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Environmental pollutants are a major global concern as they 1 

threaten human safety and economic stability. As a result, 2 

on-site, low-cost and reliable monitoring is becoming essential. 3 

Carbon allotropes have proven their high potential in sensing 4 

applications due to their outstanding properties, especially in 5 

nanoscale. This article summarizes some of the recent 6 

advances in sensing of environmental pollutants using carbon 7 

allotropes, especially in the form of carbon nanomaterials . It 8 

also provides a critical perspective of the challenges and 9 

promising approaches for future applications. 10 
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Introduction 18 

The versatility of the carbon atom lies in the diversity 19 

of its chemical bond that can range from sp 

3 , sp 

2 to sp 

1 
20 

and combinations of them, to yield crystalline or amor- 21 

phous solids. Over the past two decades, most of the 22 

attention in the electrochemical applications of carbon 23 

has turned toward carbon nanomaterials (CNMs), with a 24 

huge diversity in structure and allotropic forms. These 25 

materials can be classified based on their dimensions 26 

into zero-dimensional nanoparticles (NPs) such as quan- 27 

tum dots and fullerenes, one-dimensional (1D) structures 28 

like carbon nanotubes (CNTs) and carbon nanofibers, 29 

two-dimensional (2D) layered materials such as graphene 30 

and three-dimensional (3D) structures such as graphene- 31 

CNTs hybrids and foams [1,2] . The electrochemical ac- 32 

tivities of the different allotropes strongly depend on 33 

the hybridization state and the structure, as illustrated in 34 

Figure 1 for the heterogeneous electron transfer (HET) 35 

rates between the electrode surface to the electrolyte, 36 

Fe[(CN) 6 ] 
4 −/3 −, benchmark redox pair. 37 

Compared with other nanomaterials such as metal NPs 38 

[8] , metal oxide nanowires (NWs) [9] and transition metal 39 

dichalcogenides [10] , CNMs exhibit favorable features 40 

such as large surface area to volume geometry, high chem- 41 

ical stability, low cost, wide potential windows, relatively 42 

inert electrochemistry and rich surface chemistry for a 43 

variety of redox reactions [11 

••] . As a result, CNMs 44 

are used in sensors for detection of a wide range of 45 

pollutants/contaminants, such as heavy metals, toxins, 46 

pathogens, pesticides and other small organic molecules 47 

[11,21–23] . 48 

CNM-based electrochemical sensors are promising alter- 49 

natives to current gold standard methods of gas chro- 50 

matography/mass spectrometry [24] and atomic absorp- 51 

tion spectroscopy [25] for obtaining in situ and real-time 52 

information of pollutants, because of the simplicity of the 53 

instrumentation, quick test process and minimal sample 54 

preparation. The general components in the electrochem- 55 

ical sensing of pollutants with CNMs are illustrated in 56 

Figure 2 . The CNMs act as the transducer to convert the 57 

chemical input signal to an electrical output. The CNMs 58 

can be used in their pristine form or combined with mod- 59 

ifiers that play distinct roles in the sensing mechanism, 60 

such as improvement of selectivity, conductivity, surface 61 

area or catalytic activity. 62 

CNM-based sensors can be broadly classified into electro- 63 

chemical and electrical sensors based on the configuration 64 

and circuit elements. The former includes voltammet- 65 

ric, amperometic and impedimetric devices, and the lat- 66 

ter comprises field-effect transistors (FET) and chemire- 67 

sistors. Traditionally, an electrochemical sensor consists 68 

of three electrodes —working electrode (WE), reference 69 

electrode (RE) and counter electrode (CE) —immersed 70 

in an electrolyte. A redox reaction occurs on the surface of 71 

the WE, while the complementary reaction occurs in the 72 

CE and the potential is measured with respect to the RE. 73 

On the other hand, FET-based sensors consist of a source 74 
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Figure 1 

Heterogeneous electron transfer rates for different carbon allotropes in the Fe[(CN) 6 ] 4 −/3 − benchmark redox pair sensitive to surface structures in the 
carbonaceous electrodes, such as edge defects and oxygen-containing groups [ 3 –7 ]. BP and EP stand for basal plane and edge-oriented plane. 

(S) and a drain (D) terminal separated by a semiconduct- 75 

ing channel, and the current in this channel is modulated 76 

by the electric field from the gate (G) terminal. A chemire- 77 

sistor is a simplified FET without a gate terminal. The 78 

modulation of gate voltage in an FET controls the num- 79 

ber of charge carriers (holes and electrons) in the channel, 80 

thereby affecting its conductance [28] . The FET channel 81 

conductance can also be modulated by electrochemical 82 

gating under an electrolyte, termed liquid-ion gating [29] . 83 

In such electrochemical FET sensor, the concentration of 84 

the analyte is quantified based on the channel conduc- 85 

tance modulation upon affinity-based binding or adsorp- 86 

tion of charged analytes. The advantage of using CNMs 87 

as transducer element in FET is that the Debye length, 88 

a measure of the field penetration into the bulk, is com- 89 

parable to the dimensions of these nanostructures, which 90 

cause significant modulation of their electronic properties 91 

upon exposure to chemicals [30] . This allows for label- 92 

free detection of analytes with higher sensitivities and 93 

lower limits of detection. 94 

Recent advances in carbon-based 95 

electrochemical sensors for environmental 96 

monitoring 97 

Carbon electrodes have been used in electrochemistry 98 

since 1962 [31] . After the discovery of fullerene in 1985 99 

[32] , many more CNMs have been discovered and de- 100 

signed, most of them being topological distortions or 101 

stacking of atomic hexagonal sp 

2 lattice. Today, the poly- 102 

morphism of carbon is engineered with more control and 103 

understanding than ever before. The recent focus of elec- 104 

trochemical sensing has been primarily for CNMs, most of 105 

which are incorporated in a paste [33] or affixed/deposited 106 

on the surface of a glassy carbon electrode as a film [19] . 107 

Several recent reviews have discussed in detail electro- 108 

chemical/electrical sensing applications of CNMs, primar- 109 

ily CNT and graphene [1,11,34,35] . 110 

CNTs 111 

Being nanometer size in diameter, CNTs are 1D carbon 112 

allotropes that possess a high surface area to volume ratio, 113 

providing is a powerful platform for sensors. Since its dis- 114 

covery in 1991 [36] , CNTs have proven its wide-ranging 115 

applications in different electrochemical and electrical 116 

transducers for the detection of a wide variety of environ- 117 

mental targets. The applications of CNTs-based electro- 118 

chemical and electrical bio/chemical sensors for bacteria, 119 

viruses, heavy metals and toxins in water have been re- 120 

viewed previously [11,37,38] . Single-walled CNTs (SWC- 121 

NTs) modified with a variety of materials such as metal 122 

and metal oxide NPs, metalloporphyrins, DNA, conduct- 123 

ing polymer, etc., for highly sensitive, low power, field- 124 

deployable and low cost chemiresistors/FETs for moni- 125 

toring air pollutants such as volatile organic compounds 126 

[21 

•,39] with an aim to use them as general platform for 127 

multiplex sensing and electronic nose/tongue. For exam- 128 

ple, a sensor array of SWCNTs modified with metallopor- 129 

phyrins could discriminate among structurally similar aro- 130 
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Figure 2 
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Application of carbon allotropes for environmental monitoring via electro
nanohorns is from reference [26] , © IOP Publishing. Reproduced with pe
from Ref. [27] with permission of The Royal Society of Chemistry. 

matic hydrocarbons such as benzene, toluene and xylene
at concentration as low as 500 ppb at room temperature
[40] . 

Graphene, graphene oxide and reduced graphene oxide 

Since graphene was first synthesized in 2004 via physical
exfoliation by Novoselov [41] , it has been widely used as
electrochemical and electrical transducer in bio/chemical
detection [ 42 –45 ]. While graphene has excellent electrical

properties, it is not easy to synthesize and difficult to dis- 
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in Electrochemistry (2017), http://dx.doi.org/10.1016/j.coelec
ical methods. Transmission electron microscopy (TEM) image of carbon
ion. All rights reserved. TEM image of carbon nanofibers is reproduced 

perse. As one of the derivatives of graphene, graphene ox-
ide (GO)/reduced graphene oxide (rGO) is attractive not
only because of the appealing parental graphene’s proper-
ties, but also ease of synthesis and its hydrophilic nature
and high dispersibility in many solvents. We reported a
high sensitivity detection of Hg 

2 + and Cr(IV) using rGO
as the semiconducting channel of a chemiresistor trans-
ducer modified with a Hg 

2 + specific aptamer [46] and 1,4-
dithiothreitol-functionalized gold NPs [47] , respectively.

The sensors exhibited fast response and detected as low 149 
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Figure 3 

(a) Graphical representation of charge transfer process between H 2 O 2 and HRP immobilized on CSCNFs and SWCNT. The CNM-HRP sensor allows 
quantification of cyanide based on the enzyme inhibition by the toxic compound. SEM images of (b) CSCNFs and (c) SWCNTs on glassy carbon. ( d) 
Cathodic current densities of H 2 O 2 reduction at CSCNF, SWCNT, HRP/CSCNF, and HRP/SWCNT electrodes in 67 mM phosphate buffer (pH 7.4) at 
+ 150 mV vs. Ag|AgCl. Reprinted with permission from [4] . Copyright 2016 American Chemical Society. 

as 0.9 nM Cr(VI) and 0.5 nM Hg 

2 + . Similarly, a Fe 2 O 3 150 

NP decorated rGO was suggested for nitrite detection in 151 

contaminated water, an environment-unfriendly material, 152 

which has a detection limit of as low as 0.015 μM [48] . 153 
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tive for overcoming this limitations because of their 1D 182 

structure that can penetrate the polypeptide layer [52] , 183 

and lately, a 1D variant with faster HET rates, the cup- 184 

stacked carbon nanofibers (CSCNFs), have gained atten- 185 

tion ( Figure 3 (a) –(c)). The relation of CSCNF and CNT 186 
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arbon nanohorns 

arbon nanohorns (CNHs) are conical cages that, similar 
o SWCNTs, are sp 

2 -hybridized, semi-conducting, highly 

esistant to oxidation, and with equivalent reaction rates.
owever, they have higher density of defects that fa- 

ilitates functionalization, they are usually wider, allow- 
ng free movement of encapsulated molecules [49] , and 

an be mass-produced at room temperature in the ab- 
ence of potentially toxic metal catalyst. CNHs applica- 
ions have evolved at a much slower pace than CNTs, be-
ause of their aggregation into spherical cluster ( Figure 2 ),
hich makes dispersion and surface modification diffi- 

ult. A new approach for separating clusters into individ- 
al CNHs was reported recently, which could accelerate 

heir development [50 

•] . A composite of CNHs and ionic
iquid has been used for the amperometric detection of 
-aminophenylarsonic acid, a toxic bioaccumulative com- 
ound. Although the detection limit was not as low as
ther non-electrochemical methods, the linear dynamic 
ange from 0.5 μM to 3.5 M is much broader, and sam-
le preparation and equipment required are simpler. The 

ensor showed good accuracy, reproducibility and stabil- 
ty, coupled with low chemical interference [51] . 

arbon nanofibers 

he integration of the versatile biological functions of re- 
ox enzymes in electrochemical sensing is a technolog- 

cal breakthrough, but connecting with their redox cen- 
er has been challenging. CNTs were first shown effec- 
urrent Opinion in Electrochemistry 2017, 000 :xxx–xxx 

Please cite this article as: Villarreal et al. , Carbon allotropes as

in Electrochemistry (2017), http://dx.doi.org/10.1016/j.coelec
s analogous to that of edge-oriented and basal plane py-
olytic graphite, as the density of edge sites in CSCNF
s 1000 times larger than in CNTs. CSCNFs have been

odified with horseradish peroxidase (HRP) for ampero- 
etric detection of cyanide, improving the response and 

ensitivity toward the analyte. The HRP/CSCNFs elec- 
rode also provided HET rates that were 1000 times
aster than HRP/graphite-casted electrode due to im- 
roved conductivity. CSCNFs have demonstrated kinetic 
dvantages over CNTs for fast response using enzyme 

odifiers. However, they exhibited lower cathodic cur- 
ent ( Figure 3 (d)), as their diameter is larger and results
n lower electrode surface area [4 

••,53] . 

raphene-CNT heterostructure 

 strategy to surpass the intrinsic limitations of carbon
llotropes is to combine them as complementary build-
ng blocks. For example, graphene has the largest mobil-
ty but the slowest HET rates among carbon allotropes
 Figure 1 ), which can be overcome by connecting it with
NTs, that have larger surface area and high electroactive

ites density [54] . The individually synthesized nanoma- 
erials can be hybridized into a composite, using for ex-
mple, poly(ionic liquids) , that provide strong cation- π
nteractions, and have shown multiplex sensing capabil- 
ties for organic volatiles and temperature. The addition 

f CNTs resulted in improvement of sensitivity, lower de-
ection limit and faster sensor response [55] . An alterna-
ive hybridization method to prepare seamless covalently 
www.sciencedirect.com 
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Figure 4 

(a) The schematic illustration of the fabrication procedure of the bisphenol-A aptasensor based on BDD coated with Au NPs and modified with 
aptamer and 6-mercapto-1-hexanol. (b) Boron-doped diamond electrode covered with Au NPs. (c) Impedance spectra (Nyquist plots) of BDD 

aptasensor incubated with analyte at varying concentrations. The inset in (c) is the equivalent circuit of impedance. Reprinted from [59 ••] with 
permission of Elsevier. 

bonded structures is in-situ growth of CNT on graphene, 215 

which provides better orientation control and electri- 216 

cal conductivity through low contact resistance junctions 217 

and across a single chemical vapor deposition (CVD)- 218 

grown graphene platform. The seamless graphene/CNTs 219 

showed higher sensitivity than bare graphene in biosens- 220 

ing applications [19 

•,56] , making it an interesting material 221 

to explore for environmental monitoring. 222 

Diamond 223 

Diamond is a sp 

3 hybridized carbon allotrope usually 224 

considered not suitable for sensor application due its 225 

insulating behavior. However, it provides the advan- 226 

tages of wide potential window and excellent stability 227 

in harsh environments over graphite and glassy carbon 228 

electrodes [57] . The development of boron-doped dia- 229 

mond (BDD) and nanocrystalline (NCD) diamond has 230 

generated interest for sensing applications. In BDD, the 231 

substitutional defect of boron causes p-type conductiv- 232 

ity to overcome its insulating behavior [58] . A modified 233 

BDD electrode has been used for the electrochemical 234 

impedance spectroscopy (EIS) detection of currently dif- 235 

ficult to detect bisphenol A ( Figure 4 ) at levels as low 236 

as 1 × 10 

− 12 mol L 

− 1 , which is lower than any other 237 

electrochemical sensor before [59 

••] . The NCD, on the 238 

other hand, has a higher proportion of grain boundaries 239 

with sp 

2 content that provide the conduction paths for 240 

electron transportation. A study demonstrated the high- 241 

performance of a NCD electrode in an extended-gate 242 

FET configuration for electrochemical detection of ace- 243 
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 249 
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 252 

 253 

graphitic material GUITAR appears to provide the so- 254 

lution. With a sp 

2 nanocrystalline layered structure and 255 

0.25 –1.5 μm thickness, it resembles highly oriented py- 256 

rolytic graphite but lacks the step- and edge-defects. In- 257 

stead, an unusual disorder occurs at the inter-grain re- 258 

gions, increasing the density of states for the fastest HET 259 

rates observed at the basal plane in any graphitic mate- 260 

rial, as shown in Figure 1 . At the same time, the lack of 261 

gaps for electrolyte intercalation results in a corrosion re- 262 

sistance, competitive with diamond. Since the growth of 263 

GUITAR occurs at temperatures as low as 600 °C from a 264 

variety of organic precursors in presence of sulfur [3,61 

•] , 265 

it is an attractive alternative to graphene that requires high 266 

temperature and expensive catalysts, limiting its scaled- 267 

up production. 268 

Graphene variants: graphane and graphyne 269 

The prediction of graphene before it was experimentally 270 

found has inspired the postulation of a new generation 271 

of imaginary carbon allotropes. An example is graphyne, 272 

a 2D hexagonal network of sp 

1 -hybridized carbon atoms 273 

whose stability and electromagnetic properties depend on 274 

the number of atoms per side [62] . Density functional the- 275 

ory, of this yet unrealized material, predicts that formalde- 276 

hyde and H 2 S would weakly physisorb on the surface 277 

of graphyne nanotubes and induce n-type doping, mak- 278 

ing them a suitable system for gas sensing [63] . Another 279 

proposed variant is graphane, a hydrogenated graphene 280 

sheet with an insulating behavior that increases with hy- 281 

drogenation level due to disruption of the π -conjugation. 282 

CV studies demonstrated that a complex interplay of fac- 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

tivates the surface for chemical functionalization, allow- 293 
tone in water, with high selectivity over other VOC ’s. It
was observed that the smaller the grain in the NCD, the
larger the FET response, due to higher conductivity [60] .

Graphite from the University of Idaho Thermolyzed 

Asphalt Reaction (GUITAR) 
A primary goal to expand the functionalities of graphitic
materials for the development of advanced electrochemi-
cal sensors is to achieve faster HET across the basal plane,
as it is predominantly exposed and its corrosion resistance
is higher than edge-oriented planes ( Figure 1 ). The new
www.sciencedirect.com 

Please cite this article as: Villarreal et al. , Carbon allotropes as

in Electrochemistry (2017), http://dx.doi.org/10.1016/j.coelec
tors causes GO hydrogenation level to accelerate its HET
in Fe[(CN) 6 ] 

4 −/3 ( Figure 1 ). However, hydrogenation of
graphene can reduce the affinity toward analytes that ad-
sorb by π–π interactions, as demonstrated by differen-
tial pulse voltammetry detection of 2,4,6-trinitrotoluene
[64–66] . More importantly, graphane could be a fabrica-
tion breakthrough for graphene multiplex sensors, as the
non-conducting regions can be selectively patterned by
existing lithographic processes. Hydrogenation further ac-
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ing infinite combinations of molecular patterns on a sin- 294 

gle graphene platform [67] . For example, fluorination in- 295 

creases the electrocatalytic capabilities of the irresponsive 296 

graphane in benchmark redox systems studied by CV and 297 

LSV [68] . Density functional theory has predicted similar 298 

results of NH 3 and H 2 S having inadequate adsorption en- 299 

ergies for detection on pristine graphane, while good ad- 300 

sorption and the derived electronic response on lithiated- 301 

graphane [65] . 302 

Future outlook 303 

Electrochemical sensor technology has gained more in- 304 

terest due to many advantages such as more rapid re- 305 

sponse, on-site mobility, and inexpensive operations and 306 

instrumentation. More specifically, carbon-based electro- 307 

chemical sensors provide the aforementioned benefits, 308 

with the added advantages of using inexpensive and non- 309 

toxic materials. From a 3D bulk structure in graphite to 310 

an atom-thick 2D layer in graphene and 1D in carbon 311 

nanotubes, these CNMs, fabricated as a sensing platform, 312 

promise a great potential for mass production of minia- 313 

ture and eco-friendly devices. As the phases of synthesis 314 

and processing of CNMs are overcome for many varieties 315 
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ike CNTs, rGO, CVD-grown graphene, new challenges 
rise for interfacing them with substrates, electrodes and 

ther materials to create functional devices. Multiplex de- 
ection, portability, high performance, and stability, espe- 
ially when working with biomolecules, such as enzymes 
nd antibodies, will be key determining factors of success 
or these devices in commercial settings. An important is-
ue in the future years will be integration of CNM-based
lectrochemical sensors with user interface with portable 

ong-battery-life devices like cell-phones. Other CNMs 
hat have achieved less development and popularity still 
old great promise and is worthwhile to study their ap-
lications. These studies should be systematic to com- 
are the electrochemical properties of different carbon 

llotropes for different systems. At the same time, more 

eal sample studies are necessary to advance and develop 

trategies to reduce the interference with common coex- 
sting species. Testing of pollutants in real soil, water and
ir media is the ultimate end of environmental sensing 

echnology ; therefore, the experimental approach must 
xpand toward the preparation of this kind of samples.
erforming studies with real samples could also directly 
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