper. Details on repeated articles do not provide any

significant information, except the names of the articles which have been published by more than one

publishing authority (e.g. IEEE, ACM). As a result, we do not mention the names of the repeated

articles which were found during the study selection process. In the initial phase, the extracted papers

were independently reviewed by both authors based on the inclusion and exclusion criteria. In the

secondary phase, both authors compared their outcome of their selection and through discussion,

came to agreement on the inclusion and exclusion of papers. The overall inclusion process comprised

five steps, as shown in Table 2. Table 3 provides details of the reasons for the exclusion of 466

papers.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Analysis Phase Inclusion Criteria Number

of Papers

1. Initial search Papers written in English

650 Available online

 Contain search keywords and strings

2. Scrutinizing titles Only published in journals, conferences, workshops

and books 573

 Not an editorial, seminar, tutorial or discussion

3. Scrutinizing

abstract
 Experiments, case studies, literature reviews,

industrial and surveys
340

4. Analyzing

introduction and

conclusion

 Main contribution in the areas of search strings
230

5. Analyzing main

contribution
 Reported significant contribution

184 Originality of work

 Sole focus related to the theme of this review study
Table 2: Study selection process

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Exclusion Criteria No.

Paper format (editorial, seminar, tutorial or discussion) 95

Repetitions 43

Lack of peer review 75

Lack of a focus on RC and RCM 110

Redundancy 98

Lack of quality 45

Total 466

Table 3: Classification of exclusion

3.6. Data Extraction

After completing the study selection process, we recorded basic information on each paper in data

extraction form (refer to Table 4) to gather information on the causes of RCs, the study focus, RCM

processes / models, RC identification, RCM techniques, reported challenges in RCM, decision

making in RCM, study findings and knowledge gaps in RCM. The non-experimental models which

presented a proposal without conducting experiments were also applied.

Aspects Details

Study ID Paper ID

Title Title of paper

Authors Names of authors

Publishers Name of publishing authority

Publishing date Date of publication

Causes of RCs Factors that cause requirement changes

Study focus Focus and perspective of paper

RCM processes / models Processes / models listed for managing RC

RCM techniques Techniques used for RCM (identification, impact analysis,

cost estimation, etc.)

Reported challenges in RCM Challenges and consequences associated with RCM

Decision making in RCM Factors involved in decision making related to RCM

Study findings Lessons learned from the paper

Knowledge gaps in RCM Implications for future work

Table 4: Data extraction process

3.7. Data synthesis

Kitchenham [24, 25] states that there are two main methods of data synthesis: descriptive (qualitative)

and quantitative. The extracted data were analysed using a qualitative method to answer our research

questions, which leads to a descriptive data synthesis. One of the co-authors of this paper has

published qualitative systematic reviews [26, 27] using similar techniques. The analysis used the

constant comparison method [28] in comparing studies past and present in RCM. Using this method,

we present the focus of the studies, the proposed methods, applicability to requirement change

management, lessons learned from the studies and drawbacks and limitation of the studies.

4. Results for RQ1: What are the causes of requirements changes?

It is anticipated that requirements will change during a project life cycle. Whilst this fact is a constant,

delayed discovery of such changes poses a risk to the cost, schedule and quality of the software [3,

29-31] and such volatility constitutes one of the top ten risks to successful project development [30-

32]. Pfleeger [33] recommends that a method needs to be developed to understand and anticipate

some of the inevitable changes during the development process in order to reduce these risks. The

identification of factors that cause or influence requirements uncertainty is a necessity. The

recognition of such factors will support requirements change risk visibility and also facilitate better

recording of change data [30, 31].

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Change cause factors were collected using a key word search on academic papers, industry articles

and books that deal with change management or requirement engineering. We used the search

expressions A1 OR A2 OR A3 OR A5 OR A7 (see Table 1).

Most literature extracted in this survey mentioned/indicated the reasons for requirement changes.

However, it was deemed necessary to present these findings in a form that was meaningful rather than

listing all the causes of RCs mentioned in the literature. Of the literature extracted, there were three

studies that formally classify the causes of RCs. Weiss and Basili [34] divide changes into two

categories: error correction and modifications. This classification appears to be simplistic and

categorising all the identified change causes may not create an in-depth understanding. Bano et al.

[35] classifies change causes also under two categories; essential and accidental. They further classify

the change causes based on their origin: within the project, from the client organization and from the

business environment. McGee and Greer [30, 31] use five areas/domains to classify change causes.

For this survey, we use the classification presented by McGee and Greer as it has a more

comprehensive categorization. The five change areas are: external market, customer organization,

project vision, requirement specification and solution. Within the five change areas, they distinguish

between two causes of change: trigger and uncertainty [30]. The difference between these two

categories is that an event can cause a change without pre- or post-uncertainty. However, uncertainty

cannot cause a change to occur without an event that is triggered to manage the risk of the uncertainty.

The factors that were identified as causes of requirements change were sorted into five areas as

follows:

(i) Change area: External market

In this category, the changes to the requirements are triggered by the events and uncertainties that

occur in the external market which also include stakeholders. These stakeholders include parties

such as customers, government bodies and competitors. Therefore, events such as changes in

government policy regulations [36-38], fluctuations in market demands [1, 37-39] and response to

competitors [15, 37, 40, 41] can be considered. Also, uncertainties such as the stability of the

market [15, 42] and the changing needs of the customers [15] are also part of this category.

(ii) Change area: Customer organization

In this category, changes to the requirements are triggered by the events and the uncertainties that

arise from a single customer and their organizational changes. Although the changes occur within

the customer‟s organization, such changes have a tendency to impact the needs of the customer

and as a result, impact the design and requirements of the software project. Therefore, events such

as strategic changes within the organization [4], restructuring of the organization [1, 36, 38, 39,

43], changes in organizational hierarchy [15, 37, 44] and changes in software/hardware in the

organization should be considered. The stability of the customer‟s business environment can create

uncertainties that may lead to changes and these are also part of this category.

(iii) Change area: Project vision

In this category, the changes to the requirements are triggered by changes in the vision of the

project. These changes are in response to a better understanding of the problem space from a

customer point-of-view and the emergence of new opportunities and challenges. Events such as

improvements to business processes [2, 37], changes to business cases due to return on investment

[4], overrun in cost/schedule of the project [36, 39], identification of new opportunities [36] and

more participation from the stakeholder [38] should be considered. Uncertainties, such as the

involvement of all stakeholders [37, 43-45], novelty of application [37, 46], clarity in product

vison [37, 38, 45, 47], improved knowledge development team in the business area [44, 46],

identification of all stakeholders [43, 45], experience and skill of analyst [37, 44, 47, 48], size of

the project [2, 44, 49] can also cause changes under this category.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(iv) Change area: Requirement specification

In this category, changes in the requirements are triggered by events and uncertainties related to

requirement specification. These trigger events are based on a developer‟s point-of-view and their

improved understanding of the problem space and resolution of ambiguities related to

requirements. Events such as increased understanding of the customer [2, 36, 37, 49, 50],

resolution of misunderstandings and miscommunication [15, 51, 52] and resolution of incorrect

identification of requirements [1] can be considered as change triggers. Uncertainties, such as the

quality of communication within the development team [4], insufficient sample of user

representatives [4], low staff morale [48], quality of communication between analyst / customer

[37, 42, 44, 49], logical complexity of problem [44, 46, 49], techniques used for analysis [2, 36,

37, 39, 48], development teams‟ knowledge of the business area [44, 46], involved customers‟

experience of IT [46], quality of requirement specification [4], and the stability of the development

team [4] can contribute towards change under this category.

(v) Change area: Solution

In this category, changes in the requirements are triggered by events and uncertainties related to

the solution of the customer‟s requirements and the techniques used to resolve this. Events such as

increased understanding of the technical solution [4], introduction of new tools/technology [5, 15,

36-38, 41, 43, 53] and design improvement [15, 36, 51] should be are considered as change

triggers. Technical uncertainty and complexity can also be considered under this category as a

cause of change [4].

The five change areas listed above can be mapped to the classification proposed by Bano et al. [35].

The terms essential and accidental were initially introduced by Brooks [54]. According to Bano et al.

[35], change causes under the essential category are those that are inherent in nature and cannot be

controlled i.e. “fluctuating market demand” cannot be controlled or avoided by the development team

or the organization. In comparison, accidental causes can be controlled and avoided i.e. “overrun in

cost/schedule of the project” can be avoided or at least controlled by putting better techniques and

mechanisms in place. Being able to categorize change causes under these two categories has added

benefits in managing RCs. With essential causes, the focus should be to deal with their impact and

therefore use techniques that will reduce time and effort for their management. With the accidental

causes, the focus should be to use techniques that avoid such occurrences. Table 5 shows how these

five categories in McGee and Greer‟s classification [30] can be mapped to Bano et al.‟s classification

[35] of essential and accidental categories.

Bano et al.‟s

Classification [35]

McGee and Greer‟s Classification [30]

Essential External market Customer organization

Accidental Project vision Requirement specification Solution

Table 5: Comparison between classifications

Key findings of RQ1

Given that RC is an inevitable occurrence in any development project, it is beneficial to identify

which factors can cause these changes. The knowledge gained through such findings will enable all

stakeholders of a project to better manage the changes when they occur, develop systems based on the

changes, and anticipate certain changes. Based on the discussion formulated for RQ1, the following

are the key findings:

1) The factors that cause RCs can be divided into two categories: change trigger events; and

uncertainties.

2) In reality, it is difficult to determine whether change happens as a result of one or both. In a

practical sense, it is not important that the causes of the changes are divided into these two

categories, as long as they are identified.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3) These identified changes can be categorised into five areas: external market; customer

organization; project vision; requirement specification; and solution.

4) These five areas were identified by observing the characteristics of the change events and the

uncertainties discussed in the literature. For example, any change factor that was part of the

external environment of the organization, such as competitors, government regulations, etc.

was categorised as the external market.

5) These five areas can be divided into two categories: essential and accidental. Based on this

division, development teams can be proactive in managing such changes.

6) Based on the location in the life cycle of the software project, the above information can be

meaningful for anticipating what factors may cause change and as a result will lead to better

planning that will ensure a better success rate for the project.

5. Results for RQ2: What processes are used for requirements change

management?

In order to answer RQ2, the following sections discuss various processes suggested for managing RC

and the process models that are dedicated for RCM. We used the search expressions A3 OR A4 OR A6

OR A9 OR A10 (see Table 1) to extract the relevant literature.

5.1 Semi-formal methods available for requirements change management

Change is considered to be an essential characteristic of software development and successful

software has to be adapted to the requirements of its customers and users [5, 55, 56]. Thus RCM has

become a significant activity, which is undertaken throughout the development of the software and

also during the maintenance phase. Given the significance of this activity, it is unlikely that change

management is undertaken in an ad-hoc manner. According to Sommerville [2], the process of RCM

“is a workflow process whose stages can be defined and information flow between these stages

partially automated”. Having a proper process for RCM is linked with both improvement in the

organizational processes and the success of software projects [5, 6, 57]. We have identified four (i -

vii) academic works that refer to establishing semi-formal methods for managing change.

(i) Proposal: Leffingwell and Widrig [58]

This is a five-step process for managing change. The process is as follows:

1. Recognize that change is inevitable, and plan for it.

2. Baseline the requirements.

3. Establish a single channel to control change.

4. Use a change control system to capture changes.

5. Manage change hierarchically.

The process begins with a change management plan which recognizes that change is unavoidable.

Requirements are therefore baselined for change control and any proposed RC is then compared

with the baseline for any conflicts. In the third step, a change authority or change decision maker

is established. For small projects, this would be a project manager while for larger systems, the

responsibility would be handed to a change control board. In both cases, the decision is based on

impact analysis. In the decision-making process, it is recommended that input from various

stakeholders, such as customers, end-user, developers, testers, etc. should be taken into

consideration. To be able to make an informed decision, the impact analysis should capture the

effect of the change on cost, functionality, customers and external stakeholders. Also to be

considered is the destabilization of the system, which can occur due to the implementation of the

change. The decision which is taken should be communicated to all the concerned parties. The

fourth step refers to establishing a system that can be used to capture the changes effectively. This

could be either paper-based or electronic. The ripple effects of the change are to be managed in a

top-down order.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Limitations of the proposal:

According to [58], this process should enable software practitioners to identify changes that are

“both necessary and acceptable”. However, it is not mentioned in this work what steps are to be

taken to decide if a particular change is both necessary and acceptable. Similarly, no specific

details are given as to how to calculate the impact on cost, functionality, customers and external

stakeholders. In this sense, these steps only form a basic understanding of what needs to occur in

handling a change.

(ii) Proposal: El Emam et al. [57]

This process focuses on the preliminary analysis of change management. Two inputs are

considered in order to conduct this process, the technical baseline and any comments made by

stakeholders, such as customers, end-users, the development team, etc. The decision-making

process involves a change control board as this change management process is prescribed for large

systems. The technical baseline is essentially the system requirement specification document. The

change management process has the following four phases:

1. Initial issue evaluation

2. Preliminary analysis

3. Detailed change analysis

4. Implementation

In the first step, the comments gathered from the stakeholders are validated and entered into a

database as change requests. If a change request addresses a problem that is within the scope of the

technical baseline, and has not been addressed before, a change proposal will be generated. In the

second step, an analysis plan is formulated which describes the problem of the change proposal in

detail. If this plan is approved by a change control board, then many potential solutions will be

developed, from which one will be selected for implementation. This solution then needs to

undergo further approval. In the third step, the solution approved by the preliminary analysis report

is further analysed against the technical baseline to determine the impact on the system in detail

and the changes required. In the last step, the technical baseline is modified according to the

change proposal and the change request is closed.

Limitations in the proposal:

The use of these steps is limited to large projects. Furthermore, it is not clear on what basis the

different alternative solutions are assessed and what exactly is the decision-making process in the

second step. Given that this process is conducted at an initial stage of the development process,

there is no access to the code. Therefore, a possibility exists that these changes may cause issues

at a code level.

(iii) Proposal: Kotonya and Sommerville [59]

The authors emphasize the importance of having a formal process for change management to

ensure the proposed changes continue to support the fundamental business goals. They [59]

indicate that such a process ensures that similar information is collected for each proposed change

and that overall judgements are made about the costs and benefits of such changes. A three-step

change management process is proposed in [59] as follows:

1. Problem analysis and change specification

2. Change analysis and costing

3. Change implementation

In the first step, a problem related to a requirement or a set of requirements is identified. These

requirements are then analysed using the problem information and as a result, requirements

changes are proposed. In the second step, the proposed changes are analysed to determine the

impact on the requirements as well as a rough estimation of the cost in terms of money and time

that is required to make the changes. Finally, once the change is implemented, the requirement

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

document should be amended to reflect these changes and should be validated using a quality

checking procedure.

Limitations in the proposal:

The cost estimation carried out in the second step has a component of seeking customer approval.

The information which is lacking at this stage is the decision factors that are considered by the

software practitioners and the customers in order to approve or disapprove a proposed change.

The negotiation process with customers in relation to accepting or rejecting a proposed change as

indicated in [59] is based on cost and there is no indication that the risks associated with

implementing the change were considered.

(iv) Proposal: Strens and R. Sugden [7]

The change analysis process introduced in [7] is based on two analysis methods, namely sensitivity

analysis and impact analysis. According to [7], sensitivity analysis is used to predict which

requirements and design areas have the highest sensitivity to changes in requirements while impact

analysis is used to predict the consequences of these changes on the system. The main outcome of

this analysis is to reduce the associated risks in accepting and implementing RCs. The process is as

follows:

1. Identify the factors which are the cause of change.

2. Identify those requirements which are highly affected by the change (this information is

acquired from the previous history of requirements or intuition).

3. Identify the consequences of these changes - impact analysis

4. Undertake change analysis on other requirements, design, cost, schedule, safety,

performance, reliability, maintainability, adoptability, size and human factors.

5. Decide on and manage changes.

Limitations in the proposal:

It is important to perform change analysis, however there is no clear explanation as to how the

impact analysis is to be carried out for the elements mentioned in step four and how these factors

will be "equated". It is also difficult to determine the ripple effect of the changes, given that there

is no identification of the implementation part and the test documents to be modified.

(v) Proposal: Pandey et al. [60]

The authors propose a model for software development and requirements managements. There are

four phases in this process model: requirement elicitation and development, documentation of

requirements, validation and verification of requirements and requirements management and planning

[60]. The management of RCs are controlled by the requirement management and planning phase.

However, according to the full process model, the activities of this phase are interrelated with the

other phases. The process is as follows:

1. Track the changes of the agreed requirements.

2. Identify the relationship between the changing requirements with respect to the rest of the

systems.

3. Identify the dependencies between the requirements document and other documents of the

system.

4. Decision on the acceptance of the change(s).

5. Validation of change request.

6. Maintain an audit trail of changes.

Limitations in the proposal:

Although a comprehensive set of steps is described, the paper does not discuss specific schematics in

executing these steps. Dependencies are considered but there is no indication of further impact

analysis. It is not clear how decisions will be made in terms of accepting or rejecting a change as the

impact analysis phase is not clearly discussed. There is also no indication of consideration of the cost

or risks associated with implementing the change.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(vi) Proposal: Tomyim & Pohthong [8]

The method introduced by [8] for RCM usesUML for object-oriented development. The authors

justify the use of UML due to the complexity of the many views and diagrams it produces, thereby

adding more complexity in managing change. Therefore, a need arises for a process to manage the

changes better using UML. The business model used in this method consists of two procedures:

systems procedure (SP) and work instructions (WI). The SP explains the business operation from the

beginning of a task until the end of the business process. The WI explain the way to operate any

single task step by step. The method comprises the following steps:

1. Identify the change request.

2. Identify the related SP and WI.

3. Analyse the impact on the system and report on the impacted artefacts.

4. Make a decision based on the impact.

Limitations in the proposal:

The paper provides several sets of diagrams that represent the activities carried out but does not

provide details of the execution of the steps. A decision on the implementation of the change is solely

based on the impact analysis. This may be problematic if change priorities and costs/effort elements

are not taken into consideration.

(vii) Proposal: Hussain et al. [61]

The method proposed by [61] is based on the need to manage informal requirements changes. Such

requirements are internally focused, potentially subversive to the development process and therefore

harder to manage [61]. According to the authors, there are many reasons for informal changes, some

of which are: prematurely ending requirement engineering activities [62]; attempting a requirements

„freeze‟ earlier than usual in a project [58]; as a consequence of work hidden by managers to get

something developed by making ad hoc decisions and bypassing time consuming formalities [63];

additions made without the consideration of delay in the schedule and project cost [64]; and failure to

create a practical process to help manage changes [58]. Therefore, the authors suggest that there is as

much a need for a method for managing informal requirement changes as for formal requirement

changes. The method comprises the following steps:

1. Identify informal requirement change.

2. Analyse the impact of change.

3. Negotiate the change with stakeholders.

4. If accepted, decide on whether to include in current phase or next.

Limitations in the proposal:

The process is not very different from formal change management techniques. The negotiation

component after the impact analysis is a slight variation from the norm, however it does not explicitly

explain how the negotiation is done. The main component considered for negotiation is the impact

analysis. However, the proposed method does not disclose how the impact analysis is conducted and

what is considered for the impact analysis i.e. affected components, cost, effort, etc.

5.2 Formal process models available for requirements change management

The processes introduced above are not formalized models for managing RC. This section introduces

several RCM process models. These models facilitate communication, understanding, improvement

and management of RCs. Typically, a process model includes activities, who is involved (roles) and

what artifacts are to be used [9, 65].

The activities of a change management process model are the actions performed during the RCM

process that have a clearly defined objective, such as determining the change type which is a part of

change identification [2, 66, 67]. The identification of the roles in these process models define the

responsibilities attached to each role. For example, if the role of the customer is defined by the

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

process model, this means the responsibilities need to be shared with the customer‟s organization and

its representatives. The artifacts are documents and parts of the product created, used and/or modified

during the process [2, 66, 67]. By identifying these artifacts as part of the RCM process, this makes

the management of change more efficient due to the early detection of what documentation is going to

be affected by the change.

Based on the information given in [16] and by individually studying several change management

process models, ten such models [10, 19, 58, 68-72] were selected from the literature. Table 6

compares these models based on their activities, roles and the artifacts used. There are certain

limitations to these models, which are detailed in Table 7.

5.3 Agile methods available for requirements change management

One of the most important aspects of agile methods is that change is a built-in aspect of the process

[73]. Since software development is done in small releases, agile methods tend to absorb RCM into

these small iterations. The processes for managing change can neither be categorised as semi-formal

nor formal. Because of the frequent face-to-face communication between the development team and

the client, the main reported changes in requirements are to add or to drop features [74, 75]. The

clarity gained by clients helps development teams to refine their requirements, which results in less

need for rework and fewer changes in subsequent stages [75]. There are several agile development

models used, the most popular being Extreme Programming, Scrum, RUP, Lean, Plan-driven

methods, Iterative & Incremental model and the General Agile model [76]. Regardless of the agile

style of development used, the underlying processes have an inbuilt capacity to manage requirement

change. We were able to extract 10 such processes that deal with RCM as follows:

1. Face-to-face communication [74, 75, 77-79]:

This is a frequent characteristic activity between the client and the development team [74, 77,

78]. There is minimal documentation using user stories which does not require long and

complex specification documents. The frequency of this activity helps clients to steer the

project in their own direction as the understanding of needs tend to develop and requirements

evolve [75, 79]. Therefore, the possibility of dramatic and constant changes is reduced and the

changes that do arise are easily communicated due to the frequent communication between all

the stakeholders.

2. Customer involvement and interaction [73-75, 78, 80]:

In relation to some of the change cause factors listed in RQ1, there are several elements to the

involvement of the customer organization. In agile methods, there is a need to identify

customers or representatives from the client organization for frequent collaboration to ensure

that requirements are appropriately defined [80] [78]. As discussed above, this leads to a

better understanding of the system requirements and makes the inclusion of changes less

complicated.

3. Iterative requirements [74, 78, 79]:

Unlike traditional software development, requirements are identified over time through

frequent interactions with the stakeholders (face-to-face communication) [78]. The frequent

interactions make this an iterative process. This allows the requirements to evolve over time

with less volatility [74]. This gradual growth of requirements leads to less requirement

changes and far less time spent managing such changes.

4. Requirement prioritisation [75, 78-80]:

This is a part of each iteration in agile methods [75]. In each iteration, requirements are

prioritised by customers who focus on business value or on risk [78, 80]. In comparison,

traditional requirements engineering is performed once before development commences.

Iterative requirement prioritisation helps in RCM by comparing the need for the change with

the existing requirements and then placing it an appropriate priority location for

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

implementation. As this is done frequently, understanding the need for the change and its

priority becomes a much easier process.

5. Prototyping [74, 78, 81]:

This is a simple and straightforward way to review the requirements specification with

clients, so that timely feedback is obtained before moving to subsequent iterations [81]. This

assists in RCM by identifying what new additions are required and what existing

requirements are to be changed or removed. This reduces complex and/or frequent RCs in

subsequent iterations.

6. Requirements modelling [82, 83]:

One technique used in requirement modelling in agile methods is goal-sketching, which

provides goal graphs that are easy to understand [83]. This activity is also iterative and the

goals are refined during each iteration [82]. This helps in RCM by creating unambiguous

requirements that have a clear purpose, reducing the need for change during subsequent

iterations.

7. Review meetings and acceptance tests [78, 84]:

During review meetings, the developed requirements and product backlogs are reviewed to

ensure user stories are completed. Acceptance tests are similar to a unit test, resulting in a

“pass” or a “fail” for a user story. These tests increase the collaboration of all the stakeholders

as well as reduce the severity of defects. One of the reasons for RC is defects in the end

product. This practice effectively reduces the need for changes due to such defects.

8. Code refactoring [85]:

This process is used for revisiting developed code structures and modifying them to improve

structure and to accommodate change [86]. This practice deals with requirement volatility in

subsequent stages of agile development [85]. Therefore, in terms of RCM, the method allows

flexibility in handling dynamically changing requirements.

9. Retrospective [78, 79, 87]:

This process comprises meetings which are held after the completion of an iteration [87].

These meetings often review the work completed so far and determine future steps and

rework. In terms of RCM, this provides an opportunity to identify changes.

10. Continuous planning [79]

This is a routine task for agile teams where the team never adheres to fixed plans but rather

adapts to upcoming changes from customers. In RCM, this facilitates changing requirements

in the later stages of the project.

Agile development, different to traditional software development encourages change in every

iteration. The iterative and dynamic nature of this development method promotes constant feedback

and communication between the stakeholders. Therefore, the management of changes is continuous

during the iterations. We have identified some of the challenges that are inherent in traditional

methods of RCM that can be resolved by agile methods. This is discussed in Table 8. Whilst agile

methods seem to have a very efficient way of managing change, we were able to identify some

practical challenges in some of the techniques discussed above. The challenges are presented in Table

9.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Areas of

change

management

Model elements Process models

Activities Leffingwell &

Widrig [58]

Olsen

[68]

V-Like [69] Ince‟s [69] Spiral [69] NRM

[10]

Bohner

[72]

CHAM [70] Ajila

[71]

Lock &

Kotonya [19]

Change

identification

Plan of change Y Y

Problem

understanding

 Y Y Y

Determine type of

change

 Y

Change

analysis

Change impact on

functionality

Y Y Y Y

Manage change

hierarchy

Y

Solution analysis Y Y Y Y

Change effort

estimation

Change impact on

cost

Y Y Y

Estimate effort Y

Cost benefit

analysis

 Y

Other

Negotiation

process

Y Y Y

Update document Y Y Y

Change

implementation

 Y Y Y Y Y Y Y

Verification Y Y Y Y

Validation Y Y Y Y Y

Document impact,

cost and decisions

 Y

Artifacts

Baseline, Vision

document, Use case

model, software
requirement

specification

N/A Modification

report, Problem

statement

Problem

statement,

Change
authorization

note, Test

record

Implementation

plan, Release plan

N/A N/A N/A N/A Vision document,

Use case model,

software
requirement

specification,

problem

statement, change

request form

Roles

Customer,

developer, end user,
change control

board

N/A Maintenance

organization

Customer,

Developer,
Change control

board

N/A N/A N/A Customer,

Developer,
End user

N/A Customer,

Developer, End
user

Table 6: Comparison of RCM process models

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Model Limitations

Leffingwell &

Widrig [58]

Implementation of change is missing. Verification is not available and therefore not

able to ensure the stability of the system post-change. Documentation in the form of

change requests and decisions are also missing which contributes to poor

management and future decision making.

Olsen [68] Does not explicitly mention if there is any update to documents to keep track of the

changes and also, there is no indication of the artifacts used and who is involved in

the management process.

V-Like [69] Two key elements are missing, cost estimation and impact analysis.

Ince‟s [69] The decision-making process is unclear. Verification is not done.

Spiral [69] Similar to Ince‟s model, there is a lack of decision making and no verification. Does

not mention who needs to be involved in this process.

NRM [10] Activities are at a very abstract level. Given that no artifacts and roles are mentioned,

it is difficult to make use of this model in practice.

Bohner [72] A key element that is missing is the analysis of impact, which is a major part of the

decision-making process.

CHAM [70] Although cost and effort is estimated, there is no analysis of impact on functionality

which is an important factor for decision making. The artifacts to be used are also

not mentioned.

Ajila [71] There is no estimation of cost or effort. Artifacts and roles are also not mentioned.

Lock & Kotonya [19] No aspect of change identification, which is critical in understanding the change.

Table 7: Limitations of RCM process models

Challenges in traditional RCM approaches Solutions provided by Agile approaches

Communication gaps and lack of customer

involvement causing ambiguous requirements

Frequent face-to-face communication, customer

involvement, and iterative requirements

Changes that occur due to over scoping which is a

result of communication gaps and changes after

finalizing project scope

Continuous customer involvement, iterative

requirements, and prototyping

Change validations Requirement prioritisation through iterative processes,

prototyping, and review meetings and acceptance tests

Table 8: Challenges in traditional RCM resolved by Agile approaches

Agile technique Challenges

Face-to-face

communication

The frequency of the communication depends on the availability and willingness of

the team members. Customers may not be familiar with this agile technique and

could be wary of it.

Customer involvement Failure to identify needed/correct customer representatives can lead to

disagreements and changing viewpoints.

Requirement

prioritisation

A focus only on business value when prioritising requirements/changes can be

problematic as there can be other factors to consider.

Prototyping Problems may occur if there a high influx in client requirements at a particular

iteration.

Code refactoring Can generate code wastage, which increases the project cost.

User stories and product

backlog

This is the only documentation used in agile methods as minimal documentation is a

characteristic. This becomes a problem when there is a communication lapse or

project representatives are unavailable. It is also problematic when requirements

must be communicated to stakeholders in distributed geographical locations.

Budget and schedule

estimation

Due to the nature of incorporating RCs in subsequent iterations, it is not possible to

make upfront estimations, which can result in budget and schedule overruns.

Table 9: Challenges in Agile RCM

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Key findings of RQ2

Similar to any other activity in the software development process, RCM has also been described in

related work as an activity that needs to be carried out in defined steps. Based on the discussion that

formulates the answer for RQ2, the following are the key findings:

1) Academic work has identified that it is important to establish a process for managing change

where establishing and practicing a defined process for RCM is attached with benefits, such

as the improvement of organizational processes and an increase in the predictability of

projects.

2) In terms of traditional software development, two different approaches were investigated,

namely: 1) recommendations for semi-formal methods of managing change; and 2) the formal

process models available for RCM.

3) With semi-formal methods, it became evident that different academic work took different

approaches and elements, and recommended different steps for managing change, which

resulted in no consensus on the elements.

4) However, based on the activities on which the elements focused, we were able to identify

three areas of management: change identification; change analysis; and change effort

estimation.

5) These three areas were then applied to the ten formal process models of RCM found in the

literature. Using this classification, we were able to identify certain commonalities between

the process models, as illustrated in Table 6.

6) The formal process models have three distinct sections: activities – the actions / steps taken in

managing change; roles – the stakeholders involved in carrying out the activities; and artifacts

– the documents needed in some of the activities (see Table 6).

7) We were also able to identify the limitations in both the semi-formal methods as well as the

formal models.

8) Given the popularity of agile development in the recent past and present, several processes

were identified that deal with RCM. Through this identification, we were able to discuss how

agile methods can address some challenges in traditional RCM and also the challenges in

agile RCM.

6. Results for RQ3: What techniques are used for requirements change

management?

The information gathered in RQ2 will be used to formulate a framework to answer this question.

Examining the processes introduced in RQ2 as a whole, we have identified three key areas of a

practical approach to managing change. Figure 1 illustrates these areas i.e. change identification,

change analysis and change cost estimation. It is important to understand how these areas can be

practically implemented and what best practices are available in an organizational setting. As shown

in Figure 1, none of these areas are standalone. They need to communicate with each other in terms of

updates and verifications. The reason for this is that each area has the ability to feed information to

another area. For example, although change analysis can be undertaken once the change has been

identified, the cost estimation may provide additional information for the analysis step that may not

have been identified previously. A good RCM process does not have steps that are stand alone, rather

they are interconnected with information following to and fro from the steps. We used the search

expressions A4 OR A5 OR A6 OR A7 OR A8 OR A9 OR A10 OR A11 (see Table 1) to extract relevant

literature.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: Change management process

6.1 Change Identification

Change identification stems from several processes identified in RQ2 [57-59]. This step is important

for the rest of the management process as the steps to follow will be based on the correct

identification of the problem space as well as the change requirement. According to Figure 1, the

change management process starts with change identification. Within this identification, there are two

major activities, i.e. change elicitation and change representation. In order to ensure the correct

elicitation of changes, the change requirements need to be identified.

The correct elicitation should then lead to identifying further details of the change and if possible,

where in the system the change has to be made. This signifies the representation part of the

identification step. In most situations, the personnel involved in this step will need to have continuous

communication with the stakeholders in order to verify that identification is done correctly, as

illustrated in Figure 1. Through the literature, we identified two methods of change identification:

taxonomies and classification. The following sections describe these two methods and several other

methods that do not fall under these categories.

a) Through taxonomies

1) Research analysing change uses a plethora of techniques in order to build a taxonomy that can

be used to identify changes as well as their impact. One such mechanism is the use of

requirement engineering artifacts, such as use cases. The research done by Basirati et al. [88]

establishes a taxonomy of common changes based on their observation of changing use cases

that can then be used in other projects to predict and understand RCs. They also contribute to

this research space by identifying which parts of use cases are prone to change as well as what

changes would create difficulty in application, contributing also to the impact analysis of

change.

2) The taxonomy developed by Buckley et al. [89] proposes a software change taxonomy based

on characterizing the mechanisms of change and the factors that influence software change.

This research emphasizes the underlying mechanism of change by focusing on the technical

aspects (i.e. how, when, what and where) rather than the purpose of change (i.e. the why) or

the stakeholders of change (i.e. who) as other taxonomies have done. This taxonomy provides

assistance in selecting tools for change management that assist in identifying the changes

correctly.

3) McGee and Greer [4] developed a taxonomy based on the source of RC and their

classification according to the change source domain. The taxonomy allows software

practitioners to make distinctions between factors that contribute to requirements uncertainty,

leading to the better visibility of change identification. This taxonomy also facilitates better

recording of change data which can be used in future projects or the maintenance phase of the

existing project to anticipate the future volatility of requirements.

Stakeholders
Volatile requirements

Change Identification
 Elicitation
 Representation

Change Analysis
 Impact
 Priority

Change Cost/Effort Estimation
 Cost
 Time

Verification
Update

Verification

Verification

Verification
Update

Verification

Verification

Update

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4) Gosh et al. [11] emphasize the importance of having the ability to proactively identify

potentially volatile requirements and being able to estimate their impact at an early stage is

useful in minimizing the risks and cost overruns. To this effect, they developed a taxonomy

that is based on four RC attributes i.e. phases (design, development and testing), actions (add,

modify and delete), sources (emergent, consequential, adaptive and organizational) and

categories of requirements (functional, non-functional, user interface and deliverable).

5) The taxonomy established by Briand et al. [90] is the initial step in a full-scale change

management process of UML models. In their research, they establish that change

identification is the first step in the better management of RCs. The classification of the

change taxonomy is based on the types of changes that occur in UML models. They then use

this taxonomy to identify changes between two different versions of UML models and finally

to determine the impact of such changes.

b) Through classification

There are many benefits of using a classification, the main benefits being to manage change to enable

change implementers to identify and understand the requirements of change without ambiguity [91,

92]. The classification of RC has been studied in various directions. Table 10 lists the different

directions that have been the subject of academic studies.

Direction Parameters Comment

Type [11,

92-97]

Add, Delete, Modify The most common way of

classifying change.

Origin [11,

38, 98]

Mutable, Emergent, Consequential, Adaptive,

Migration

Derived from the places

where the changes

originated from.

Reason [92,

93, 99]

Defect fixing, Missing requirements, Functionality

enhancement, Product strategy, Design

improvement, Scope reduction, Redundant

functionality, Obsolete functionality, Erroneous

requirements, Resolving conflicts, Clarifying

requirements, Improve, Maintain, Cease, Extend,

Introduce

Helps determine the causes

of change and understand

change process and related

activities.

Drivers

[100]

Environmental change, RC, Viewpoint change,

Design change

Helps change estimation

and reuse of requirements.
Table 10: Direction is change classification

c) Other change identification methods

1) Kobayashi and Maekawa [10] proposed a model that defines the change requirements using

the aspects where, who, why and what. This allows the system analyst to identify the change

in more detail, resulting in better impact identification as well as risk and effort estimation.

This method consists of verification and validation and can be used to observe the RCs

throughout the whole lifecycle of the system.

2) The change identification method usually has a pre-established base upon which its semantics

are built. Ecklund‟s [101] approach to change management is a good example of this. The

approach utilizes use cases (change cases) to specify and predict future changes to a system.

The methodology attempts to identify and incorporate the anticipated future changes into a

system design in order to ensure the consistency of the design.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

d) Change identification through agile methods

Unlike traditional requirement engineering methods, agile software development welcomes changes

in various stages [75]. As discussed in RQ2, changes can be identified in several different phases of

the development process. Table 11 presents the different phases of agile development that contribute

to the identification of RCs, the challenges faced and solutions suggested by literature. The techniques

given in the table have been described in detail in RQ2 (see section 5.3).

Agile technique Challenge(s) Solutions

Face-to-face

communication

[74, 75, 77-79]

The success rate of the change identification

at this stage is dependent on customer

availability. However, this dependency is

often unrealistic and a challenge as

confirmed by studies [78, 102]

In practice, teams have surrogates or proxy

customers to play the role of real customers

[80] or use the “onsite developer” by

moving a developer representative to the

customer site [103].

Iterative

requirements [74,

78, 79]

Can create budget and schedule overruns as

initial estimations will always change when

requirements are added or removed during

the iterations [78].

Inayat et al. [75] suggest frequent

communication to identify as many

requirements as possible at early iterations

to keep these overruns to a minimum.

Prototyping [74,

78, 81]

Given that this is a review phase of

development, the client may have a large

number of changes to be included based on

the prototype. This can create schedule

overruns [75].

This can be mitigated somewhat, through

frequent communication and high customer

involvement and interaction in stages prior

to prototyping [75].

Review meetings

and acceptance

tests [78, 84]

Similar to the challenges of prototyping

where there could be an influx of changes

[84]. Also, if the product backlog is not

maintained in detail, finding information

related to changes made during the iterations

will also be challenging.

Denva et al. [80] suggest maintaining a

detailed artefact called delivery stories, in

addition to user stories. These help

developers make the right implementation

choices in the coding stage of a sprint.

Retrospective

[78, 79, 84]

If there are many changes identified in

completed user story at this stage, there will

be a considerable amount of rework to be

done, causing budget and schedule overruns

[75].

Increased customer involvement and

interaction in the stages prior to completion

of a user stories is essential [75].

Table 11: Change identification through agile methods

6.2 Change Analysis

Once a change has been identified, it needs to be further analysed to understand its impact on the

software system so that informed decisions can be made. One of the key issues is that seemingly small

changes can ripple throughout the system and cause substantial impact elsewhere [104]. As stated in

the literature, the reason for such a significant impact is that the requirements of a system have very

complex relationships [105-109]. Therefore, the way to realise this is to undertake change impact

analysis, which according to [110] is defined as “the activity of identifying the potential

consequences, including side effects and ripple effects, of a change, or estimating what needs to be

modified to accomplish a change before it has been made”. Change impact analysis provides visibility

into the potential effects of the proposed changes before the actual changes are implemented [104,

110]. The ability to identify the change impact or potential effect will help decision makers to

determine the appropriate actions to take with respect to change decisions, schedule plans, cost and

resource estimates.

a) Traceability issues and solutions

Given that the complex relationships between requirements are the key reason for impact analysis,

most methods for impact analysis use requirement traceability as their focal point. Requirement

traceability is defined as “the ability to describe and follow the life of a requirement in both a forward

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and backward direction (i.e. from its origins, through its development and specification to its

subsequent deployment and use, and through periods of ongoing refinement and iteration in any of

these phases)" [111]. Although traceability has been defined by many scholarly articles, the above

definition was selected as the most comprehensive because it describes both pre- and post-traceability

and is used by many other scholarly articles [112-121] for the same purpose.

Although traceability is one of the best ways to track the impact of RCs, many scholarly works

discuss the challenges in maintaining traceability. Tables 6 and 7 detail the issues in traceability and

the solutions that have been provided. The solutions in Table 12 have not been verified by industry

while the solutions in Table 13 have.

Scholarly work Issues in traceability Solution (Not verified by

industry)

Arkley & Riddle

[122]

Requirement traceability does not offer immediate

benefit to the development process.

Traceable development

contract.

Cleland-Huang,

Chang, Christiensen

[123]

Informal development methods, insufficient

resources, time and cost for traceability, lack of

coordination between people and failure to follow

standards.

Event-based traceability

Cleland-Huang,

Zemont & Luasik

[124]

Lack of coordination between team members.

Developers think that traceability costs more than it

delivers. Excessive use of traceability generates

more links which are not easy to manage.

Traceability for complex

systems frameworks.

Cleland-Huang,

Settimi, Duan &

Zou [125]

Manual construction of a requirement traceability

matrix is costly.

Dynamic retrieval methods

are used to automate the

generation of traceability

links

Gotel & Morris

[126]

Requirements change by user. Less appropriate

information is available for making decision with

requirements.

Media recording framework.

Ravichandar, Arthur

& Pérez-Quiñones

[119]

Problems associated with tracing back to their

sources.

Pre-requirements traceability

technique.

Table 12: Traceability issues and their solutions (not verified)

Scholarly work Issues in traceability Solution (Verified by industry)

Blaauboer, Sikkel

& Aydin [127]

Adopting requirement traceability into projects. Increase awareness and adapt

organizations to include

requirement traceability.

Cleland-Huang

[128]

Failure to trace non-functional requirements e.g.

security, performance and usability

Goal centric traceability evaluated

by an experiment

Gotel & Finkelstein

[111]

Some problematic questions are identified as

challenges: Who identifies a requirement and how?

Who was responsible for the requirement to start

with and who is currently responsible? Who is

responsible for change(s) in requirements? What

will be the effect on the project in terms of

knowledge loss if key employees quit?

Framework of contribution

structure.

Heindl & Biffl

[116]

Cost related to requirement traceability. Value-based requirements tracing

tested through a case study.

Ramesh [129] Organizational, environmental and technical

factors.

Best practice given.

Verhanneman,

Piessens, De Win

&

Joosen [121]

Requirement management challenges in industry

projects e.g. inadequate impact analysis and lack of

information transfer.

Requirement management tools

like DOORS and RequisitePro.

Table 13: Traceability issues and their solutions (verified)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

It is important to note that the solutions proposed might not be suitable for all types of organizations,

however, some basic guidelines can be outlined.

i. The identified issues can act as a guideline to understand the challenges that might arise when

creating and maintaining traceability and therefore improve the predictability of the

traceability issues.

ii. The cost of traceability for a specific project will be concentrated on that project whilst its

benefits (value) will span over and beyond the said project. The downside of this outcome is

that it may hinder the motivation of a project team to work with traceability as the benefits are

not realized immediately and therefore could be the cause of many of the challenges

identified in Table 6 and 7.

b) Use of Traceability and other methods for impact analysis

According to Figure 2, there are three sets of objects that can be impacted by a change: starting impact

set (SIS), estimated impact set (EIS) and actual impact set (AIS).

 SIS is the set of objects that are thought to be initially impacted by the change

 EIS is the set of objects estimated to be impacted after further analysis

 AIS is the set of objects that are actually modified as a result of the change

Figure 2: Change impact object sets

This is a concept introduced by Arnold and Bohner [130]. We identified in the literature several

impact analysis techniques that use traceability and non-traceability methods. These methods were

subject to the concept introduced by [130] to identify which set of objects are analyzed and are

detailed in Tables 14 and 15. This finding benefits software practitioners in selecting a potential

method for change analysis based on the set of objects on which they want to focus. Table 14 details

solutions that use traceability techniques to analyse RC while Table 15 details solutions that use other

techniques.

Change Impact

Starting Impact
Set (SIS)

Estimated Impact
Set (EIS)

Actual Impact
Set (AIS)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Scholarly

work
Title of work Solution (Using Traceability)

Impacted

objects

Antoniol et

al. [131]

Identifying the impact set

of a maintenance request

The tracing is done at a coding level where the text

in the maintenance request is mapped to

development code components corresponding to the

change request.

SIS

Li et al.

[132]

Requirements-centric

traceability for change

impact analysis

The method uses an interdependency graph and

traceability matrix to assess the impact at a

requirement specification level.

SIS, EIS

and AIS

Ibrahim et

al. [133]

Integrating software

traceability for change

impact analysis

The method provides a holistic traceability solution

that involves both high level and low level software

models ranging from requirements to code.

AIS

Göknil et

al. [134]

Change impact analysis

based on formalization of

trace relations for

requirements

The method deals with a requirements metamodel

with well-defined types of requirements relations,

which are used to define change impact rules for

requirements. These rules help identify the impacted

requirements.

EIS and

AIS

Von

Knethen

[135]

Change-oriented

requirements traceability.

Support for evolution of

embedded systems

The approach consists of three parts, a conceptual

trace model for embedded systems, rules to establish

traces and analyse impact and a tool for semi-

automatic impact analysis and consistency checking.

SIS and

AIS

Table 14: Techniques used for impact analysis – Traceability methods

Scholarly

work
Title of work Solution (Using Non-Traceability methods)

Impacted

objects

Kobayashi

&

Maekawa

[10]

Need-based requirements

change management

The method captures RC using the 4Ws: where, who,

why and what. The solution mainly consists of

verification and validation activities.

SIS

Ali & Lai

[136]

A method of requirements

change management for

global software

development

The method consists of three stages: understanding

change, analyzing these changes and finally making

decisions regarding the change based on the analysis.

SIS

Hassine et

al. [137]

Change impact analysis for

requirements evolution

using use case maps

Method uses slicing and dependency analysis at the

use case map specification level to identify the

potential impact of RCs on the overall system.

SIS

Briand et

al. [90]

Impact analysis and

change management of

UML models

The method uses a UML model-based approach

where the UML diagrams are first checked for

consistency. The impact analysis is carried out using

a change taxonomy and model elements that are

directly or indirectly impacted by the changes.

SIS and

EIS

Hewitt &

Rilling

[138]

A Light-Weight Proactive

Software Change Impact

Analysis Using Use Case

Maps

The method seeks to predict impact of changes at a

specification level. The method focus on extracting

information from Use Case Maps (UMC) that can be

used for proactive change impact analysis at the

specification level.

SIS

Table 15: Techniques used for impact analysis – Non-Traceability methods

c) Predicting requirements changes

Another aspect of analysing change is to proceed beyond the existing change impact and to use

historical data, design diagrams, codes, etc. to predict where change may occur and identify their

impact. Based on this concept, we were able to extract literature that discusses the prediction of RCs,

their possible impact on the systems and how the change may propagate through the system. These

findings are important in order for development teams to foresee how to be prepared for RCs, make

better decisions and better implement such changes. We present the prediction methods and their

limitations in Table 16.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Title Solution Limitations

1. Learning from

Evolution History to

Predict Future

Requirement

Changes [139]

Method uses historic information to develop a metrics

that measures the evolution history of a requirement.

Based on the metrics, the method proposes to reduce

the impact of requirements evolution by attempting to

predict requirements that are prone to change in the

future.

Can only be applied to

projects that have historic

data. Some important

requirements changes may

be neglected by the

prediction method.

2. Managing Changing

Compliance

Requirements by

Predicting

Regulatory Evolution

[140]

Method uses an adaptability framework which helps

requirements engineers to identify: why requirements

change (rationale); how requirements change

(classifications); and which portions of a proposed

rule are most likely to change when the final rule is

issued (heuristics). The framework allows engineers

to focus primarily on analysing and specifying

compliance requirements from the more stable areas

of the laws, while the less stable areas of the laws are

clarified during the final rulemaking.

The study uses two case

studies from the healthcare

industry and therefore the

findings and applicability

remain limited to the

healthcare industry.

3. Mining the Impact of

Object-Oriented

Metrics for Change

Prediction using

Machine Learning

(ML) and Search-

based Techniques

(SBT) [141]

This method is used to identify the probability of

classes that would change (change proneness of a

class) in the subsequent release of software. The

study develops a relationship between Object-

Oriented metrics and the change proneness of a class.

The method evaluates the effectiveness of six SBT,

four ML techniques and the statistical technique -

Logistic Regression (LR) on change proneness

prediction data and compares their results.

Findings and applicability

limited to object-oriented

environments.

4. Using Early Stage

Project Data to

Predict Change-

Proneness [142]

This paper presents a feasibility study undertaken to

test the validity of a hypothesis that data from

requirements and design activities may also prove to

be useful in predicting change proneness. A metrics is

developed for quantifying requirements and design

activities. Next, values are generated for these metrics

from a real-world case study and finally a comparison

is made with the actual number of changes detected.

Method can only be applied

if the project has

requirements and/or design

information available.

Clearly, this creates a

limitation for approaches

such as agile methods that

have limited documentation.

5. Predicting the

Probability of

Change in Object-

Oriented Systems

[143]

This is a probabilistic approach to estimate the

change proneness of an object-oriented design by

evaluating the probability that each class of the

system will be affected when new functionality is

added or when existing functionality is modified. The

goal is to assess the probability of how each class will

change in a future generation.

Previous versions of a
system must be analyzed to
acquire internal probability
values creating scalability
problems for large systems.
Cannot be applied in the
initial stages of the
development process (e.g. at
the design level).

6. Using Bayesian

Belief Networks to

Predict Change

Propagation in

Software Systems

[144]

The approach seeks to predict the possible affected

system modules, given a change in the system. The

method is composed of two steps: extracting

information and predicting changes. In the first step,

the authors extract the system elements‟ dependencies

and change history. In the second step, the Bayesian

Belief Networks are built using the extracted

information and then predictions are produced using

probabilistic inference.

Can only be applied to

methods that have historic

data and documentation.

Table 16: Methods of predicting requirements changes

d) Change analysis using agile techniques

In agile development, requirement engineering activities are not explicit. Partially, this is due to the

fact that there are less distinct boundaries in agile development than in traditional software

development [145]. Therefore, similar to change identification, the analysis of RCs in agile

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

development is not restricted to a particular phase of the development but a mixture of techniques is

used that occur iteratively. The agile techniques discussed in RQ2 (section 5.3) are detailed in Table

17 to show how change analysis is carried out in agile development.

Agile technique How change analysis is done

Iterative requirements [74,

78, 79]

The requirements related to a user story are not identified at the beginning of

a project. Requirements are built on iterations which allow stakeholders to

gain a better understanding of what is required and therefore analyse and

understand the need for changes.

Requirement prioritisation

[75, 78-80]

In each of the iteration, the identified requirements are prioritised. This

means that any changes that occur during the iterations will be compared to

existing requirements and will be assigned a place in the hierarchy of

implementation. The iterative nature of this activity ensures the priority of

requirements remain current.

Prototyping [74, 78, 81] This allows the agile team to review the requirement specifications with

clients to obtain feedback. The process will highlight issues with the

changes identified so far and will prompt the development team to find

better solutions.

Testing before coding [74,

78, 79, 146]

The development team writes tests prior to writing functional codes for

requirements. This promotes identification test failure which can be a form

of validation of the changes that have been applied during the iterations.

Requirement modelling [82,

83]

A technique used in modelling in agile approaches is goal-sketching [83].

The outcome is an easy-to-read goal graph which allows all stakeholders to

refine the goals, making them well defined. Changes that are introduced in

the iterations can be mapped to goals and this can help with decision making

in the implementation of changes.

Review meetings and

acceptance tests [78, 84]

The developed requirements and product backlogs are reviewed to identify

if user stories have been completed. In terms of change analysis, this

evaluates if changes have been implemented correctly and satisfy the end

goal.

Regression testing [147] Regression testing is done in agile methods to make sure that the newly

incorporated changes do not have side effects on the existing functionalities

and thereby finds the other related bugs. This is a form of change validation

in terms of change analysis.

Table 17: Change analysis using agile methods

Two of the documents used in agile development that are worth mentioning are user stories and

product backlog, which form a critical part of the change analysis process. User stories are created as

the specification of the customer requirements. They facilitate better communication and

unambiguous understanding between all stakeholders [80]. User stories are made up of three

components: a written description, conversations, and tests [148]. They are meant to reduce the need

for constant requirement change and also act as a reference point to check if changes are implemented

to satisfy the client requirements. Product backlog keeps track of the details of all the developed

requirements. This is one of the documents that can be used to keep track of all the requirements

changes [78].

6.3 Change Cost/Effort Estimation

Software cost/effort estimation is referred to as the process of predicting the effort required to develop

a software system [149, 150]. It is noteworthy that although effort and cost are closely related, they

are not a simple transformation of each other [149]. Effort is often measured in person-months of the

development team whilst cost (dollars) can be estimated by calculating payment per unit time for the

required staff and then multiplying this by the estimated effort [149]. Cost estimation is usually

carried out at the beginning of a project but as we have demonstrated, changes to the system can occur

at any stage of the project. Therefore, there is a need to estimate the additional cost for

implementation of the change.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

There are some basic factors to be considered when estimating, regardless as to whether it is for the

entire project or just for a change. The first step in cost/effort calculation is the calculation of the size

of the software, which is considered to be the most important factor affecting estimation [149].

Therefore, it is essential to understand the popular software sizing methods used and their suitability

for estimating the cost/effort of implementing requirements changes, as shown in Table 18.

Sizing Technique Feature Suitability for change cost/effort calculation

Line of Code

(LOC) [149, 151]

Based on the number of lines of

the delivered source code of

software.

Programming language

dependent.

Widely used sizing method.

Exact LOC can only be obtained after the

completion of the project and is therefore not

suitable for changes at the early stage of the

design.

Also depends on expert judgement and can

compromise reliability.

Can be used for changes that occur towards the

latter part of the development process.

Software science

[152]

Based on code length and volume

metrics.

Code length is the measurement

of the source code program length

and volume is the amount of

storage space required.

There have been disagreements over the

underlying theory and therefore reliability is

questionable [153, 154].

Not suitable for changes in the early phase (reason

as above).

Possibility of using this in the latter stages, yet the

measure has received decreasing support [149].

Function points

[155]

Working from the specification,

systems functions are counted

(inputs, outputs, files, inquiries,

interfaces)

These points are then multiplied

by their degree of complexity.

Use of the specification makes it suitable to

analyse changes in the early phase of development.

Equally suitable for changes in the latter stages.

Feature point

[156]

Extension of function points to

include algorithms as a new class.

Similar usability as function points and suitable

systems with little input/output and high

algorithmic complexity.

Table 18: Popular software sizing techniques

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 3: Costing Techniques

There are many methods described in the literature that are popular techniques for estimating

cost/effort. As presented in Figure 3, we considered the more frequently used estimation methods in

traditional software development and they can be classified into two categories: algorithmic and non-

algorithmic [149, 157]. Algorithmic models can be quite diverse in the mathematical expressions

used. It is important to remember that these algorithmic models need to be adjusted to suit the local

environment. Regardless of the technique used, none of the methods discussed in this section can be

used off-the-shelf.

One of the key findings in this section is to identify the appropriateness of these methods for

estimating the cost/effort of implementing RCs. Tables 19 and 20 describe several popular estimation

techniques that belong to these two categories and their suitability for change cost estimation.

Estimation
Technique

Algorithmic Non-Algorithmic

COCOMO

Putnam’s model
and SLIM

Price S

Expert Judgement

Parkinson

Price to win

Bottom-up

Top-down

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 19: Popular estimating techniques – Non-Algorithmic

Category Algorithmic

Technique Features Challenges Suitability for change cost/effort

estimation

COCOMO Uses power function models

where

S is the code size and a, b are

functions of other cost factors.

Not suitable for small

systems.

Exact code size can only be

obtained at the completion of a

project and therefore may not be

suitable for changes at early stages.

Putnam‟s

model and

SLIM

Equation used

where S is LOC, td is delivery

time, E is environment factor

(based on historical data)

Based on information from

past projects and may not

be suitable for the current

environment.

Although generally suitable for

changes in cost estimation,

dependency on historical data can

make the accuracy questionable.

Price-S This is a proprietary estimation

model. Uses an estimate of

project size, type and difficulty

and computes cost and schedule.

Because it is company

specific, it may not

suitable for all

environments.

Not suitable for change cost

estimations due to limitations.

Table 20: Popular estimating techniques – Algorithmic

Effort estimation is more challenging in the agile context as requirement changes are embraced

through multiple iterations of development. In line with the previous two sections, we consider the

techniques used in agile development for effort estimation. Table 21 details the techniques, the

challenges and the suitability for change cost/effort estimation.

Category Non-Algorithmic

Technique Features Challenges Suitability for change cost/effort

estimation

Expert

judgment

Based on one or more experts

using their experience and

techniques such as PERT or

Delphi for estimation.

Dependency on experts,

where human error is a

major risk and there can be

bias.

Can be suitable since the method is

fast and can easily adapt to diverse

circumstances. But the limitation

carries a lot of risk.

Parkinson Cost is determined (not

estimated) by the available

resources rather than an

assessment of the entire

situation.

Can provide unrealistic

estimations and does not

promote good software

engineering practice.

Given the limitations far exceed its

functionality, it cannot be

recommended.

Price to win Estimated to be the best price to

win a project. Estimate is based

on customer budget.

Not good software practice

as software functionality is

not considered. Can

produce large overruns.

Software functionality is a key

factor in change cost estimation and

therefore is not suitable.

Bottom-up Each component of the system

is estimated separately and the

result is combined to produce

the overall estimate. Based on

initial design.

Requires more effort and

can be time consuming.

Can be suitable for changes in the

latter phase. Not suitable for

changes in the early phases as it

requires detailed system

information.

Top-down The opposite of the bottom-up

approach. This is an overall

estimation based on global

properties. Total cost can be

split among the various

components.

Less stable as the

estimation does not

consider different

components.

Useful for changes in the early

stages. Changes in the latter phases

require more detailed costing and

therefore it is not suitable.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 21: Popular estimating techniques – Agile

Key findings of RQ3

The majority of the academic work on RC is focused on devising solutions for the different areas of

RCM. Based on the discussion that formulated the answer for RQ3, the following are the key findings:

1) Change identification methods do not seem to have much consensus on how the identification

should be done nor are many of the methods formal.

2) Most change identification methods found are based on two techniques: through taxonomies

and through classifications.

3) The change taxonomies tend to be based on larger concepts such as use cases and UML

models whilst change classifications use more simplified mechanisms such as change

directions and parameters.

4) Change identification usually leads to understanding of the need for the change, which also

relates to further analysis of the change.

Category Agile

Technique Features Challenges Suitability for change

cost/effort estimation

Expert

judgment

[158, 159]

Developers look to past projects or

iterations, and draw on their own

experiences to produce estimates for

the user stories.

Dependency on experts, where

human error is a major risk and

there can be bias.

Can be suitable since

the method is fast and

can easily adapt to

diverse circumstances.

But the limitation

carries a lot of risk.

Planning

poker [160,

161]

Once the user stories have been

understood, all the team members of

the agile team make independent

estimates and reveal their estimates

simultaneously. The lowest and

highest estimates need to be justified

by their estimator. The group

continues the discussion in order to

decide on a collective estimate,

possibly by conducting one or more

additional rounds of individual

estimating.

If the estimation process is

unstructured, factors such as

company politics, group pressure,

anchoring, and dominant

personalities, may reduce

estimation performance.

Similar suitability as

expert judgment but is

still dependent on the

skill and experience of

the team members.

Use Case

Points

(UCP) [162,

163]

Once the use cases are identified

based on the user stories, UCPs are

calculated based on the number and

complexity of use cases and actors of

the system, non-functional

requirements and characteristics of

the development environment. The

UCP for a project can then be used to

calculate the estimated effort for a

project.

UCP method can be used only

when the design is done using

UML or RUP.

Can be suitable for an

early stage change

estimation of the

development process.

Changes in the latter

phases require more

detailed costing and

therefore it is not

suitable.

Story points

[164-166]

Story point is a measure for relatively

expressing the overall size of a user

story or a feature. A point is assigned

to each user story. The value of the

story point is dependent on

development complexity, the effort

involved, the inherent risk and so on.

Story points create lots of

vagueness to the agile process.

For every team, story size could

mean different things, depending

on what baseline they chose. If

two teams are given the same

stories, one team can say their

velocity is 46 and the other can

say 14, depending on what

numbers they chose. Story points

do not relate to hours.

May only be suitable

for teams that are

collocated, based on

the challenges of the

method. Also, it may

not be suitable for

effort calculation in

hours as it will take

additional calculations

to convert story points

to hours.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5) Traceability techniques have been the more popular choice when analysing change as

requirement traceability facilitates the identification of the impact of change more efficiently.

However, this seems to be a theoretical concept as requirement traceability has many

limitations.

6) The main idea of change analysis is to identify how the requested change impacts the existing

design or system. To this effect, methods of change impact analysis found in literature can be

grouped based on objects that are impacted: starting impact set, estimated impact set and

actual impact set.

7) In terms of the agile context, changes in requirements are expected and welcome aspects of

development. As we discovered in the literature, change identification and analysis tend to

happen at almost all parts of the iterative process in development.

8) Due to the change-susceptive nature of agile development, unlike traditional development, in

most cases change identification and analysis does not require special processes but are

embedded into the processes that are part of the development cycle.

9) Costing techniques dedicated for estimating the cost of RC seem to be rare. In most cases,

existing costing techniques such as COCOMO, expert judgement, etc. are used for this

purpose.

10) It is possible to divide existing costing techniques into two categories: algorithmic and non-

algorithmic.

11) Depending on which point of the lifecycle the software project is and what artefacts are used

for the cost estimation, each estimation can be judged for suitability to be used for cost

estimation of RCs.

12) Some methods can be used but with many risks (i.e. expert judgement), some methods can be

used for changes introduced in the latter phase of the project life cycle (i.e. bottom-up,

COCOMO, etc.), some methods can be used for changes introduced in the early phase of the

project life cycle (i.e. top-down) and some other methods are not suitable for change cost

estimation (i.e. price to win, Price-S, etc.).

13) Unlike change identification and analysis, cost/effort estimation in agile development requires

special attention. The nature of agile development tends to discover requirements through

several iterations and therefore, any estimations at the beginning of a project change

significantly along the development cycle. Given this criterion, special techniques are

required for the estimation of cost and effort, which, we discovered in the literature, are

mostly dependent on expert judgement and team collaboration.

7. Results for RQ4: How do organizations make decisions regarding

requirements changes?

An organization has a harmonious existence when coordination and integration between business

objectives and IT services and infrastructure in realizing the common business goals are in alignment

[167-169]. However, when managing RCs of system software or software projects, stakeholders may

perceive different end goals at different levels of the organization [170]. In other words, change

management and analysis plans and strategies vary with organisational level, where each strategy

tends to have different goals and objectives. An organization can be categorized into two parts:

business organization and IT organization and each of these two categories can be split into three

levels, as illustrated in Figure 4. We used the search expressions A3 OR A6 OR A8 (see Table 1) to

extract the relevant literature.

(i) Executive level

Once the need for a change in a software process or requirement arises, the top level management

(CEO, CIO, etc.), which is the executive level, formulates very broad strategies for managing the said

change. The tendency to create broad plans is usually due to the responsibilities of the top level

executives in terms of what the organization as a whole stands to gain by implementing these changes

[170]. In some instances, business and IT tend to have a contradictory understanding of the need for

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

change. Decisions by the IT side for obtaining new technology that is required for implementation of

the change may not always be agreed upon by the business counterparts of an executive level [59,

170]. Research has demonstrated that when business and IT top management fail to understand the

need for the change and the IT capabilities that are required for its realization, these software projects

tend to have unsatisfactory outcomes in the form of cost overruns and failure [18, 168, 170, 171].

(ii) Tactical level

The tactical level in Figure 2 corresponds to the change management plans and strategies formulated

by the middle management of an organization. These strategies can be referred to as functional

strategies. The main concern at this level is to assess the change with respect to cost and benefits and

find ways to introduce the change without adversely affecting the project [2, 20, 59, 170]. The broad

strategies at an executive level may not always match with the strategies formulated at a tactical level.

For example, the end goal of a change at an executive level could be to improve quality while at a

tactical level, the goal would be to complete the project successfully and therefore, may consider the

change intrusive [59, 170]. It is also noteworthy that the notion of business vs. IT mindset exists at

this level too. One of the key barriers in creating a cohesive change strategy between business and IT

at this level is due to interpretation and communication barriers that stem from the lack of a common

change specification technique [38, 99, 172, 173].

(iii) Operational level

As the strategies flow down the organizational structure, they tend to become less complicated and

less abstract. At this stage, it becomes a process of understanding the strategies laid down by the

tactical level and formulate plans as to how to best implement them. The goals at this level are more

short-term due to the fact that development teams are dealing with simpler strategies. Provided that

business and IT change strategies at this level are aligned, the combination of such short term

strategies could be linked back to the business objectives set at the executive level [174]. Moreover, it

is essential at this level that development teams are able to cope with the changes in the business

strategies originating at a higher level. Therefore, strategies formulated at an operational level should

incorporate a mechanism to deal with such changes that will ensure the final product is what is

expected by the executive level.

(iv) Different viewpoints based on structure

Change analysis can be observed from two main viewpoints: one from a developer point of view at a

code level and the second from a decision-maker‟s point of view at a higher abstraction level. The

executive and the tactical levels can be considered as the decision-maker point of view while the

operational level represents the developer point of view. There has been debate over which of these

levels is more important in change management. Some of the literature emphasizes the importance of

managing change at a program modification level where such analysis would be helpful to a

programmer to effectively implement the change [175-177]. In support of a higher level of decision

making to effectively manage change, many studies argue that it is inaccurate to realize change at the

code level, where in fact the source of the change is at a requirement level and therefore should be

managed at a higher abstraction level [132, 136, 137].

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Change Identification

Business

Organization

Business

Organization
IT

Organization

IT

Organization

Analysis

Plan

Analysis

Plan
Analysis

Plan

Analysis

Plan

Solution

Strategy

Solution

Strategy
Solution

Strategy

Solution

Strategy

Align End

Goal

Align End

Goal

Communication

Analysis Plan

at Department Level

Analysis Plan

at Department Level

Business Solution

Strategy

Business Solution

Strategy
IT Solution

Strategy

IT Solution

Strategy
Align End

Goal

Align End

Goal

Business Action

Plan

Business Action

Plan
IT Action

Plan

IT Action

Plan
Align End

Goal

Align End

Goal

New

Process

New

Process
Redevelopment

Process

Redevelopment

Process
Existing

Process

Existing

Process
Change in

Process

Change in

Process

Figure 4: RCM with respect to organization level

(v) Decision making and organizational culture in agile development

The primary goal of all agile methods is to deliver software products quickly, and to adapt to changes

in the process, product, environment, or other project contingencies [178]. While evidence suggests

that agile methods have been adopted in a wide variety of organizational settings [179-181], such

methods are assumed to be more suited to certain organizational environments than others. According

to [179-182], agile development is more suited to smaller organizations as development is carried out

in small teams. There are scalability issues when it comes to large organizations or large projects

[180, 181]. In smaller organizations, there is a strong positive correlation in some aspects of

organizational culture with that of agile development; the organization values feedback and learning;

social interaction in the organization is trustful, collaborative, and competent; the project manager acts

as a facilitator; the management style is that of leadership and collaboration; the organization values

teamwork, is flexible and participative and encourages social interaction; the organization enables the

empowerment of people; the organization is results-oriented; leadership in the organization is

Executive
Level

Tactical
Level

Operational
Level

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

entrepreneurial, innovative, and risk taking; and the organization is based on loyalty and mutual trust

and commitment [183].

There are certain characteristics of agile development, such as cross-functional teams and customer

involvement that create harmonious interaction between various levels of the organization in decision

making. Cross-functional teams include members from different functional groups who have similar

goals [75, 184]. Such a practice combined with customer involvement helps reduce challenges such as

over scoping of requirements and communication gaps, which are some of the key causes of

requirement change. According to these studies, agile development has the ability to create harmony

within the organizational culture and within the structure of the organization that will positively

contribute to the reduction of the number of changes required and will be able to gain better clarity in

decision making and the development of software projects.

Key findings of RQ4

Not many studies in the literature used for this survey discuss how decision making at various levels

of the organization may differ. We feel that this is an important concept to investigate as such

differences in decisions can create difficulties in coming to a consensus on accepting the change and

also moving forward by executing the change. Based on the discussion that formulated the answer for

RQ4, the key findings are as follows:

1) It is important to realize that based on the level of the organizational structure, decision-

making concepts differ and this can be detrimental to the success of a project when dealing

with RCs.

2) An organization can be divided into two parts i.e. the business organization and the IT

organization.

3) Each of these two parts can then be divided into three levels of structure: Executive, Tactical

and Operational. The differing levels of decision making between these structural levels have

been identified to be a challenging factor in RCM.

4) Not only can decision making be contradictory at each level, it can also cause a contradictory

understanding of the change between the business and IT counterparts.

5) There are also two viewpoints to consider: the developer and the decision maker. The

literature seems to be divided on which viewpoint is more important, providing cause and

effect for merit for both viewpoints.

6) Agile techniques tend to be a better way of development when it comes to creating better

harmony within the organizational culture and decision making. However, this comes with

the constraints of scalability and therefore is better recommended for development using

smaller teams or for smaller organizations.

8. Comparison with related work

There is a plethora of work which has been evaluated in various areas of RCM, such as change impact

analysis, change complexity analysis, change decision support, change identification, etc. A number

of literature reviews related to change management have been conducted on research topics such as

identifying change causes [35], change taxonomies [31] and requirement change process models [16].

These reviews deal with only one aspect of RCM, as detailed in Table 22.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Research work Findings and contributions

Towards an understanding of the

causes and effects of software

requirements change: two case

studies [31]

The study identifies various causes of requirement change and uses

a simple taxonomy to group these causes for better understanding

and future identification.

Causes of requirement change-a

systematic literature review [35]
Similar to the previous study, identifies the causes of requirement

change and groups these cause into two categories; essential and

accidental. The main difference from [31] is that the study is done

as a systematic review.

Requirement change management

process models: Activities,

artifacts and roles [16]

The study brings together various requirement management

models, identifying their key features.

Table 22: Comparison with related work

In comparison, the work presented in our systematic review investigates the causes of requirement

change and the processes/models used for RCM, it explores in-depth the techniques used in RCM and

the decision making in managing change and provides a critical analysis of the methods extracted by

identifying research gaps. The methods extracted comprise both traditional and agile techniques in

RCM. In summary, this review provides information related to many aspects of RCM in more detail,

giving a more holistic view for its readers.

9. Threats to validity

The findings presented in this review study have the following threats to validity.

(i) Construct validity: this is primarily related to obtaining the right information by defining the

right scope. At this stage, the biggest challenge is to decide what should be included in the

review. To address this issue, we considered all the studies which provided empirical, case

study, experimental, industrial and survey-related information about RCM.

(ii) External validity: the findings of this review cannot be generalized because the results are

based on a specific set of keywords and the research repositories that have been used for the

data collection. Therefore, our results could be limited and cannot be applied to every

organizational setup.

(iii) Results validity: the concept of RCM has a very long history dating back to the early 1980s.

The area is still evolving and a large set of keywords are available which can be used to

represent the concept of RCM. In this review, we considered 12 different keywords which are

mostly used in the context of RCM in software development, and used six research

repositories to conduct an initial search in the study selection process. Thus, our findings are

only based on the selected set of keywords and from six research repositories.

(iv) Internal validity: this is mainly related to the capability of replicating similar findings. We

addressed this aspect by defining and later following the systematic review procedure,

described in section 3. Two researchers were involved in the review process, who, over a

period of time, worked together to avoid duplications and achieved consensus in the

acceptance of the identified studies. However, it could be possible that if this study is

replicated by other researchers, minor variations in the identified studies will be observed due

to differences in personal aptitude and thinking. Regardless of this fact, the findings presented

in this review will enable readers to obtain a clear picture of RCM.

(v) Conclusion validity: The number of research articles presented in this study does not indicate

the actual number of RCM practices being undertaken in reality. Thus, the number could only

be used to make inferences as to how practical and applicable RCM methods are.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

10. Conclusions and Future Work

It is evident that changes in requirements occur for many reasons and can be caused by multiple

stakeholders. Regardless of who or what cause these changes, the need for appropriate management is

great due to the undesirable consequences if left unattended. However, through this review, it was

discovered that change management is an elusive target to achieve and that there are many ways to

tackle it. The main objective of this review was to collate information and techniques related to RCM

and critically analyse the functionality of such techniques in managing change. This also led to

identifying strengths and limitations of these techniques, which signifies the need to enhance the

existing change management approaches. This review is also a guide for future researchers on change

management in terms of what major work has been undertaken thus far.

In the review, the section on factors that cause change in requirements provides an understanding on

how vast and constant these changes can be. There is no one root cause for changes which makes

change management a challenging task. Therefore, even with an abundance of research on change

management, there is still room for improvement. Given the complexity of changes, it is important to

identify the processes in place to manage them. It is clear from the available literature that there is no

consensus on how to manage change. In some instances, it is based on the type of organization and

the environment and in many cases, it is based on the type of changes. Through the available process

steps, three common processes were identified; identification, analysis and cost estimation of change.

Significant work has been done in each of these areas and several models that encompass these steps

have been developed in an effort to provide a full-scale solution for change management. It is also

important to understand that the approaches vary depending on the level of the organisation managing

the change.

When identifying future work in RCM, we deemed it useful to focus on the three areas of RQ3 where

the majority of the techniques have been discussed. We do not directly suggest future work but

identify the research gaps in the areas of change identification, analysis and cost estimation where the

possibility for new research lies.

8.1 Research gaps in change identification

Accurate change identification not only leads to a better understanding of the required change but also

the impact it can cause on the entire system and project. The techniques discussed in change

identification can be divided into two categories: change taxonomies and change classification as

discussed in the previous section. Given the existence of these methods, their still remains several

major gaps that need to be addressed:

1) The parties involved in the elicitation and identification process of changes are from a variety

of backgrounds and experience levels. Common knowledge for one group may be completely

foreign for another. This is especially true in the case of communication between the analyst

and the stakeholder(s).

2) The language and terminology used to communicate the changes to and from the stakeholder

to the analyst and then to software practitioners (designers, developers, testers, etc.) may be

either too formal or informal to meet the needs of each party involved.

3) There will be a large amount of information gathered that is part of one single change. Not

having a common structure to categorize this information may lead to misinterpretation of the

need for the change and the change itself.

4) Information gathered at one level of the organization could be biased based on the parties

involved if one form of structure is not used to capture the changes at all levels.

5) The methods already in existence provide minimal guidance in terms of applying them to

identify changes.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8.2 Research gaps in change analysis

As seen in the previous section on change analysis, it is clear that traceability is one of the most

popular techniques to analyse the impact of changes on a system, either in existence or in the design

phase. Several other non-conventional methods were also identified that contribute to change analysis.

Through these methods and the existing knowledge on the volatility of requirements, several gaps in

the research are identified:

1) Although traceability is a common method of identifying impact, it can be costly and time

consuming, and in most cases, the benefits (of traceability) are realized immediately. This

gives rise to a need for another method that addresses these limitations.

2) In most existing methods of change impact analysis, the priority of changes is not established.

Understanding priority benefits the decision-making process by allowing software

practitioners to establish which change to implement first and also how critical the change is

to the existing system and hence, resources can be allocated accordingly.

3) The existing literature is unclear on ways to identify the difficulty of implementing a change

in an early phase of the change request process. Understanding the difficulty associated with a

change leads to better decision making in two ways: firstly, if the difficulty of implementing

the change is too high and the delivery of the product is time sensitive, the change could be

held back for a consecutive version; secondly, the difficulty can be used as a gauge of the

effort required to implement the change.

8.3 Research gaps in change cost estimation

The cost estimation methods discussed in the previous section were not explicit for the estimation of

implementing changes. In practice, these methods can still be applied for this purpose yet there is still

much room for improvement. Based on the information discussed earlier and in the other related

literature, several gaps in the research were identified:

1) No significant work in the existing literature caters explicitly for estimating the cost of

implementing RCs. As demonstrated in the previous sections, changes occur for a plethora of

reasons and can occur during any phase of the software development life cycle. Therefore, it

would be beneficial if there was a dedicated method by which to estimate the cost of such

changes as the implication of these changes based on the project‟s timeline results in different

outcomes.
2) Estimation done at an early stage of the development process is usually based on expert

judgement with less precise input and less detailed design specification. In some cases, this

may result in effort estimation which is too low which leads to issues such as delayed

delivery, budget overrun and poor quality while high estimates may lead to loss of business

opportunities and the inefficient use of resources.
3) Estimating the cost in the early stages of development depends on expert judgment and

historical data which can be biased and inconsistent. There needs to be ways to eliminate

these ambiguities in change cost estimation.

The research gaps identified indicate the importance of having a full- scale model that increases the

efficiency of managing change with better accuracy. The review highlights that although the concept

of change management has been in existence for many years, the applicability of the available

methods has many limitations and has room for improvement. With challenges such as poor

communication, impact identification issues and no dedicated method for change cost calculation, the

avenues for future research is promising.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References

[1] N. Nurmuliani, D. Zowghi, and S. Powell, "Analysis of requirements volatility during

software development life cycle," in Software Engineering Conference, 2004. Proceedings.

2004 Australian, 2004, pp. 28-37: IEEE.

[2] I. Sommerville, "Software Engineering. International computer science series," ed: Addison

Wesley, 2004.

[3] N. Nurmuliani, D. Zowghi, and S. P. Williams, "Requirements volatility and its impact on

change effort: Evidence-based research in software development projects," in Proceedings of

the Eleventh Australian Workshop on Requirements Engineering, 2006.

[4] S. McGee and D. Greer, "A software requirements change source taxonomy," in Software

Engineering Advances, 2009. ICSEA'09. Fourth International Conference on, 2009, pp. 51-

58: IEEE.

[5] S. Ramzan and N. Ikram, "Making decision in requirement change management," in 2005

International Conference on Information and Communication Technologies, 2005, pp. 309-

312: IEEE.

[6] W. Lam and V. Shankararaman, "Requirements change: a dissection of management issues,"

in EUROMICRO Conference, 1999. Proceedings. 25th, 1999, vol. 2, pp. 244-251: IEEE.

[7] M. Strens and R. Sugden, "Change analysis: a step towards meeting the challenge of changing

requirements," in Engineering of Computer-Based Systems, 1996. Proceedings., IEEE

Symposium and Workshop on, 1996, pp. 278-283: IEEE.

[8] J. Tomyim and A. Pohthong, "Requirements change management based on object-oriented

software engineering with unified modeling language," in Software Engineering and Service

Science (ICSESS), 2016 7th IEEE International Conference on, 2016, pp. 7-10: IEEE.

[9] L. Lavazza and G. Valetto, "Enhancing requirements and change management through

process modelling and measurement," in Requirements engineering, 2000. Proceedings. 4th

International Conference on, 2000, pp. 106-115: IEEE.

[10] A. Kobayashi and M. Maekawa, "Need-based requirements change management," in

Engineering of Computer Based Systems, 2001. ECBS 2001. Proceedings. Eighth Annual

IEEE International Conference and Workshop on the, 2001, pp. 171-178: IEEE.

[11] S. Ghosh, S. Ramaswamy, and R. P. Jetley, "Towards requirements change decision support,"

in 2013 20th Asia-Pacific Software Engineering Conference (APSEC), 2013, vol. 1, pp. 148-

155: IEEE.

[12] B. Nuseibeh and S. Easterbrook, "Requirements engineering: a roadmap," in Proceedings of

the Conference on the Future of Software Engineering, 2000, pp. 35-46: ACM.

[13] N. Ikram, "The management of risk in information systems development," 2000.

[14] B. R. Butler et al., "The challenges of complex IT projects," Relatório técnico, Royal

Academy of Engineering. e British Computer Society, 2004.

[15] B. Curtis, H. Krasner, and N. Iscoe, "A field study of the software design process for large

systems," Communications of the ACM, vol. 31, no. 11, pp. 1268-1287, 1988.

[16] S. Ramzan and N. Ikram, "Requirement change management process models: Activities,

artifacts and roles," in 2006 IEEE International Multitopic Conference, 2006, pp. 219-223:

IEEE.

[17] B. W. Boehm, "Understanding and controlling software costs," Journal of Parametrics, vol.

8, no. 1, pp. 32-68, 1988.

[18] D. Firesmith, "Common Requirements Problems, Their Negative Consequences, and the

Industry Best Practices to Help Solve Them," Journal of Object Technology, vol. 6, no. 1, pp.

17-33, 2007.

[19] S. Lock and G. Kotonya, "An integrated framework for requirement change impact analysis,"

1999.

[20] I. Sommerville and P. Sawyer, Requirements engineering: a good practice guide. John Wiley

& Sons, Inc., 1997.

[21] A. Taylor, "IT projects: sink or swim," The computer bulletin, vol. 42, no. 1, pp. 24-26, 2000.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[22] E. Oz, "When professional standards are lax: the CONFIRM failure and its lessons,"

Communications of the ACM, vol. 37, no. 10, pp. 29-43, 1994.

[23] S. Lock and G. Kotonya, "Requirement level change management and impact analysis," 1998.

[24] B. Kitchenham, "Procedures for performing systematic reviews," Keele, UK, Keele

University, vol. 33, no. 2004, pp. 1-26, 2004.

[25] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,

"Systematic literature reviews in software engineering–a systematic literature review,"

Information and software technology, vol. 51, no. 1, pp. 7-15, 2009.

[26] A. Ullah and R. Lai, "A systematic review of business and information technology

alignment," ACM Transactions on Management Information Systems (TMIS), vol. 4, no. 1, p.

4, 2013.

[27] D. Wickramaarachchi and R. Lai, "Effort Estimation in Global Software Development - A

systematic Review," Computer Science and Information Systems, vol. 14, no. 2, pp. 393-421,

2017.

[28] M. B. Miles and A. M. Huberman, Qualitative data analysis: An expanded sourcebook. sage,

1994.

[29] B. J. Williams, J. Carver, and R. B. Vaughn, "Change Risk Assessment: Understanding Risks

Involved in Changing Software Requirements," in Software Engineering Research and

Practice, 2006, pp. 966-971: Citeseer.

[30] S. McGee and D. Greer, "Software requirements change taxonomy: Evaluation by case

study," in Requirements Engineering Conference (RE), 2011 19th IEEE International, 2011,

pp. 25-34: IEEE.

[31] S. McGee and D. Greer, "Towards an understanding of the causes and effects of software

requirements change: two case studies," Requirements Engineering, vol. 17, no. 2, pp. 133-

155, 2012.

[32] B. Boehm, "Industrial software metrics top 10 list," IEEE software, vol. 4, no. 5, 1987.

[33] S. L. Pfleeger, "Software metrics: progress after 25 years?," IEEE Software, vol. 25, no. 6, p.

32, 2008.

[34] D. M. Weiss and V. R. Basili, "Evaluating software development by analysis of changes:

Some data from the software engineering laboratory," IEEE Transactions on Software

Engineering, no. 2, pp. 157-168, 1985.

[35] M. Bano, S. Imtiaz, N. Ikram, M. Niazi, and M. Usman, "Causes of requirement change-a

systematic literature review," in Evaluation & Assessment in Software Engineering (EASE

2012), 16th International Conference on, 2012, pp. 22-31: IET.

[36] A. Van Lamsweerde, Requirements engineering: from system goals to UML models to

software specifications. Wiley Publishing, 2009.

[37] K. Wiegers and J. Beatty, Software requirements. Pearson Education, 2013.

[38] S. D. Harker, K. D. Eason, and J. E. Dobson, "The change and evolution of requirements as a

challenge to the practice of software engineering," in Requirements Engineering, 1993.,

Proceedings of IEEE International Symposium on, 1993, pp. 266-272: IEEE.

[39] R. S. Pressman, Software engineering: a practitioner's approach. Palgrave Macmillan, 2005.

[40] C. Rolland, C. Salinesi, and A. Etien, "Eliciting gaps in requirements change," Requirements

Engineering, vol. 9, no. 1, pp. 1-15, 2004.

[41] E. Fricke, B. Gebhard, H. Negele, and E. Igenbergs, "Coping with changes: causes, findings,

and strategies," Systems Engineering, vol. 3, no. 4, pp. 169-179, 2000.

[42] A. M. Davis and K. V. Nori, "Requirements, Plato's Cave, and Perceptions of Reality," in

Computer Software and Applications Conference, 2007. COMPSAC 2007. 31st Annual

International, 2007, vol. 2, pp. 487-492: IEEE.

[43] B. Boehm, "Requirements that handle IKIWISI, COTS, and rapid change," Computer, vol.

33, no. 7, pp. 99-102, 2000.

[44] M. G. Christel and K. C. Kang, "Issues in requirements elicitation," DTIC Document1992.

[45] C. Ebert and J. De Man, "Requirements uncertainty: influencing factors and concrete

improvements," in Proceedings of the 27th international conference on Software engineering,

2005, pp. 553-560: ACM.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[46] T. Moynihan, "How experienced project managers assess risk," IEEE software, vol. 14, no. 3,

pp. 35-41, 1997.

[47] T. Moynihan, "Requirements-uncertainty': should it be a latent, aggregate or profile

construct?," in Software Engineering Conference, 2000. Proceedings. 2000 Australian, 2000,

pp. 181-188: IEEE.

[48] S. Ferreira, J. Collofello, D. Shunk, G. Mackulak, and P. Wolfe, "Utilization of process

modeling and simulation in understanding the effects of requirements volatility in software

development," in International Workshop on Software Process Simulation and Modeling,

Portland, Oregon, 2003.

[49] L. Mathiassen, T. Saarinen, T. Tuunanen, and M. Rossi, "Managing requirements engineering

risks: an analysis and synthesis of the literature," Helsinki School of Economics, p. 63, 2004.

[50] C. Jones, "Strategies for managing requirements creep," Computer, vol. 29, no. 6, pp. 92-94,

1996.

[51] N. Nurmuliani, D. Zowghi, and S. P. Williams, "Using card sorting technique to classify

requirements change," in Requirements Engineering Conference, 2004. Proceedings. 12th

IEEE International, 2004, pp. 240-248: IEEE.

[52] S. Jayatilleke and R. Lai, "A Method of Specifying and Classifying Requirements Change," in

Software Engineering Conference (ASWEC), 2013 22nd Australian, 2013, pp. 175-180.

[53] J. Kramer and J. Magee, "The evolving philosophers problem: Dynamic change

management," IEEE Transactions on software engineering, vol. 16, no. 11, pp. 1293-1306,

1990.

[54] B. FP Jr, "No silver bullet essence and accidents of software engineering," Computer, no. 4,

pp. 10-19, 1987.

[55] J. S. O‟Neal, "Analyzing the impact of changing software requirements: A traceability-based

methodology," Clemson University, 2003.

[56] S. Lock and G. Kotonya, "Tool support for requirement level change management and impact

analysis," in Doctoral Symposium Proceedings, 1998: Citeseer.

[57] K. El Emam, D. Holtje, and N. H. Madhavji, "Causal analysis of the requirements change

process for a large system," in Software Maintenance, 1997. Proceedings., International

Conference on, 1997, pp. 214-221: IEEE.

[58] D. Leffingwell and D. Widrig, Managing software requirements: a unified approach.

Addison-Wesley Professional, 2000.

[59] G. Kotonya and I. Sommerville, Requirements engineering: processes and techniques. Wiley

Publishing, 1998.

[60] D. Pandey, U. Suman, and A. K. Ramani, "An Effective Requirement Engineering Process

Model for Software Development and Requirements Management," in 2010 International

Conference on Advances in Recent Technologies in Communication and Computing, 2010,

pp. 287-291.

[61] W. Hussain, D. Zowghi, T. Clear, S. MacDonell, and K. Blincoe, "Managing Requirements

Change the Informal Way: When Saying „No‟is Not an Option," in Requirements

Engineering Conference (RE), 2016 IEEE 24th International, 2016, pp. 126-135: IEEE.

[62] D. M. Berry, K. Czarnecki, M. Antkiewicz, and M. AbdElRazik, "Requirements

determination is unstoppable: an experience report," in Requirements Engineering Conference

(RE), 2010 18th IEEE International, 2010, pp. 311-316: IEEE.

[63] M. Bommer, R. DeLaPorte, and J. Higgins, "Skunkworks approach to project management,"

Journal of Management in Engineering, vol. 18, no. 1, pp. 21-28, 2002.

[64] K. Skytte, "Engineering a small system," IEEE Spectrum, vol. 31, no. 3, pp. 63-65, 1994.

[65] B. Curtis, M. I. Kellner, and J. Over, "Process modeling," Communications of the ACM, vol.

35, no. 9, pp. 75-90, 1992.

[66] S. T. Acuña and X. Ferré, "Software Process Modelling," in ISAS-SCI (1), 2001, pp. 237-242.

[67] J. Lonchamp, "A structured conceptual and terminological framework for software process

engineering," in Software Process, 1993. Continuous Software Process Improvement, Second

International Conference on the, 1993, pp. 41-53: IEEE.

[68] N. C. Olsen, "The software rush hour (software engineering)," IEEE Software, vol. 10, no. 5,

pp. 29-37, 1993.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[69] M. Makarainen, "Software change management processes in the development of embedded

software," VTT PUBLICATIONS, vol. 4, no. 1, p. 6, 2000.

[70] W. Lam, V. Shankararaman, S. Jones, J. Hewitt, and C. Britton, "Change analysis and

management: a process model and its application within a commercial setting," in

Application-Specific Software Engineering Technology, 1998. ASSET-98. Proceedings. 1998

IEEE Workshop on, 1998, pp. 34-39: IEEE.

[71] S. A. Ajila, "Change management: Modeling software product lines evolution," in Proc. of

the 6th World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida,

2002, pp. 492-497.

[72] S. A. Bohner, "Impact analysis in the software change process: a year 2000 perspective," in

icsm, 1996, vol. 96, pp. 42-51.

[73] A. Eberlein and J. Leite, "Agile requirements definition: A view from requirements

engineering," in Proceedings of the International Workshop on Time-Constrained

Requirements Engineering (TCRE’02), 2002, pp. 4-8.

[74] L. Cao and B. Ramesh, "Agile requirements engineering practices: An empirical study," IEEE

software, vol. 25, no. 1, 2008.

[75] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, "A systematic literature

review on agile requirements engineering practices and challenges," Computers in Human

Behavior, vol. 51, pp. 915-929, 2015.

[76] S. Bilgaiyan, S. Mishra, and M. Das, "A review of software cost estimation in agile software

development using soft computing techniques," in Computational Intelligence and Networks

(CINE), 2016 2nd International Conference on, 2016, pp. 112-117: IEEE.

[77] Y. Zhu, "Requirements engineering in an agile environment. Uppsala University J. Inayat et

al," Computers in Human Behavior, vol. 30, no. 2014, pp. xxx-xxx, 2009.

[78] B. Ramesh, L. Cao, and R. Baskerville, "Agile requirements engineering practices and

challenges: an empirical study," Information Systems Journal, vol. 20, no. 5, pp. 449-480,

2010.

[79] L. Jun, W. Qiuzhen, and G. Lin, "Application of agile requirement engineering in modest-

sized information systems development," in Software Engineering (WCSE), 2010 Second

World Congress on, 2010, vol. 2, pp. 207-210: IEEE.

[80] M. Daneva et al., "Agile requirements prioritization in large-scale outsourced system projects:

An empirical study," Journal of systems and software, vol. 86, no. 5, pp. 1333-1353, 2013.

[81] A. De Lucia and A. Qusef, "Requirements engineering in agile software development,"

Journal of emerging technologies in web intelligence, vol. 2, no. 3, pp. 212-220, 2010.

[82] N. A. Ernst, A. Borgida, I. J. Jureta, and J. Mylopoulos, "Agile requirements engineering via

paraconsistent reasoning," Information Systems, vol. 43, pp. 100-116, 2014.

[83] K. Boness and R. Harrison, "Goal sketching: Towards agile requirements engineering," in

Software Engineering Advances, 2007. ICSEA 2007. International Conference on, 2007, pp.

71-71: IEEE.

[84] D. Carlson and P. Matuzic, "Practical agile requirements engineering," in Proceedings of the

13th Annual Systems Engineering Conference, 2010.

[85] D. M. Berry, "The inevitable pain of software development, including of extreme

programming, caused by requirements volatility," Eberlein and Leite, 2002.

[86] M. Fowler, "Refactoring: Improving the Design of Existing Code. 2000," DOI= http://www.

martinfowler. com/books. html/refactoring, 2003.

[87] R. Carlson, P. Matuzic, and R. Simons, "Applying scrum to stabilize systems engineering

execution," CrossTalk, pp. 1-6, 2012.

[88] M. R. Basirati, H. Femmer, S. Eder, M. Fritzsche, and A. Widera, "Understanding Changes in

Use Cases: A Case Study," in Requirements Engineering, 2015., Proceedings of IEEE

International Symposium on, 2015.

[89] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel, "Towards a taxonomy of

software change," Journal of Software Maintenance and Evolution: Research and Practice,

vol. 17, no. 5, pp. 309-332, 2005.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[90] L. C. Briand, Y. Labiche, and L. Sullivan, "Impact analysis and change management of UML

models," in Software Maintenance, 2003. ICSM 2003. Proceedings. International Conference

on, 2003, pp. 256-265: IEEE.

[91] S. D. P. Harker, K. D. Eason, and J. E. Dobson, "The change and evolution of requirements as

a challenge to the practice of software engineering," in IEEE International Symposium on

Requirements Engineering, 1993.

[92] N. Nurmuliani, D. Zowghi, and S. Fowell, "Analysis of Requirements Volatility during

Software Development Life Cycle," in Australian Software Engineering Conference, 2004, p.

28.

[93] N. Nurmuliani, D. Zowghi, and S. P. Williams, "Using card sorting technique to classify

requirements change," in Requirements Engineering Conference, 2004, pp. 240-248.

[94] X. Hua, Q. Jin, and Z. Ying, "Supporting Change Impact Analysis for Service Oriented

Business Applications," in Systems Development in SOA Environments, 2007. SDSOA '07:

ICSE Workshops 2007, 2007, pp. 6-6.

[95] C. Gupta, Y. Singh, and D. Chauhan, "A dynamic approach to estimate change impact using

type of change propagation," Journal of Information Processing, vol. 6, no. 4, 2010.

[96] G. E. Stark, P. Oman, A. Skillicorn, and A. Ameele, "An examination of the effects of

requirements changes on software maintenance releases," Journal of Software Maintenance,

vol. 11, no. 5, pp. 293-309, 1999.

[97] C. Gupta, Y. Singh, and D. S. Chauhan, "A Dynamic Approach to Estimate Change Impact

using Type of Change Propagation," JIPS, vol. 6, no. 4, pp. 597-608, 2010.

[98] B. Nuseibeh and S. Easterbrook, "Requirements engineering: a roadmap," presented at the

Proceedings of the Conference on The Future of Software Engineering, Limerick, Ireland,

2000.

[99] S. Nurcan, J. Barrios, G. Grosz, and C. Rolland, "Change process modelling using the EKD-

Change Management Method," in European Conference on Information Systems, 1999, pp.

513-529.

[100] W. Lam and M. Loomes, "Requirements evolution in the midst of environmental change: a

managed approach," in Proceedings of the Second Euromicro Conference on Software

Maintenance and Reengineering, 1998, pp. 121-127.

[101] E. F. Ecklund Jr, L. M. Delcambre, and M. J. Freiling, "Change cases: use cases that identify

future requirements," in ACM SIGPLAN Notices, 1996, vol. 31, no. 10, pp. 342-358: ACM.

[102] M. Pichler, H. Rumetshofer, and W. Wahler, "Agile requirements engineering for a social

insurance for occupational risks organization: A case study," in Requirements Engineering,

14th IEEE International Conference, 2006, pp. 251-256: IEEE.

[103] Z. Racheva, M. Daneva, and A. Herrmann, "A conceptual model of client-driven agile

requirements prioritization: Results of a case study," in Proceedings of the 2010 acm-ieee

international symposium on empirical software engineering and measurement, 2010, p. 39:

ACM.

[104] S. Ibrahim, N. B. Idris, M. Munro, and A. Deraman, "A requirements traceability to support

change impact analysis," Asian Journal of Information Tech, vol. 4, no. 4, pp. 345-355, 2005.

[105] Å. Dahlstedt and A. Persson, "Requirements Interdependencies: State of the Art and Future

Challenges," in Engineering and Managing Software Requirements, A. Aurum and C.

Wohlin, Eds.: Springer Berlin Heidelberg, 2005, pp. 95-116.

[106] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag, "An industrial

survey of requirements interdependencies in software product release planning," in

Requirements Engineering, 2001. Proceedings. Fifth IEEE International Symposium on,

2001, pp. 84-91.

[107] B. Regnell, B. Paech, A. Aurum, C. Wohlin, A. Dutoit, and Johan, "Requirements Mean

Decisions! - Research issues for understanding and supporting decision-making in

Requirements Engineering," ed, 2001.

[108] I. Sommerville and G. Kotonya, Requirements Engineering: Processes and Techniques. John

Wiley \& Sons, Inc., 1998, p. 282.

[109] K. Pohl, Process-Centered Requirements Engineering. John Wiley \& Sons, Inc., 1996,

p. 342.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[110] S. A. Bohner, "Software change impact analysis," 1996.

[111] O. Gotel and A. Finkelstein, "Extended requirements traceability: results of an industrial case

study," in Requirements Engineering, 1997., Proceedings of the Third IEEE International

Symposium on, 1997, pp. 169-178: IEEE.

[112] M. F. Bashir and M. A. Qadir, "Traceability techniques: A critical study," in 2006 IEEE

International Multitopic Conference, 2006, pp. 265-268: IEEE.

[113] F. Bouquet, E. Jaffuel, B. Legeard, F. Peureux, and M. Utting, "Requirements traceability in

automated test generation: application to smart card software validation," in ACM SIGSOFT

Software Engineering Notes, 2005, vol. 30, no. 4, pp. 1-7: ACM.

[114] J. Dick, "Design traceability," IEEE software, vol. 22, no. 6, pp. 14-16, 2005.

[115] A. Egyed and P. Grunbacher, "Automating requirements traceability: Beyond the record &

replay paradigm," in Automated Software Engineering, 2002. Proceedings. ASE 2002. 17th

IEEE International Conference on, 2002, pp. 163-171: IEEE.

[116] M. Heindl and S. Biffl, "A case study on value-based requirements tracing," in Proceedings of

the 10th European software engineering conference held jointly with 13th ACM SIGSOFT

international symposium on Foundations of software engineering, 2005, pp. 60-69: ACM.

[117] M. Jarke, "Requirements tracing," Communications of the ACM, vol. 41, no. 12, pp. 32-36,

1998.

[118] B. Ramesh and M. Jarke, "Toward reference models for requirements traceability," IEEE

transactions on software engineering, vol. 27, no. 1, pp. 58-93, 2001.

[119] R. Ravichandar, J. D. Arthur, and M. Pérez-Quiñones, "Pre-requirement specification

traceability: bridging the complexity gap through capabilities," arXiv preprint cs/0703012,

2007.

[120] S. Rochimah, W. M. Wan-Kadir, and A. H. Abdullah, "An Evaluation of Traceability

Approaches to Support Software Evolution," in ICSEA, 2007, p. 19.

[121] T. Verhanneman, F. Piessens, B. De Win, and W. Joosen, "Requirements traceability to

support evolution of access control," in ACM SIGSOFT Software Engineering Notes, 2005,

vol. 30, no. 4, pp. 1-7: ACM.

[122] P. Arkley and S. Riddle, "Overcoming the traceability benefit problem," in 13th IEEE

International Conference on Requirements Engineering (RE'05), 2005, pp. 385-389: IEEE.

[123] J. Cleland-Huang, C. K. Chang, and M. Christensen, "Event-based traceability for managing

evolutionary change," Software Engineering, IEEE Transactions on, vol. 29, no. 9, pp. 796-

810, 2003.

[124] J. Cleland-Huang, G. Zemont, and W. Lukasik, "A heterogeneous solution for improving the

return on investment of requirements traceability," in Requirements Engineering Conference,

2004. Proceedings. 12th IEEE International, 2004, pp. 230-239: IEEE.

[125] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou, "Utilizing supporting evidence to

improve dynamic requirements traceability," in Requirements Engineering, 2005.

Proceedings. 13th IEEE International Conference on, 2005, pp. 135-144: IEEE.

[126] O. Gotel and S. Morris, "Crafting the requirements record with the informed use of media," in

Proceedings of the First International Workshop on Multimedia Requirements Engineering

(MeRE'06), 2006: Citeseer.

[127] F. Blaauboer, K. Sikkel, and M. N. Aydin, "Deciding to adopt requirements traceability in

practice," in International Conference on Advanced Information Systems Engineering, 2007,

pp. 294-308: Springer.

[128] J. Cleland-Huang, "Toward improved traceability of non-functional requirements," in

Proceedings of the 3rd international workshop on Traceability in emerging forms of software

engineering, 2005, pp. 14-19: ACM.

[129] B. Ramesh, "Factors influencing requirements traceability practice," Communications of the

ACM, vol. 41, no. 12, pp. 37-44, 1998.

[130] R. S. Arnold and S. A. Bohner, "Impact Analysis-Towards a Framework for Comparison," in

ICSM, 1993, vol. 93, pp. 292-301.

[131] G. Antoniol, G. Canfora, G. Casazza, and A. D. Lucia, "Identifying the starting impact set of

a maintenance request: A case study," in Software Maintenance and Reengineering, 2000.

Proceedings of the Fourth European, 2000, pp. 227-230: IEEE.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[132] Y. Li, J. Li, Y. Yang, and M. Li, "Requirement-centric traceability for change impact

analysis: a case study," in Making Globally Distributed Software Development a Success

Story: Springer, 2008, pp. 100-111.

[133] S. Ibrahim, N. B. Idris, M. Munro, and A. Deraman, "Integrating Software Traceability for

Change Impact Analysis," Int. Arab J. Inf. Technol., vol. 2, no. 4, pp. 301-308, 2005.

[134] A. Göknil, I. Kurtev, and K. van den Berg, "Change impact analysis based on formalization

of trace relations for requirements," presented at the ECMDA Traceability Workshop

(ECMDA-TW), Berlin, Germany, 12 June 2008, 2008.

[135] A. Von Knethen, "Change-oriented requirements traceability. Support for evolution of

embedded systems," in Software Maintenance, 2002. Proceedings. International Conference

on, 2002, pp. 482-485: IEEE.

[136] N. Ali and R. Lai, "A method of requirements change management for global software

development," Information and Software Technology, vol. 70, pp. 49-67, 2016.

[137] J. Hassine, J. Rilling, J. Hewitt, and R. Dssouli, "Change impact analysis for requirement

evolution using use case maps," in Principles of Software Evolution, Eighth International

Workshop on, 2005, pp. 81-90: IEEE.

[138] J. Hewitt and J. Rilling, "A light-weight proactive software change impact analysis using use

case maps," in Software Evolvability, 2005. IEEE International Workshop on, 2005, pp. 41-

46: IEEE.

[139] L. Shi, Q. Wang, and M. Li, "Learning from evolution history to predict future requirement

changes," in Requirements Engineering Conference (RE), 2013 21st IEEE International,

2013, pp. 135-144: IEEE.

[140] J. C. Maxwell, A. I. Antón, and P. Swire, "Managing changing compliance requirements by

predicting regulatory evolution," in Requirements Engineering Conference (RE), 2012 20th

IEEE International, 2012, pp. 101-110: IEEE.

[141] R. Malhotra and M. Khanna, "Mining the impact of object oriented metrics for change

prediction using Machine Learning and Search-based techniques," in Advances in Computing,

Communications and Informatics (ICACCI), 2015 International Conference on, 2015, pp.

228-234: IEEE.

[142] C. Ingram and S. Riddle, "Using early stage project data to predict change-proneness," in

Proceedings of the 3rd International Workshop on Emerging Trends in Software Metrics,

2012, pp. 42-48: IEEE Press.

[143] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, "Predicting the probability of change in

object-oriented systems," IEEE Transactions on Software Engineering, vol. 31, no. 7, pp.

601-614, 2005.

[144] S. Mirarab, A. Hassouna, and L. Tahvildari, "Using bayesian belief networks to predict

change propagation in software systems," in Program Comprehension, 2007. ICPC'07. 15th

IEEE International Conference on, 2007, pp. 177-188: IEEE.

[145] N. N. B. Abdullah, S. Honiden, H. Sharp, B. Nuseibeh, and D. Notkin, "Communication

patterns of agile requirements engineering," in Proceedings of the 1st workshop on agile

requirements engineering, 2011, p. 1: ACM.

[146] B. Haugset and T. Stalhane, "Automated acceptance testing as an agile requirements

engineering practice," in System Science (HICSS), 2012 45th Hawaii International

Conference on, 2012, pp. 5289-5298: IEEE.

[147] R. Popli, P. Malhotra, and N. Chauhan, "Estimating Regression Effort in Agile Environment,"

International Journal of Computer Science and Communication, vol. 5, pp. 23-28, 2014.

[148] M. Cohn, User stories applied: For agile software development. Addison-Wesley

Professional, 2004.

[149] H. Leung and Z. Fan, "Software cost estimation," Handbook of Software Engineering, Hong

Kong Polytechnic University, pp. 1-14, 2002.

[150] S. Rajper and Z. A. Shaikh, "Software Development Cost Estimation: A Survey," Indian

Journal of Science and Technology, vol. 9, no. 31, 2016.

[151] N. Fenton and J. Bieman, Software metrics: a rigorous and practical approach. CRC Press,

2014.

[152] M. H. Halstead, Elements of software science. Elsevier New York, 1977.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[153] P. G. Hamer and G. D. Frewin, "MH Halstead's Software Science-a critical examination," in

Proceedings of the 6th international conference on Software engineering, 1982, pp. 197-206:

IEEE Computer Society Press.

[154] V. Y. Shen, S. D. Conte, and H. E. Dunsmore, "Software science revisited: A critical analysis

of the theory and its empirical support," IEEE Transactions on Software Engineering, no. 2,

pp. 155-165, 1983.

[155] A. J. Albrecht and J. E. Gaffney, "Software function, source lines of code, and development

effort prediction: a software science validation," IEEE transactions on software engineering,

no. 6, pp. 639-648, 1983.

[156] C. Jones, "Applied Software Measurement: Assuring," Productivity and Quality, 1997.

[157] S. Kumari and S. Pushkar, "Performance analysis of the software cost estimation methods: a

review," International Journal of Advanced Research in Computer Science and Software

Engineering, vol. 3, no. 7, 2013.

[158] P. Abrahamsson, I. Fronza, R. Moser, J. Vlasenko, and W. Pedrycz, "Predicting development

effort from user stories," in Empirical Software Engineering and Measurement (ESEM), 2011

International Symposium on, 2011, pp. 400-403: IEEE.

[159] M. Ceschi, A. Sillitti, G. Succi, and S. De Panfilis, "Project management in plan-based and

agile companies," IEEE software, vol. 22, no. 3, pp. 21-27, 2005.

[160] N. C. Haugen, "An empirical study of using planning poker for user story estimation," in

Agile Conference, 2006, 2006, pp. 9 pp.-34: IEEE.

[161] V. Mahnič and T. Hovelja, "On using planning poker for estimating user stories," Journal of

Systems and Software, vol. 85, no. 9, pp. 2086-2095, 2012.

[162] S. K. Khatri, S. Malhotra, and P. Johri, "Use case point estimation technique in software

development," in Reliability, Infocom Technologies and Optimization (Trends and Future

Directions)(ICRITO), 2016 5th International Conference on, 2016, pp. 123-128: IEEE.

[163] N. Nunes, L. Constantine, and R. Kazman, "IUCP: Estimating interactive-software project

size with enhanced use-case points," IEEE software, vol. 28, no. 4, pp. 64-73, 2011.

[164] E. Coelho and A. Basu, "Effort estimation in agile software development using story points,"

International Journal of Applied Information Systems (IJAIS), vol. 3, no. 7, 2012.

[165] P. R. Hill, Practical project estimation: a toolkit for estimating software development effort

and duration. International Software Benchmarking Standards Group, 2010.

[166] A. Panda, S. M. Satapathy, and S. K. Rath, "Empirical validation of neural network models

for agile software effort estimation based on story points," Procedia Computer Science, vol.

57, pp. 772-781, 2015.

[167] A. G. Silvius, "Business & IT Alignment in theory and practice," in System Sciences, 2007.

HICSS 2007. 40th Annual Hawaii International Conference on, 2007, pp. 211b-211b: IEEE.

[168] B. Campbell, "Alignment: Resolving ambiguity within bounded choices," PACIS 2005

Proceedings, p. 54, 2005.

[169] P. Tallon and K. L. Kraemer, "A process-oriented assessment of the alignment of information

systems and business strategy: implications for IT business value," Center for Research on

Information Technology and Organizations, 1999.

[170] A. Fuggetta and A. L. Wolf, Software process. John Wiley & Sons, Inc., 1996.

[171] E. J. Barry, T. Mukhopadhyay, and S. A. Slaughter, "Software project duration and effort: an

empirical study," Information Technology and Management, vol. 3, no. 1-2, pp. 113-136,

2002.

[172] S. Bohner, "Impact analysis in the software change process: A year 2000 perspective," in

Software Maintenance 1996, Proceedings., International Conference on, 1996, pp. 42-51:

IEEE.

[173] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters, "Semantics-based composition for

aspect-oriented requirements engineering," in Proceedings of the 6th international conference

on Aspect-oriented software development, 2007, pp. 36-48: ACM.

[174] V. Basili et al., "Bridging the gap between business strategy and software development," ICIS

2007 Proceedings, p. 25, 2007.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[175] T. Goradia, "Dynamic impact analysis: A cost-effective technique to enforce error-

propagation," in ACM SIGSOFT Software Engineering Notes, 1993, vol. 18, no. 3, pp. 171-

181: ACM.

[176] J. Law and G. Rothermel, "Whole program path-based dynamic impact analysis," in Software

Engineering, 2003. Proceedings. 25th International Conference on, 2003, pp. 308-318: IEEE.

[177] P. Tonella, "Using a concept lattice of decomposition slices for program understanding and

impact analysis," Software Engineering, IEEE Transactions on, vol. 29, no. 6, pp. 495-509,

2003.

[178] M. Aoyama, "Agile software process and its experience," in Software Engineering, 1998.

Proceedings of the 1998 International Conference on, 1998, pp. 3-12: IEEE.

[179] S. Nerur, R. Mahapatra, and G. Mangalaraj, "Challenges of migrating to agile

methodologies," Communications of the ACM, vol. 48, no. 5, pp. 72-78, 2005.

[180] P. Karesma, "Scaling Agile Methods," 2016.

[181] D. J. Reifer, F. Maurer, and H. Erdogmus, "Scaling agile methods," IEEE software, vol. 20,

no. 4, pp. 12-14, 2003.

[182] F. J. Pino, O. Pedreira, F. García, M. R. Luaces, and M. Piattini, "Using Scrum to guide the

execution of software process improvement in small organizations," Journal of systems and

software, vol. 83, no. 10, pp. 1662-1677, 2010.

[183] D. E. Strode, S. L. Huff, and A. Tretiakov, "The impact of organizational culture on agile

method use," in System Sciences, 2009. HICSS'09. 42nd Hawaii International Conference on,

2009, pp. 1-9: IEEE.

[184] E. Bjarnason, K. Wnuk, and B. Regnell, "A case study on benefits and side-effects of agile

practices in large-scale requirements engineering," in Proceedings of the 1st Workshop on

Agile Requirements Engineering, 2011, p. 3: ACM.

