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A B S T R A C T

This study introduces a multistage chance-constrained stochastic model for strategic planning of
battery electric vehicle (BEV) inter-city fast charging infrastructure. A mixed integer program-
ming model is developed to determine where and when charging stations are opened, and how
many chargers are required for each station to meet the growing BEV inter-city demand. The
model is applied to a case study in California and solved by genetic algorithm. This study showed
that investment in inter-city charging infrastructure is vital to alleviate the range anxiety. Also,
planning decisions depend on many factors, such as the design level of service and vehicle range.

1. Introduction

Promoting battery electric vehicles (BEV) is deemed an effective solution to help the United States reduce its dependency on
imported oil and improve its competitive position in the emerging era of renewable energy market. Several agencies have enacted
incentive policies to promote the mass adoption of BEVs. These policies include the Federal American Recovery and Reinvestment Act
(ARRA) tax program, California’s Zero Emission Vehicle (ZEV) Action Plan, and the Corporate Average Fuel Economy (CAFE)
standards. Encouraged by these policies and standards, manufacturers are actively developing affordable BEVs with low manu-
facturing costs and plausible vehicle performance (e.g., vehicle range and power) (EPA et al., 2016). All these efforts by agencies and
manufacturers contribute to success in the current BEV market. In particular, plug-in electric vehicles (PEVs, including both BEVs and
plug-in hybrid electric vehicles (PHEVs)) garner about 1% of today’s total sales (Davis et al., 2016). To be fully competitive with
conventional vehicles (CVs, such as gasoline vehicles), “range anxiety” concerns have to be resolved.

Range anxiety, as the name suggests, is the fear of insufficient range to reach destinations (Eberle and von Helmolt, 2010). Unlike
PHEVs, which can have unlimited range by running on conventional fuels, BEVs can run only on electricity. To alleviate range anxiety
during trips, consumers need adequate charging infrastructure; this applies to both intra-city (short distance) and inter-city (long
distance) travels. The intra-city travel problem has been well studied. Examples of effective solutions include establishing home and
workplace charging systems (Huang and Zhou, 2015), and supporting intra-city public charging networks (NREL, 2017) that include
level-1 (L1, 1.4 kW) chargers, level-2 (L2, 6.2 kW) chargers, and direct current fast chargers (DCFC,> 50 kW).

However, the problem becomes more challenging for inter-city travels. First, inter-city travel distances can be longer than the
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vehicle range. Recharging is inevitable for long distance travel, and home or workplace charging cannot be relied upon. Second,
unlike intra-city public charging during which travelers can tolerate relatively long recharging time by conducting other activities
(e.g., shopping and dining), inter-city public charging may have stricter charging time limits as there are few activities available
while charging along rural highway corridors. Therefore, a mature inter-city DCFC fast charging network with proper service capacity
is necessary to satisfy the growing inter-city BEV trips. As building the DCFC charging network is costly (the facility can cost more
than $50,000 per charger (NRC, 2013)), we need solutions to identify where to locate charging stations, when to install them, and
how many chargers to allocate at each station in response to the changing BEV market.

To serve this need, this study aims to develop a multistage optimization modeling framework. The framework will gradually
establish and expand DCFC charging infrastructure in terms of both network coverage and service capacity to alleviate increased range
anxiety issue with growing BEV inter-city travel demand.

Existing literature describes two major modeling directions for problems related to facility location of refueling and charging
infrastructure. One direction is to develop node-based facility location models stemming from p-median facility location problems
(Daskin, 1995; Hakimi, 1964). Representative works include the studies (Ip et al., 2010; Jung et al., 2014; Momtazpour et al., 2014).
However, Li et al. (2016) suggest that the node-based facility location model may not be well suit for charging location problems as it
cannot properly model flows of goods or passengers in a network. Wide recognition of this issue has led to richer literature on the
second direction, to develop flow-based facility location models that stem from flow-capturing location-allocation models (FCLMs)
(Hodgson, 1990). Representative works include the studies (Berman et al., 1992; He et al., 2013, 2015; Hodgson, 1990; Huang et al.,
2015; Kuby and Lim, 2005; Li and Huang, 2014; Li et al., 2016; Wang and Lin, 2009).

Few existing studies are available on BEV inter-city DCFC facility location models. Wang and Lin (2009) introduced a single-path
set-covering model based on vehicle routing logic. Jochem et al. (2016) developed a single-path inter-city fast charging infrastructure
planning model for a case study in Germany. To recognize the heterogeneity of BEV travelers in choosing paths, a multi-path (multi-
deviated paths) flow based set covering model was proposed in the study by Li and Huang (2014). The model was later extended to a
multistage formulation to capture topological changes in inter-city network over time (Li et al., 2016). Different from other node- or
flow-based modeling efforts, Sathaye and Kelley (2013) developed a continuous facility location model that yields solutions on
station densities instead of locations, and the model is less computationally intensive. Note that all these models do not consider
charging station capacity.

However, long-term planning of inter-city DCFC charging infrastructure should consider both locations and charging capacity.
Otherwise, charging congestion is inevitable and increases the frustration of using BEV for inter-city trips. There are several ap-
proaches to modeling charger capacity. One simple and direct method is to use deterministic capacitated facility location models
(Sadeghi-Barzani et al., 2014; Upchurch et al., 2009). However, those models simplified the logic between charging activities and
required charger capacity with assumed daily or annual capacity (e.g., vehicles per day). On the other hand, using the Global
Positioning System (GPS)-based travel survey data, NREL (2017) determined the required number of chargers to avoid conflicts in
charging activities by different vehicles at the same time and location. The method is straightforward to implement, but it may create
the over-fitting bias as the decisions are only based on sampled trip data. Alternatively, Ge et al. (2011) and Jia et al. (2012) assumed
charging demand is positively correlated with the traffic flow rate (vehicles/hour) and the share of BEVs in the flow. With this
assumption, charging capacity can be determined if the average recharging frequency is known. All the prior studies neglect the
stochasticity in charging activities at each station. To capture both randomness in charging demand arrivals and actual charging
service time, an alternative approach is to model charger operations using stochastic queuing models (Fang and Hua, 2015; Gusrialdi
et al., 2014; Said et al., 2013).

In this study, we propose a flow-based multistage (multi-period) chance-constrained stochastic modeling framework in planning
long-term DCFC charging infrastructure expansion to serve growing BEV inter-city trips. The framework is built upon the multi-
period multi-path refueling location model (M2PRLM) (Li et al., 2016), and allows multistage expansions of the charging infra-
structure and multiple deviated paths. In addition, we model charging station capacities by using the stochastic queuing theory (Fang
and Hua, 2015; Gusrialdi et al., 2014; Said et al., 2013). In order to better reflect stochasticity in charging activities, we introduced
the level of service concept formulated using stochastic chance constraints to determine charger capacity. Note that the M2PRLM is a
set-covering problem. We also relax the set-covering formulation by providing penalty terms for infeasible trips, so that the model can
further investigate the tradeoff between the high investment cost in DCFC charging infrastructure and the high range anxiety cost
caused by trip infeasibility. As the model is a facility location problem and is NP-hard, we developed a genetic algorithm based
heuristic method to efficiently solve the model.

The model will be applied to a large-scale case study in California to understand long-term infrastructure requirements to meet
the growing inter-city travel demand. Compared to previous modeling efforts, we expect the proposed framework to yield additional
managerial insights and policy implications on future inter-city DCFC charging network in many ways. First, a complete set of
decisions on both charger location and capacity can help stakeholders better understand when, where, and how much capital in-
vestment should be made on the charging infrastructure. Also, integration of the stochastic queuing models as well as the level of
service concept gives policy makers detailed analyses of infrastructure requirements, such as the suitability of opening large or small
charging stations at various conditions.

In the rest of the paper, we will first demonstrate the modeling framework and the solution method in Sections 2 and 3, re-
spectively. In the remaining sections, we will describe the California case study, discuss the modeling results, and summarize the
study in the conclusion.
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2. Modeling

2.1. Multistage DCFC infrastructure planning model

Within an inter-city transportation network, BEV trip demands are generated at origins (O) and end at destinations (D). Long-term
planning of the DCFC charging infrastructure that will satisfy these trip demands requires both spatial and temporal considerations.
In the spatial dimension, each O-D pair is interconnected with highway networks, along which trips can take multiple paths. Inter-city
trips can be of much greater distance than short distance intra-city travels (e.g., longer than 100 miles). Solving where to locate DCFC
charging stations becomes necessary to mitigate the short vehicle range of BEVs. In the temporal dimension, BEV trip demand may
change over time with the emerging BEV market. This makes it important to understand how to expand charging station capacity,
namely the number of chargers, to meet the growing demand.

To reflect these spatial and temporal requirements, we propose a multistage DCFC infrastructure planning model, which is built
upon the M2PRLM (Li et al., 2016). The two models have similarities. Both are multistage flow based facility location models, and
they all consider multi-path flows. However, the proposed model extends the M2PRLM, at the following aspects:

1. The M2PRLM is an un-capacitated facility location model that only provides decisions on station location and ignores station
capacity, while the proposed model is a capacitated facility location model that can provide richer information on both station
location and capacity (measured by number of chargers).

2. The M2PRLM is a set-covering model that requires full coverage of all O-D trips. In contrast, the proposed model will be for-
mulated to allow partial coverage of the network with penalty costs on un-covered O-D trips. This feature allows additional
managerial insights on the tradeoff between the high infrastructure investment cost and the high range anxiety cost caused by trip
infeasibility.

3. The M2PRLM captures only the binary condition of O-D demand (i.e., whether an O-D pair has trip demand), and cannot dis-
tinguish between high (e.g., trips between metropolitan areas) and low (e.g., trips between far apart rural towns) O-D demands.
On the other hand, the proposed model will consider the actual trip demand.

4. The M2PRLM allows relocation of charging stations. Practically, relocation is possible in operations when unexpected geo-
graphical shift in travel demand occurs. However, in planning, it is extremely difficult to project this shift, and thus is not
considered in the proposed model.

5. The M2PRLM is a deterministic model. The proposed model is a chance-constrained stochastic model and will introduce a new
concept of the level of service to model charging capacity. In particular, a certain traveler satisfactory level, measured by waiting
time and probability of finding a charger, is maintained to allow normal charging operations.

As in the proposed model, the long-term planning horizon is partitioned into multiple stages or periods (e.g., one or five years per
stage), during which planning and operational decisions are made. Sequential planning decisions are made on where and when to
locate charging stations and how many chargers per station are needed to satisfy the growing inter-city trip demand by BEV users.
With the charging infrastructure setting, operational decisions on trip path selection and charging scheme are made for each O-D pair.
In any stage, if trips along one O-D pair cannot be accommodated because of a lack of infrastructure support, a penalty cost will occur,
which is defined as the range anxiety cost due to trip infeasibility. Note that there are two possible causes of range anxiety (Lin,
2014). The first reason is the fear of exhausting vehicle range due to unanticipated reasons (e.g., congestion and extreme weather).
This part is difficult to quantify and therefore is not considered in this study. The second reason is the infeasibility of a planned trip
without adequate infrastructure support. The penalty cost in this study is associated with the second type of range anxiety, and is
assumed to be the cost of arranging an alternative vehicle (e.g., car rental cost). In the rest of this paper, this penalty cost is denoted as
the range limitation cost. Descriptions on decision variables and assumptions are shown as follows.

• Decision variables:
– Where to open charging stations in each time stage;
– How many chargers are open at each station in each time stage;
– Which O-D pair BEV travel demand can be satisfied in each time stage; and
– Path selection and charging scheme along each feasible O-D pair in each time stage.

• Assumptions:
– Each charging station and its chargers will not be shut down once opened;
– Single design maximum state of charge (SOC) measured by the vehicle range (e.g., 100 miles) is applied to all BEVs;
– BEVs are fully charged at origins and destinations (i.e., the dwell time at origins and destinations is sufficient for recharging);
and

– O-D travel demands remain the same at one stage1 (e.g., average travel demand is considered within the stage).

The proposed model is formulated in (1)–(17). The notations for the model are listed in Table 1.
Objective:

1 The O-D travel demand is for planning purpose only. The actual O-D travel demand can vary within a stage. An average demand is considered in the model.
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The objective function in (1) is to minimize the total systems cost for the BEV inter-city travel network across the entire planning
horizon. The total systems cost includes the fixed capital cost of charging stations (which may be location specific), the variable
capital cost of charging stations (depending on the number of chargers per station), and the total range limitation cost in cases where
BEV trips cannot be satisfied. The objective function (1) is subject to constraints in (2)–(17).
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Constraint (2) is the logic constraint stating that no chargers can be installed unless there is a charging station open. Constraint (3)
assures that a charging station once open will not shut down or relocate.
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Constraint (4) is the capacity logic constraint formulated as a stochastic chance constraint setting up the relationship of the
required number of chargers to meet a certain level of charging capacity, where ∑ ∑ ∑∈ ∈ ∈W D I X( , )r R s S k K t
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rs represents the
waiting time before a BEV finds an available charging spot. Waiting time is a function of the total number charging demands
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rs and the number of chargers Xit at the station. As suggested in the chance constraint, charging capacity is
modeled as the level of service, namely the required probability β (e.g., 95%) of finding a vacant charger within time α (e.g.,
10mins). The inequality chance constraint is developed based on queuing theories. Note that, as demonstrated later in Section 2.2,
this constraint is originally in a non-linear form, but can be represented in a piecewise linear form.
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Table 1
Notations.

Indices

i Index of candidate sites for charging stations in the network, ∈ ⊆∼i N N , where ∼N is the set of candidate sites and N is the node set
t Index of time stages, t ∊ T
r Index of origins in the network, r ∊ R⊂ N
s Index of destinations in the network, s ∊ S⊂ N
k Index of the paths for an O-D pair, k=1, 2, …, Krs, where Krs is maximum number of deviated path allowed between an O-D pair (r,s)
a Index of arc set A, a= (i, j) ∊ A

Parameters

cit
F Fixed capital cost ($) of opened charging station at node i in time stage t

cit
V Variable capital cost ($) per charger at the charging station at node i in time stage t

qt
rs Range limitation cost ($/trip) when a trip cannot be satisfied between O-D pair r-s in time stage t

Dt
rs Number of BEV inter-city trips between O-D pair r-s in time stage t

B Maximum SOC measured by vehicle range (miles)
M A sufficiently large number

Prs k, The sequence of nodes on the kth path between O-D pair r-s

dij Distance (miles) between node i and j

Variables
Zit =1 if a charging station is open at node i in time stage t; 0 otherwise

Yt
rs k, =1 if the kth path between r and s is taken in time stage t; 0 otherwise

Yt
rs =1 if at least one path is satisfied for an O-D pair r-s in time stage t; 0 otherwise

Iit
rs k, =1 if trips along the kth path between r and s will be charged at the station at node i in time stage t; 0 otherwise

Xit Number of chargers are installed at the station at node i in time stage t; 0 otherwise

Bit
rs k, Remaining SOC (miles) on a PEV at node i on the kth path of an O-D pair r-s in time stage t

lit
rs k, Restored SOC (miles) to an PEV at node i on the kth path of an O-D pair r-s in time stage t
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Constraint (5) ensures that trips along an O-D pair in each stage can be fulfilled if at least one path is taken. Also, to avoid double
counting, no more than one path is taken for each O-D pair. Constraints (6) and (7) convey two principles on charging activities:
charging activities can occur along one path of a trip only if the path is taken; and a BEV can receive a positive amount of energy at a
station only if the charging activity occurs at the station. For each selected path (when =Y 1t

rs k, ), constraint (8) ensures the onboard
battery’s SOC does not exceed the battery capacity while constraints (9) and (10) concurrently enforce the energy consumption
conservation. Constraints (8)–(10) are relaxed for paths that are not taken (i.e., =Y 0t

rs k, ). Constraint (11) assumes that all BEVs start
with a full battery SOC at origins.
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Constraints (12)–(17) are binary, integer, and nonnegativity constraints.
The proposed model is a mixed integer program. Generally, the objective of the model is to minimize the total capacitated facility

location cost while allowing the penalty cost, namely the range limitation cost to penalize un-covered trips. As the model is es-
sentially a flow-based capacitated partial set-covering problem with path deviations, it is a facility location problem and is NP-hard
(Daskin, 1995; Könemann et al., 2011).

2.2. Charger capacity with the stochastic queuing model

To determine charging station capacity, we adopted queuing theories to simulate the stochastic charging activities (Fang and Hua,
2015; Gusrialdi et al., 2014; Said et al., 2013). Each station is considered a queuing node with multiple servers (each charger is one
server). Incoming BEV charging demands are the jobs to be served at each charging station. The charging activities at each charging
station ∈ ∼i N in time t ∊ T can be approximated as follows: (1) the arrivals of BEVs at each station are simulated by a Poisson process
with expected arrival rate of λit (vehicles/hour); (2) the charging time, namely, the service time of each BEV, follows exponential
distribution with expected service time μ (hours); and (3) the station has Xit number of chargers or servers and obeys the “first-in,
first-out” (FIFO) service rule. This systems can be represented as the M/M/c queuing model with Erlang C formula (Chromy et al.,
2011). As shown in the chance constraint in (4), this study models charging capacity in terms of the required level of service, namely
the design or minimum probability β for a BEV user to find a vacant charger within time α. Based on Erlang C formula (Chromy et al.,
2011; Tanner, 2000), we can formulate the probability of finding a vacant charger within time α in (18).
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To maintain target level of service, the probability ⩽ αPr (waiting time )it in the left-hand side of (18) shall be smaller than the
design probability β (i.e., ⩽ ⩽α βPr (waiting time )it ), which corresponds to the chance constraint in (4). Note that the “waiting time”
in (18) is related to ∑ ∑ ∑∈ ∈ ∈W D I X( , )r R s S k K t

rs
it
rs k

it
,

rs in (4). For simplicity, the expected service time μ in (18) is assumed to be
exogenously determined (e.g., 30mins/vehicle). Then, only two variables, namely λit and Xit , in (18), are inter-related that should
satisfy the chance constraint. Note that the arrival rate λit is assumed to be linearly correlated with the total charging demand
∑ ∑ ∑∈ ∈ ∈ D Ir R s S k K t

rs
it
rs k,

rs in each stage. We assume each charging station will serve 14 h a day (i.e., 6:00 am to 8:00 pm), 365 days a
year, and the arrival rate remains the same during the open window. Also, as in the case study demonstrated later, we assume that
each time stage consists of five years. Then, the arrival rate λit can be calculated in (19).
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With the non-linear relationship in the formula (18), the chance constraint in (4) is in a mixed integer non-linear form and may
make the model difficult to solve. Alternatively, we managed to determine the maximum charging demand that can be served for
each level of infrastructure development (i.e., number of chargers). With formulation (18), we simulated five sets of relationships
based on different levels of service shown in Fig. 1. The highest level of service is to guarantee 99% probability for BEV users to find
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to a vacant charger within 0min (i.e., immediately after arriving at the station), labeled as “99%+0min”, and the lowest level of
service, “90%+30 min”, is to guarantee 90% probability for BEV users to find a vacant charger within 30min. Among the five
scenarios, we chose the middle one, “95%+10min” (i.e., 95% possibility to find a vacant charger within 10min), as the baseline
case. Note that the step relationship between charging demand and number of chargers in Fig. 1 can be formulated using piecewise
linear functions with only mixed integer variables. Then, the problem in (1)–(17) becomes a mixed integer program.

Remarks on queuing models. This study considers the M/M/c queuing model to model charger capacity. As additional data are
available or new technologies emerge, other types of queuing models may also be applicable. For example, with connected automated
vehicles (CAVs), vehicles have potential to automatically enter and leave charging stations. Then, the charging time may be de-
terministic, and charging activities can be simulated with M/D/c queues. Explorations of the potential impacts with other queuing
models can be our future studies.

3. Genetic algorithm

Even though charger capacity can be formulated as piecewise linear relationship, the mixed integer program is still hard to solve
optimality. We developed a genetic algorithm based heuristic method (Vose, 1999) to solve the model. Generally, the genetic al-
gorithm involves a pool of chromosomes. Each chromosome represents one candidate solution to the problem, and the fitness of each
candidate solution is measured by the cost objective value of (1). Between chromosomes, the one with a lower objective value
indicates better fitness. The algorithm has an iterative process, during which chromosomes with bad fitness are more likely to be
removed from the pool while chromosomes with good fitness have more chances to survive and give birth to a new child. The whole
process mimics natural selection. It is generally observed that through multiple iterations the genetic algorithm can help find near-
optimal or relatively satisfactory solutions.

3.1. Implementation details

Two features are important to efficiently apply a genetic algorithm. One is the simplicity in coding the solution with chromo-
somes, and the other is to be able to easily determine fitness given the genetic information of one chromosome. However, both
features are hard to maintain for the proposed model. First, as in Li et al. (2016)’s study, only two-dimension infrastructure related
decision variables, i.e., where and when charging stations are opened, are needed to be encoded in the chromosome. However, this
task is more challenging for this study because the model requires another dimension on capacity-related decisions, i.e., how many
chargers per station. That creates challenges in coding all decision information in each chromosome. Second, as capacity is con-
sidered for each charging station, the heuristic approach to check path feasibility with infinity capacity (Li et al., 2016) is not
applicable to this study. Instead, mixed integer programming sub-models need to be solved, which makes it difficult to efficiently
determine fitness for each chromosome generated in the solution process.

To tackle the two challenges in this complex model, in addition to the assumptions shown in Section 2.1, we made the following
assumptions to simplify the BEV users’ charging behavior:

• Last-minute charging: A BEV will only be charged at the last possible moment to have the full SOC before beginning of the rest trip.

• Guaranteed Service: If an O-D path at one stage is feasible and selected given particular charging infrastructure deployment,
charging stations along the path will have sufficient chargers to satisfy all O-D traffic demands along the path in the same time
stage.

The first assumption is adopted from the study by Kelly et al. (2012). The assumption indicates that when a BEV reaches an
opened charging station, the necessity for charging is determined based on whether the BEV can reach the next opened charging
station with the current SOC. This assumption is a reasonable one for BEV users who rationally prefer to minimize the number of
charging events. Note that, in the real-world operations, it may happen that the level of service at a station is guaranteed and a BEV
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cannot be properly serviced. To avoid or alleviate such risk, the maximum vehicle range B will be set at a level to allow sufficient SOC
reserve for traveling additional miles after the range is depleted.

The second assumption is already inherently built into the proposed model, which considers only the feasibility of each O-D pair
instead of each O-D trip. This assumption is reasonable to provide equity for all travel demand along each O-D pair.

These two assumptions simplify the solution process for the model in the following ways. First, it will significantly simplify the
determination of fitness of each chromosome with heuristic methods. Given the setting of charging stations at each time stage
encoded in each chromosome (where and when to open stations), the heuristic approach (Li and Huang, 2014; Li et al., 2016) can be
used to efficiently check path feasibility of all O-D pairs. Then with the Last-minute charging assumption, we can efficiently determine
the charging strategy (i.e., where to charge) for each feasible O-D pair and the total charging frequency (number of charging activities
per stage) at each station. Following the Guaranteed Service assumption, we can determine the number of chargers needed for each
station to satisfy all charging demand. Finally, the fitness of the chromosome can be calculated using the objective function in (1).
Second, as suggested in the first benefit, the number of chargers per station can be post-calculated. Therefore, only decisions on where
and when charging stations are opened need to be encoded in each chromosome. That simplifies the representation of each chro-
mosome.

The Last-minute charging assumption may yield sub-optimal solutions for the proposed model as it relaxes the model’s potential
capability to better coordinate charging strategies. However, such capability can be realized only when a central decision maker
makes the systems-wide optimal decisions for all travelers, which is currently not practical. However, with emerging CAV tech-
nologies, a central decision maker becomes possible in future transportation. How to solve the model to gain additional social benefits
is a future research question.

3.2. Settings of genetic algorithms

Based on the above properties and assumptions of the problem, we made the following settings to apply the genetic algorithm to
solve the proposed model.

3.2.1. Encoding of chromosome
As mentioned, only decisions on where and when charging stations are opened need to be encoded into each chromosome. Since

each opened charging station will remain open once it is in operation, only the time when the charging station is first opened needs to
be recorded. Therefore, we used a single dimension integer valued string to represent such information. Each digit entry along the
chromosome string represents one specific candidate location. Then, the total length of the string is ∼N| | (the number of candidate
locations). Each digit can take non-negative integer values. When the digit takes a value of 0, it indicates no charging station is
opened at the location throughout the time horizon. When the digit takes a positive value of i, it indicates the charging station is first
opened in time stage i.

We used a simple example chromosome string “01020” to demonstrate its meaning on charging infrastructure planning decisions
as follows:

• Five digits in the string indicate five candidate locations ( =∼N| | 5) for charging stations;

• No charging station is opened at candidate locations 1, 3, and 5;

• One charging station is opened at candidate location 2 in time stage 1; and

• Another charging station is opened at candidate location 4 in time stage 2.

3.2.2. Fitness of chromosome
Fig. 2 shows the pseudocode used to determine fitness of each chromosome. There are five major steps along the pseudocode: step

1 is the initialization that translates genetic information of the chromosome into corresponding charging location decisions; step 2 is
to check feasibility and select a path for each O-D pair in all stages; for all feasible O-D pairs, step 3 is to determine charging activities
based on the last-minute charging assumption (demonstrated in Section 3.1); for each opened charging station, step 4 is to determine
the total number of charging activities and the corresponding required number of chargers based on the design level of service
(demonstrated in Section 2.2); and finally, step 5 is to calculate the fitness of the chromosome with objective function in Eq. (1) in
Section 2.1.

3.2.3. Population pool
At beginning of the algorithm, we initialized a pool of chromosome strings with a population size of N (e.g., 500). The pool is

defined as the population pool where crossover, mutation, and replacement are applied through an iteration process.

3.2.4. Parent selection
For each iteration, four candidate chromosomes are randomly selected from the population pool. The four chromosomes are

partitioned equally into two groups, and one chromosome will be selected from each group. The chromosome with better fitness
(lower objective value) has a better chance to be selected, and the selection probability is set to be inverse to its objective value. The
final selected two parents are defined as P1 and P2.
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3.2.5. Crossover
The crossover is then applied to the two selected parents (P1 and P2) to give birth to a new child chromosome C. Let fP1 and fP2 be

the objective values of the parents P1 and P2 , respectively, and let i indexes digits of each chromosome, = … ∼i N1, ,| |. Then the
chromosome C is created as follows:

(1) if P1i= P2i , then set =C P or P: 1 2i i i;
(2) otherwise, then set Ci: = P1i with probability p= fP2/(fP1+ fP2) , and Ci: = P2i with probability 1− p.

3.2.6. Mutation
Once a child chromosome C is created, each element Ci , = … ∼i N1, ,| | , has a probability (e.g., 5%) to mutate. Let t′ be a random

integer value selected among 1, …, |T| with equal probability. If the element Ci is selected to mutate, then it has two possible ways to
change depending the original value of Ci:

(1) if Ci=0 , then set Ci: = t′;
(2) otherwise, then set Ci: = 0 with probability of 50%, and Ci: = t′ with probability of 50%.

Fig. 2. Pseudocode to determine fitness of each chromosome.
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3.2.7. Replacement
After a new individual is added to the population (e.g., a child created with both the crossover and mutation processes), it will

replace an existing individual in the population pool. Specifically, n (e.g., n=3) candidate individuals are randomly selected from
the pool, and the one with the highest objective cost is removed from the pool.

The entire genetic algorithm for the problem can be demonstrated using the pseudocode as follows:
Generate an initial population pool of chromosomes;
Do

Conduct parent selection among the population pool;
Apply the crossover with the parents and yield a new child;
Apply the mutation to the child;
Apply the replacement to the population with the child;

Until the maximum number of iterations or the time limit is reached.
The final solution is the best chromosome achieved with the lowest objective value from the population.

4. Case study inputs

We chose the state of California as the case study for demonstrating charging infrastructure planning. Note that California
dominates today’s BEV sales in the U.S. (ICCT, 2016) and its ZEV action plan (Brown, 2013) is expected to further increase the BEV
market in the future. Therefore, the systematic planning of BEV inter-city DCFC charging infrastructure is especially crucial to
support the growing demand in California. Also, the success of the case study may yield important policy implications for developing
the alternative fuel infrastructure systems for other regions and other fuel technologies. We demonstrate case study inputs for the
baseline case in this section.

4.1. Planning horizon

The planning horizon is set at 15 years, from 2015 to 2029, and the model will initiate and expand the inter-city DCFC charging
infrastructure systems to support long-distance (longer than 100 miles) travel demands of BEV users. The 15 years planning horizon is
divided into three five-year planning stages (Stage 1: 2015–2019, Stage 2: 2020–2024, and Stage 3: 2025–2029).

4.2. Inter-city DCFC charging network

The origins and destinations of inter-city travel demands are aggregated over at least 5000 Traffic Analysis Zones (TAZs) in
California, defined by the California Statewide Travel Demand Model (CSTDM) (California Department of Transportation, 2014).
About 4700 TAZs belong to 482 different municipalities and are aggregated based on their municipal boundaries. The remaining 300
rural TAZs are clustered into 50 nodes using the fuzzy c-mean algorithm (Bezdek et al., 1984). There are 532 demand nodes in total,
and each node serves as both trip origin and destination. To serve the inter-city trip demands along all O-D pairs, 389 locations, with
clusters of demand nodes and rest areas, are selected as the candidate charging locations. California highway systems (Caltrans,
2016) are considered the transportation network where trips are made. The maps in Fig. 3 show the O-D demand nodes, candidate
charging locations, and the highway network.

4.3. BEV travel demand

With O-D demand nodes, another important task is to estimate BEV O-D travel demands over the 15 years planning horizon. The
estimation procedure is illustrated in Fig. 4 and breakdowns of the procedure are detailed as follows.

• Step 1: Estimate the base year (2015) light duty vehicle (LDV) O-D demands (D0, unit: vehicles/year) between each O-D pair. Note
that the LDV includes CVs, BEVs, and other fuel technology types. We assumed that BEV users have the same inter-city travel
behaviors as other LDV travelers. Therefore, the BEV O-D traffic demands can be proportionally determined later based on its
market share among the LDV population. The LDV O-D demands along the 532 demand nodes are mapped and aggregated with
the travel demands of at least 5000 TAZs from the CSTDM model (California Department of Transportation, 2014).

• Step 2: Estimate the base year BEV market share among the LDV population (η, unit: %) at demand nodes. Specifically, the BEV
population at each demand node is estimated using the Clean Vehicle Rebate Project (CVRP) database (CARB, 2015), while the
LDV population is estimated based on the number of households (United States Census Bureau, 2010) assuming each household
owns two vehicles (Crane et al., 2002). Then, the BEV market share η is determined as the BEV population size divided by the LDV
population size.

• Step 3: Determine the base year BEV O-D travel demand between each O-D pair. As shown in Fig. 4, the BEV demand can be
determined as ×η D0, where η is determined in step 2 and D0 is determined in step 1. Along an O-D pair, BEV market shares may
be different at the two demand nodes, and the average of the two will be taken.

• Step 4: Project BEV O-D demands in each year t along the planning horizon. We assumed that the growth in O-D demands is
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proportional to the growth (ρt relative to base year, unit: %) in the BEV population size. Then, year t BEV O-D demand is
determined as × × +η D ρ(1 )t0 . Assuming the BEV market share (currently 24%) remains the same in the ZEV fleet (CARB,
2015), the growth rate in the BEV fleet size is approximately equal to the growth rate in the entire ZEV population size. According
to the ZEV program (Brown, 2013), the ZEV population in California will reach 1 million by 2020 and 1.5 million by 2025.
Proportionally, the BEV population is expected to reach 0.24 (1× 24%) million by 2020 and 0.36 (1.5×24%) million by 2025.
BEV population in other years can be interpolated.

(a) O-D Demand Nodes (b) Candidate Charging Locations
Fig. 3. Origin-destination nodes and candidate charging locations.

Fig. 4. Yearly BEV travel demand estimation procedure.
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Note that the travel demand determined above is at an aggregated level. The actual demand in terms of the arrival rate at each
charging station varies over a day. As noted in the Eq. (19) in Section 2, a 14-h service time window is assumed for each station,
which moderately recognizes the design hour operations at each station. It is equivalent to magnifying the aggregated travel demand
by a factor of 1.7 (24 h flows are assumed to be only allocated to 14 hours’ time window).

4.4. DCFC charging station infrastructure cost

The construction cost of each DCFC charger is set to be $54,200, which includes both equipment and installation cost (NRC,
2013). As each DCFC charger occupies one parking space, the annual parking space cost of $1686 is also included as part of charger
cost (Snyder, 2012). We assume that the lifetime of each charger is 10 years with 7% discount rate. Then, five-year capital cost for
each charger is $47,014.

4.5. BEV range, charging level of service, and range limitation cost

In reality, BEV range differs between vehicle models. For simplicity, one BEV range of 100 miles is assumed for all BEVs on the
road throughout the planning horizon. As noted in Section 2.2, the baseline charging level of service at each station is set as follows:
when a BEV user arrives at a charging station, there will be at least a 95% probability of finding a vacant charger within 10min.

When the charging infrastructure cannot meet the required level of service between particular O-D pairs, all trips along the O-D
pair are considered infeasible or unsatisfied. Then, BEV travelers are expected to seek alternative transportation choices to avoid such
range anxiety. In this study, this inconvenience is penalized at a flat rate of $50 per unsatisfied trip that approximates the average
daily rental cost for alternative vehicles (Lin, 2014).

5. Result analysis

5.1. Performance of the genetic algorithm

To evaluate the solution performance of the genetic algorithm, we considered both small and large networks. With small net-
works, we aimed to evaluate the solution quality of the genetic algorithm by comparing its solution with the optimal solution yielded
by the CPLEX (an off-the-self optimization solver). We also considered one large network, namely the California network in the
baseline case, to test the convergence performance of the genetic algorithm. We used Java to implement the genetic algorithm on an
HP desktop with Intel Core I7 CPU (3.6 GHz with 4 cores) and 16 GB DDR3 memory. To obtain optimal solutions with the CPLEX, we
coded the model in AMPL (Fourer et al., 2003) and solved it on the NEOS server (Czyzyk et al., 1998).

Table 2 shows the solution performance with 10 small network scenarios. These small networks are randomly generated. Each one
contains a subset of the California network with: (1) 10% of all O-D pairs, (2) 50 candidate charging locations, and (3) two stages’
infrastructure expansion (i.e., 2015–2019 and 2020–2024). As shown in Table 2, we obtain the optimal objective value for each
scenario using the CPLEX. The time limit for the genetic algorithm is set at one minute per scenario, and Table 2 (columns 4–6) shows
the best achieved objective value, corresponding solution time, and the optimality gap. Compared to the CPLEX, the genetic algo-
rithm could be more efficient in solving the small network problems while maintaining high solution quality (i.e., optimality
gap< 1%).

To further evaluate the convergence performance in large-scale problems, we ran the baseline case 10 times with the genetic
algorithm and the solution time is set at three hours per run. Table 3 shows the convergence performance for the 10 runs. Note that
each row shows a time stamp when the solution performance is evaluated. With three-hour limit, the 10,800 s in the last row

Table 2
Comparison in solution performance between CPLEX and genetic algorithm on small networks.

Scenarios CPLEXa Genetic algorithmb

Opt. obj. val. Sol. time (s) Best obj. val. Sol. time (s) Gap

#1 $29.3M 598 $29.5M 18 0.4%
#2 $30.2M 1004 $30.4M 50 0.6%
#3 $31.2M 404 $31.3M 43 0.1%
#4 $32.9M 129 $32.9M 28 0.1%
#5 $29.1M 612 $29.2M 30 0.6%
#6 $33.5M 64 $33.6M 42 0.3%
#7 $32.3M 141 $32.3M 22 0.1%
#8 $33.2M 228 $33.3M 36 0.2%
#9 $32.8M 3600c $32.8M 46 0.1%
#10 $32.4M 450 $32.5M 29 0.3%

a Time limit for the CPLEX is 3600 s.
b Time limit for the Genetic Algorithm is 60 s.
c The solution time for the ninth scenario exceeds 3600 seconds’ time limit, and the best integer is obtained.
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indicates the final solution evaluation for each run. The table showed that the genetic algorithm can efficiently identify solutions with
better fitness over time. Especially at earlier stages of the solution process, the average objective value could be reduced by about $20
million or 22.5% during the first 2000 s of solution time (i.e., row 3 compared to row 2 in Table 3). In the same time period, relative
changes in objective values for both best and worst cases also decreased significantly, and remained at a relatively low value later
(within 1% relative to the average objective value when the solution time reached the three-hour limit).

All these analyses indicated that the genetic algorithm can efficiently solve the California case study and provide consistent
solution quality.

5.2. Baseline results

Fig. 5 shows the charging infrastructure layouts by time stage for the baseline case. In the figure, locations of circles represent the
geographic distributions of charging stations, and the size of each circle indicates the station size in terms of number of chargers. This
shows that the charging infrastructure is expanding over time as the BEV inter-city travel demand grows. At stage 1, 56 stations with
226 chargers are opened. At stage 3, the total number of stations and chargers increases to 176 stations and 618 chargers, respec-
tively. The trip coverage (satisfied trips/all trips) remains at high levels in all stages (> 99%), as the range limitation cost for each
trip is set at a high of $50 per trip. Expanding charging infrastructure is an appealing strategy for all demand levels. For all cases,
charging stations are mainly clustered along highways between the San Francisco Bay area and Los Angeles, which are the major
traffic demand centers. Note that this geographic distribution pattern is also observed in the study (Arslan and Karasan, 2016).

Fig. 6 shows more details on the distribution of station sizes along the three stages. For stage 1 (2015–2019) when BEV inter-city
travel demand is relatively low, the station size is normally small, with the largest station in stage 1 being 24 DCFC chargers. The

Table 3
Average convergence performance for 10 runs on california case study (three hours’ limit).

Solution time (secs) Average objective value Best case relative changea Worst case relative changea

100 $ 88.15m −4.67% 7.18%
2000 $ 68.32m −0.84% 1.70%
4000 $ 65.21m −0.69% 0.82%
6000 $ 63.73m −0.75% 0.86%
8000 $ 62.86m −0.57% 0.87%
10,000 $ 62.07m −0.44% 0.81%
10,800 $ 61.86m −0.57% 0.94%

A relative to the average objective value $61.86 m at 10,800 s.

• 56 stations / 226 chargers
• Trip coverage: 99.2%

• 104 stations / 423 chargers
• Trip coverage: 99.8%

• 176 stations / 618 chargers
• Trip coverage: 99.8%

(a) Stage I (2015–2019) (b) Stage II (2020–2024) (c) Stage III (2025–2029)
Fig. 5. Layouts of charging stations.
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most common configuration is two chargers per station (modal value). When BEV travel demand increases in stages 2 and 3, charging
stations expand in both quantity and capacity. A large number of single-charger stations are opened. Although the capacity is low per
station (on average 1.9 charging activities per day from Fig. 1), they can provide widespread charging support and can complement
each other in serving demand. At later stages, large charging station centers (e.g., 63 chargers at one station in stage 3) also appear,
which can serve high BEV travel demand along busy corridors. It is noted that the average charging station size remains similar
(around four chargers per station) across all travel demand levels. However, the variation in size does increase as the demand grows
(standard deviation is increased in Fig. 6). That indicates that the charging infrastructure expands in both coverage (small stations)
and capacity (large stations).Fig. 7
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5.3. Sensitivity analysis

The baseline case is defined by using moderate assumptions on important parameters, such as the level of service, demand flow,
battery size, and range limitation cost levels. However, the actual parameters may change, and are subject to uncertain technology
improvements and changes in other social and economic requirements. Therefore, we provide sensitivity analysis on several key
parameters as follows.

5.3.1. Impacts of level of service
In the baseline case, the level of service is defined to allow BEV users to have at least a 95% probability of finding a vacant charger

within 10min (“95%+10mins”). Charging infrastructure requirement may change with different level of services. Table 4 shows
the impacts on charging infrastructure and trip coverage at different levels of service for stage 3 (2025–2029). It is noted that the
infrastructure development level in terms of the number of stations does not differ (169–176 stations) significantly between scenarios
on level of service. However, there is an obvious trend in increasing the average station size with the level of service. As the station
capacity is conservatively downplayed with higher level of service (see Fig. 1), more chargers are required to serve the same charging
demand. The average station size increases from 3.1 chargers per station at “90%+30mins” level to 4.4 chargers per station at
“99%+0min” level. For all scenarios, the most common is the single-charger station, which can provide coverage for the majority
less-populated rural areas in California. Note that the trip coverage rate remains high (> 99%) for all scenarios because expanding
infrastructure is preferred with high range limitation cost on infeasible trips.

5.3.2. Impacts of vehicle range
The inter-city DCFC infrastructure requirement also depends vehicle range, which affects the frequency of charging activities for

BEVs. The baseline case assumes a 100-mile range. In long-term planning, the actual design vehicle range may be increased as larger
batteries become affordable for the public, and may also be decreased for conservative reasons such as weather impacts (e.g.,
batteries have reduced performance in cold weather), traffic congestions, and users’ insecurity about low battery SOC. Therefore, we
also conducted a sensitivity analysis on impacts of vehicle range.

As shown in Table 5, when design vehicle range increases, the infrastructure requirement is decreased in all three measures: (1)
average number of chargers per station, (2) number of stations, and (3) number of chargers. The covered trips remain at high levels
for all long vehicle range scenarios (longer than 100 miles), especially in the cases of 200- and 300-mile ranges. The lower vehicle
range scenario (i.e., 75 miles), while greatly reducing trip coverage, can still maintain the trip coverage at a high level (94%). From
the systems’ points of view, expanding the charging infrastructure is favorable for all these BEV range levels.

5.3.3. Impacts of range limitation cost
All above analyses are based on the assumption of the high range limitation cost of $50 per trip (Lin, 2014). We are also interested

in understanding impacts of potential lower range limitation costs, which can arise from many factors, such as emerging ride and car
share programs (Martin and Shaheen, 2016) and convenient multimodal transport (e.g., inter-city or regional buses and trains). These
factors also help to alleviate range limitation costs of BEV users, and may reduce the infrastructure requirement.

Fig. 7 shows impacts of range anxiety costs on the charging infrastructure deployment as well as trip coverage levels for stage 3
(2025–2029). For most of scenarios, relative to penalizing infeasible inter-city trips with the range limitation cost, it is economical to
expand the charging infrastructure. Even though the range limitation cost can reach at an extremely low level of $5 per trip, the

Table 4
Charging infrastructure statistics and trip coverage at different levels of service (Stage 3 – 2025–2029).

Category 90%+30mins 90%+10mins 95%+10mins 99%+10mins 99%+0mins

Average # of chargers/station 3.1 3.3 3.5 4.2 4.4
Number of stations 169 176 176 169 175
Number of chargers 526 575 618 707 776
Maximum station size 59 61 63 63 76
Most frequent station size 1 1 1 1 1
Trip coverage level (%) > 99% >99% >99% >99% >99%

Table 5
Charging infrastructure statistics and trip coverage at different design vehicle range (Stage 3 – 2025–2029).

Item 75 miles 100 miles 150 miles 200 miles 300 miles

Average chargers per station 4.2 3.5 2.8 2.3 1.7
Number of stations 197 176 138 110 100
Number of chargers 818 618 384 256 166
Maximum station size 65 63 41 44 26
Most frequent station size 1 1 1 1 1
Trip coverage level (%) 94% >99% >99% 100% 100%
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model still suggests opening 500 chargers to cover about 70% of trips. The results indicate that it is worthwhile to invest in capital-
intense inter-city public charging infrastructure.

5.3.4. Relationship between charging deployment and charging opportunity
Following the sensitivity analysis on the range limitation cost in Section 5.3.3, we further investigated the inter-city charging

deployment-opportunity relationship, a concept introduced in the study (Liu et al., 2017) to represent the relationship between
charging deployment level and the charging opportunity provided to BEV users. In this study, the charging deployment level is
defined as the number of chargers in the systems, and the charging opportunity is defined as the trip coverage level (percentage of
trips covered). By modifying the range limitation cost at different levels, we simulated this relationship as shown in Fig. 8 for three
demand levels at the three stages. Results show that higher charging deployment levels will contribute to higher trip coverage levels.
This relationship is time- or demand-dependent. In the near-term scope (stage 1 – 2015–2019), it requires a low infrastructure
deployment level to reach a satisfying trip coverage level. For example, by opening 100 chargers, the systems can cover> 50% of
inter-city trips. However, as the travel demand increases, more chargers are needed. In stage 3 (2025–2029), a deployment level of
100 chargers can only cover about 20% of inter-city trips.

6. Conclusions

We successfully developed a flow-based multistage inter-city DCFC charging infrastructure expansion planning model. In response
to the growing demand of BEV inter-city travels, the model integrates both an optimization model to manage facility locations of
charging stations and a stochastic queuing model to determine station capacity. A genetic algorithm based heuristic method was
developed to efficiently solve the problem. The model was applied to a large-scale, real-world study in California to understand the
infrastructure expansion requirement in a long-term planning scope.

We found that the charging infrastructure, in terms of both location and capacity, is gradually expanded over time to meet the
growing demand of BEV inter-city travels. In the baseline case, the average station size remained similar (about four chargers per
station), and the most common station configuration was the single-charger station, which can provide wide spread charging in-
frastructure support. The actual layout strategy depends on many factors, including the actual BEV electrified range, the required
level of service, and the range limitation cost. However, for most simulated scenarios, the model suggests that it is economical
systems-wide to invest in inter-city DCFC charging infrastructure, even though the range limitation cost is at the low end.

One immediate extension of this study is to integrate the model with an advanced vehicle market model, such as the Market
Acceptance of Advanced Automotive Technologies (MA3T) (Lin and Greene, 2010, 2011; Liu and Lin, 2017), to understand the
impacts of the expanded charging infrastructure on the BEV market share. Then, a complete analysis can be conducted to evaluate
inter-relationships between the BEV market share and the charging infrastructure. Another extension is to develop an efficient global
optimization solution algorithm to solve this large-scale model. One immediate benefit is to be able to fully evaluate the solution
quality with an attainable optimality gap. Also, this effort can help to relax the “Last-minute charging” assumption, and we can
further investigate the benefits of “central decision maker” in the infrastructure requirement.
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