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Highlights

• Real-time re-planning in reaction to disruptions can be done effectively

and efficiently for realistic LTSP instances.

• Time-space networks can be exploited to incorporate impacts of disrup-

tions and to reduce the size of the problem.

• MIP technology can be exploited in this context: effective solutions found

in a short computational time.
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Abstract

In this paper, we present a mathematical programming model based on a time-

space network representation for solving real-time transportation problems in

forestry. We cover a wide range of unforeseen events that may disrupt the

planned transportation operations (e.g., delays, changes in the demand and

changes in the topology of the transportation network). Although each of these

events has different impacts on the initial transportation plan, one key charac-

teristic of the proposed model is that it remains valid for dealing with all the

unforeseen events, regardless of their nature. Indeed, the impacts of such events

are reflected in a time-space network and in the input parameters rather than

in the model itself. The empirical evaluation of the proposed approach is based

on data provided by Canadian forestry companies and tested under generated

disruption scenarios. The test sets have been successfully solved to optimality

in short computational times and demonstrate the potential improvement of

transportation operations incurred by this approach.
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1. Introduction

Optimization models and operations research (OR) methods have been used

in the forest industry since the 1960s [1]. Recent reviews on how these models

and methods are used to solve planning problems in forestry can be found in [2]

(2015) and [3] (2014). These planning problems cover a wide range of activities

such as sylviculture, harvesting, road building, production and transportation,

which present to this day several challenges to OR practitioners [2, 4], as the

forest industry attempts to improve its competitiveness and reduce its environ-

mental impact. In particular, improving transportation planning in forestry has

been the object of recent research of highly practical relevance, since transporta-

tion costs are estimated at more than one-third of wood procurement costs [2].

Minimizing transportation costs therefore represents a key element to improve

the competitiveness of forest companies.

Recently, a number of OR models and methods have been developed to solve

the log-truck scheduling problem (LTSP) [5, 6, 7, 8, 9], which consists in deriving

schedules for trucks to transport different wood products between forest sites

and wood mills. In addition, several decision support systems, such as the ASI-

CAM project in Chile [9] and the EPO project in Finland [10], were developed

to ease transportation planning. A review of transportation planning systems

in the forest industry and the contribution of OR in their development can be

found in [11]. Note that few decision support systems are available to forest

companies (compared to other industrial sectors [12]), as many forest compa-

nies still rely on experienced dispatchers to manually derive their transportation

plans.

Whether the transportation plans are obtained through an optimization

method or manually, their implementation in practice is vulnerable to unfore-

seen events. For example, in Canada, spring thawing soils and summer rains

degrade the forest roads condition and prevent the trucks from accomplishing

their trips within the planned time. The late arrival of these trucks may also

create queues for loading and unloading operations. In this case, the disrup-
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tion consequences may stream through the whole supply chain and many trips

could become infeasible. There is then a need to re-optimize the transportation

plan as early as possible to minimize the impact of such disruptions. Real-time

rescheduling of log-trucks has not been subject to much attention in the liter-

ature, in spite of the growing body of literature on similar problems in other

industrial sectors, with the advent of intelligent transportation systems [13]. To

the best of our knowledge, CADIS (for Computer Aided Dispatch) is the only

documented decision support system for real-time dispatching in forestry [14].

The authors reported few details about this system because of non-disclosure

agreements with the New Zealand company that used it. The system produced

encouraging results [15], although it was used only for a short period, as the

company ceased its activities because of financial issues. Other commercial de-

cision support systems [11] may include real-time dispatching modules, but they

are generally manually managed. The recent work [2] defines real-time trans-

portation management as one of 33 open problems in the forest industry for OR

practitioners.

Several sources of uncertainty exist in the forest industry [2]. The wood

markets include uncertainties about the prices and demand volumes. The forest

areas involve many uncertainties, such as the growth and quality of the trees,

the volume estimates (global and per species), diseases and fire risks. The wood

production includes inaccuracies about the harvesting and transportation plans.

Other uncertainties include technology developments and regulation changes.

These inaccuracies are generally handled through including extra travel times

for transportation estimates, extra inventories for demand levels, extra dollars

for cost estimates, etc. Some stochastic models have been lately introduced

to cover some types of uncertainties in the forest industry. In [16], the au-

thors consider a tactical harvesting and road construction problem with market

uncertainty. The stochastic model that they developed tries to find the best

solution that is feasible under all the generated scenarios related to timber price

variations. In addition to the large number of scenarios that could be generated,

the nonanticipativity constraints make the problem solution harder. These con-
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straints state that if two different scenarios are identical up to a certain time

interval, the values of the decision variables values also be identical up to that

interval. The authors use a branching scheme where these constraints are im-

plicitly satisfied. In [17], the authors present a Scandinavian case study where

there are uncertainties about the demand. The original approach was to keep

a safety stock to face the demand fluctuations. The authors propose, instead, a

robust optimization approach to eliminate these stocks. The approach decom-

poses the problem into two separate problems. In the first problem, they find a

feasible solution. The second gives the worst-case scenario given this solution.

This is used as a valid inequality in the first model. The process is repeated

until the first problem produces a solution satisfying the worst-case scenario.

Simulation can be used to evaluate the solutions found by solving the math-

ematical models. It allows to identify potential issues associated with the im-

plementation of the solutions. The optimization models can be modified and

solved again after the simulation. This technique was recently used to assess

the performance of a transportation plan considering uncertainty in trucks ar-

rival time at a mill [18]. Similarly, [19] uses a discrete-event simulation model

to evaluate the implementation of production plans of an integrated pulp and

paper mill. The simulator is also used to refine the parameters of the analytical

model in order to produce more robust plans.

In stochastic programming, simulation can be used to generate a set of sce-

narios that are used as input to the optimization model. The method assumes

that the uncertainty has a probabilistic description, which can be hard to define.

Depending on the complexity of this description, the model may become hard

to solve within a reasonable computational time. In robust optimization, the

uncertainty is only known to belong to some uncertainty set and there is no

requirement to have probability distributions. The goal is to find the optimal

solution that is feasible in the worst-case scenario. To avoid conservative and

costly solutions, care must be taken in the construction of the uncertainty set,

which is challenging for large scale forest planning problems.

The most frequent source of uncertainty related to transportation planning
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problems in other industrial sectors is the arrival of new requests (e.g., new

customers or change in the demand) [20, 21]. In forest transportation planning

problems, one must deal with unforeseen events of a different nature such as

changes in the topology of the transportation network (e.g., road closure). In

this paper, we propose a mathematical programming model that remains valid

for every unforeseen event that may occur during forest transportation oper-

ations, regardless of its nature. The model is based on a time-space network

representation of the forest supply chain where the impacts of the unforeseen

events are represented.

The remainder of this paper is organized as follows. Section 2 describes the

problem, starting with a generic description of the LTSP. Section 3 presents

the proposed approach to re-optimize the transportation plan in real-time in

response to an unforeseen event. The description of the test sets and the results

of our approach are presented in Section 4. Section 5 concludes this work.

2. Problem description

We begin this section with a generic description of the LTSP, whose solution

produces a transportation plan that consists of a sequence of empty and loaded

trips in addition to loading and unloading operations. Note that our approach

remains valid whether such a plan is derived manually or by using optimization

methods, but the LTSP provides a conceptual framework for the subsequent

development of our model for real-time rescheduling of log-trucks.

We assume a homogeneous fleet of trucks. Each truck is associated with a

base, usually a wood mill, where it must begin and end its shift. The planner

must assign a route to each truck. A route is composed of a set of trips in

addition to waiting, loading and unloading operations. Table 1 presents an

example of a weekly truck route.

We define as R, V , M , F , and P the sets of routes, trucks, mills, forest

sites, and wood products, respectively. Rv is the subset of routes linked to

truck v ∈ V . Each route r ∈ R has a cost cr. This cost includes productive
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1 Monday 0:20 Sk 2:00 Ki 0:20 A 2:20 Sk 0:00 0:20 5:20

1 Monday 5:20 Sk 2:00 Ki 0:20 A 2:20 Sk 0:00 0:20 10:20

1 Monday 10:20 Sk 2:00 Ki 0:20 A 2:20 Sk 0:00 0:20 15:20

2 Tuesday 0:20 Sk 2:00 Ki 0:20 A 2:20 Sk 0:00 0:20 5:20

2 Tuesday 5:20 Sk 2:00 Ki 0:20 A 2:20 Sk 0:00 0:20 10:20

2 Tuesday 10:20 Sk 2:00 Ki 0:20 A 2:20 Sk 0:00 0:20 15:20

3 Wednesday 0:20 Sk 2:00 Ki 0:20 A 2:20 Sk 0:00 0:20 5:20

3 Wednesday 5:20 Sk 2:00 Ki 0:20 A 2:20 Sk 0:00 0:20 10:20

3 Wednesday 10:20 Sk 2:00 Ki 0:20 A 2:20 Sk 0:00 0:20 15:20

4 Thursday 0:20 Sk 2:00 Ki 0:20 A 2:20 Sk 0:00 0:20 5:20

4 Thursday 5:20 Sk 2:00 Ki 0:20 A 2:20 Sk 0:00 0:20 10:20

4 Thursday 10:20 Sk 2:00 Ki 0:20 A 2:20 Sk 0:00 0:20 15:20

5 Friday 1:00 Sk 2:20 Pe 0:20 B 2:20 Ra 0:00 0:20 6:20

5 Friday 6:20 Ra 1:40 Lu 0:20 C 2:00 Ra 0:00 0:20 10:40

5 Friday 10:40 Ra 1:40 Lu 0:20 D 2:40 Ca 0:00 0:20 15:40

5 Friday 15:40 Ca 0:40 Sk 0:00 0:00 0:00 0:00 16:20

Table 1: Example of a route.

(loaded trips, loading and unloading) and unproductive activities (empty trips

and waiting). The basic LTSP aims at minimizing the total cost while satisfying

the demand Dmp of product p ∈ P at each mill m ∈M given a certain amount

of available wood products Sfp at each forest site f ∈ F . The problem can be

formulated as follows [22]:

Min
∑

r∈R
cryr (1)

∑

r∈R
bmpryr = Dmp, ∀m ∈M,p ∈ P (2)

∑

r∈R
afpryr ≤ Sfp, ∀f ∈ F, p ∈ P (3)

∑

r∈Rv

yr ≤ 1, ∀v ∈ V (4)

yr ∈ {0, . . . , |V |}, ∀r ∈ R (5)

The variables yr indicate the number of trucks assigned to route r. The

parameters afpr (bmpr) represent the total amount of product p picked up at
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forest site f (delivered at mill m) by each truck assigned to route r. The

objective function (1) minimizes the total cost. Constraints (2) and (3) ensure

demand satisfaction while not exceeding the supply. Constraints (4) ensure that

each truck is assigned to at most one route. However, constraints (5) allow the

assignment of a route to several trucks.

Set R can be generated in different ways. In a manual process, an expe-

rienced dispatcher typically assigns trips to the destinations that the driver is

used to visit. Trips between a forest site and a mill are repeated as long as

they remain feasible. In an optimization approach, the set of feasible routes can

be generated iteratively, in a branch-and-price procedure (branch-and-bound

combined with column generation) that solves model (1)-(5). In this case, each

generated route, at each node of the branch-and-bound tree, is a solution of the

respective pricing sub-problem. This sub-problem consists in finding the short-

est path in a time-space network, where the length of a path corresponds to its

reduced cost. If the reduced cost of the shortest path is negative, the variable

associated to the corresponding route is added to model (1)-(5). A completely

different approach is to use a formulation where the routes (and thus set R) are

implicitly defined through the constraints, as in the flow-based model described

in [23].

The transportation cost includes a fixed cost for using a truck and a variable

cost proportional to the distance, which is measured in travel time. This dis-

tance depends on whether the truck is empty or loaded, since the truck drives

faster when it is empty. The trucks have to travel empty from the mills to the

forest sites. Thus, a truck that operates only trips between the same mill and

the same forest site loses half of its transportation capacity. Instead, once at a

mill, one must try to allocate the wood products from the closest forest sites to

the mills in the opposite direction. This is known in the literature as backhaul-

ing and we refer the interested reader to [24] for more details about decision

support systems using backhauling in the forest industry.

Loading and unloading operations are performed by loaders at forest sites

and mills. These loaders are usually operated only for a specific period of the
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day. Moreover, the number of loaders available at a mill or a forest site may

vary during the day. To avoid creating queues at the loaders and thus reduce

the cost of unproductive activities, another objective that must be met by the

dispatcher is the synchronization of the trucks with the loaders given accurate

information about the available loaders. These constraints appear in the recent

works on the LTSP [5, 8] and are considered in our work.

In the context of real-time rescheduling of log-trucks, we assume that truck

drivers receive one trip at a time, the dispatcher waiting for each truck driver

to finish its current trip before revealing its next destination. This mode of

transportation planning management gives more flexibility to re-optimize the

routes, since it avoids drivers resistance to change.

While re-optimizing the transportation plans following the occurrence of an

unforeseen event, the dispatcher must avoid diverting a truck from its desti-

nation unless the unforeseen event prevents the completion of the current trip.

This improves the consistency of the proposed schedules and facilitates their

real-life implementation. Moreover, in a real-time context, the amount of time

available to the dispatcher to derive alternative transportations plans is limited.

The nature of the unforeseen events that arise in the forest industry is dis-

tinct from what can be found in the literature on similar problems found in

other industrial sectors. In [25], the authors present a list of the most frequent

unforeseen events. The list includes unforeseen events that are likely to appear

at the forest sites, those involving trucks and road networks, and the events

that occur at the mills. To develop effective recourse strategies when facing

such events, one must focus on the impacts they have on the transportation

network rather than on the events themselves. The next section describes the

proposed approach to implement these recourse strategies.

3. Proposed approach

Our approach to real-time rescheduling log-trucks is built on a time-space

network representation, which is used in the definition of our mathematical
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Figure 1: Time-space network.

programming model. The time-space network represents the evolution of the

forest supply chain over time. This representation varies depending on the

nature of the unforeseen events that are revealed over time. The space and

time dimensions of the network allow to track the trucks in real-time and to

capture the impacts of the unforeseen events on the transportation network

(e.g., by removing the arcs that become inaccessible). The distances between

two locations in the transportation network are expressed as a time measure.

This helps to capture the impact of some unforeseen events. In the case of a

road degradation or a traffic jam, for example, the trip duration may become

longer, while the geographical distance remains the same. The mathematical

programming model takes this time-space network as an input and is solved

using a commercial solver.

3.1. Time-space network

When an unforeseen event is revealed, one must collect real-time information

about the state of the transportation network elements. We refer to the state of

a truck, for example, as the information about its position, its destination and

the product it is transporting if it is loaded. Moreover, if the truck is directly

impacted by the unforeseen event as in the case of a truck breakdown, we as-
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sume that we have additional information about the estimated characteristics of

the corresponding event, such as an estimate of the truck repair duration. The

collection and validation of these estimates is beyond the scope of this work, but

the current development of onboard computers, geo-location and communica-

tion technologies, in addition to the development of big data algorithms, make

the collection of good quality estimates of the disruptions characteristics more

affordable and easier. In this paper, we do not simulate how the plan will evolve

after the disruption. In practice, one can use simulation to decide whether or

not to re-optimize the transportation plan.

The state of the transportation network can be seen as an instant picture of

this network that we represent as a time-space network. The space dimension

of the network contains the set of wood mills and forest sites in addition to their

linking roads. For the time dimension of the network, we divide the planning

horizon into a set of intervals. The necessary time for loading and unloading

operations is approximately equal and the driven distances are quite large in

the context we consider in this paper. Therefore, we use the loading duration

as a time-step for discretizing the planning horizon. Time-space networks are

used for generating routes to solve daily, weekly, and annual LTSPs, but they

are generally not formally described in the LTSP literature [8, 26]. The network

that we use in this paper is adapted from the one proposed in [23]. The main

differences are the use of a source vertex per truck, the duplication of loaded

arcs by wood product, and the use of different arc capacities. The novelty is

also that we modify the network after each disruption. Figure 1 presents this

time-space network, which contains four types of vertices :

• A source vertex for each truck representing its current location (or its base

if it has not yet started its shift) when the unforeseen event is revealed.

These individual truck vertices are different from what can be found in

a conventional time-space network. We need to introduce them to track

the truck positions in real-time. Note also that the trucks that finish their

shift before the occurrence of the disruption are not represented in the
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network.

• A sink vertex for each truck. It corresponds to its base and represents the

shift end for the truck.

• Forest site vertices. Each vertex is replicated for each time interval of the

discretized planning horizon. This allows to capture real-time information

about the forest sites. This includes the current supply of each product

and the number of loaders available at the correspondent interval. These

vertices are duplicated to represent whether the truck is full or empty.

• Mill vertices. They are similarly replicated. The vertex state contains

information about the current demand for each product and the number

of loaders available at the corresponding interval.

The replication of the vertices is done horizontally in Figure 1. Each pair

of lines represents either a mill or a forest site evolving over time. For reasons

of clarity, only a subset of the arcs is represented in Figure 1 and their length

does not represent the real distances. The arcs kept for the first truck give an

example of a small sequence of trips. There are seven types of capacitated arcs

in the time-space network:

• Start arcs connecting source vertices to empty forest site vertices, if the

corresponding truck is empty, and to full mill vertices, otherwise. Their

capacity is one truck.

• End arcs connecting empty mill vertices that correspond to a truck base

to this truck sink vertex. Their capacity is one truck.

• Loaded driven arcs connecting a full forest site vertex to a full mill vertex

demanding at least one of the available products at this forest site. They

are duplicated for each available product. Their capacity is equal to the

number of available trucks.
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• Empty driven arcs connecting an empty mill vertex to an empty forest site

vertex supplying at least one requested product. Their capacity is equal

to the number of available trucks.

• Waiting arcs connecting two successive mill vertices. Their capacity is

equal to the number of available trucks. Note that, as the number of

mills is usually smaller than the number of forest sites and to reduce the

symmetry, we prefer that the trucks wait at mills instead of at forest sites.

We mean by symmetry that if a truck waits either at a forest site or at a

mill, this will lead to a solution that has the same cost.

• Loading arcs connecting two successive empty and full forest site vertices.

Their capacity is equal to the number of available loaders at the forest site

during the corresponding time interval. Note that the number of available

loaders is smaller than the number of trucks (there is generally one loader

per site).

• Unloading arcs connecting two successive full and empty mill vertices.

Their capacity is equal to the number of available loaders at the mill

during the corresponding time interval.

It should be noted that the length of the arcs represents the duration of the

corresponding operation. Therefore, these arcs exist only between vertices at

intervals separated by at least this duration. Moreover, the vertices and arcs

constituting this time-space network vary over time and depend on the nature

of the revealed unforeseen events. We describe how these transformations are

done in the following subsection.

3.2. Dealing with disruptions

At the occurrence of an unforeseen event, we first collect the necessary in-

formation about the trips that were executed before the disruption in order

to update the remaining demand and supply and the number of trucks still

in operation. We also collect the relevant information about the trucks, their
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positions and if they are loaded or empty. Having this information in addition

to the estimates of the unforeseen event impacts, a new time-space network is

produced. All the vertices and arcs that start before the occurrence of the event

are removed from the initial time-space network. One exception is the truck

start vertices. Outgoing arcs from these start vertices are updated according to

the nature of the unforeseen event and to the corresponding truck positions.

The recourse strategies when an unforeseen event is revealed depend on its

impact on the transportation network rather than on the event itself. Different

unforeseen events can have the same impact on the transportation network. For

example, in the case of the presence of a single loader at a forest site or at a

mill, the breakdown of this loader can be seen as the corresponding site closure,

assuming that the loaders are not allowed to move between different sites and

that the trucks do not include onboard loaders. The following describes the

disruptions categories based on their impact on the network, in addition to the

corresponding recourse strategies.

Closures

This category contains the closures of forest sites, wood mills and roads.

Also, there is generally one single forest road to access a forest site in contrast

with urban context where the same point may be reached by different paths.

Therefore, the closure of such road can also be considered as a forest site closure.

A mill closure means that no product can be delivered to this mill during the

closure. This can be caused, for example, by a decrease in the storage capacity

or by the breakdown of the loader associated with this mill.

In the event of such disruptions at a mill or at a forest site, we remove the

loading or unloading arcs at the corresponding vertices in addition to outgoing

driven arcs for all time intervals that lie within the estimated duration of the

disruption. We keep the waiting arcs at the mills. For trucks planned to ar-

rive at the closed vertices before the operations start back, their start vertices

are connected to the other mills or forest sites depending on whether they are

loaded or not. The remaining truck start vertices are connected to their current
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destination at the time the disruption is revealed. The rest of the network is

unchanged. If the disruption occurs on a road linking a mill to a forest site, we

remove the corresponding arcs in the network for all the time intervals that lie

within the closure duration.

Delays

Delays can be caused by a variety of unforeseen events. This includes bad

weather conditions (poor visibility, thawing soils, heavy rains), degradation of

forest roads, traffic jams, opening of hunting or fishing season and so on. Delays

can be observed at a single truck level. This is the case, for example, when the

truck is undergoing some mechanical issues and thus slowing down. In contrast,

when a forest road is damaged, for instance, all the trucks taking this road will

be impacted.

When a truck is delayed, we link its start vertex to its current destination

vertex but at an interval that takes into account both the remaining distance

and the estimation of the delay. For delays observed between two vertices, we

move the arcs to take into account the delay estimation. We do so for all the

arcs that lie within the estimation of the duration necessary to return to normal

operations.

A truck breakdown can also be seen as a delayed truck. We assume that we

have an estimate of the necessary time to repair this truck. If the repair time

does not exceed the planning horizon, the arrival time of the truck to its next

destination is delayed by the repair duration. Otherwise, we just remove the

truck from the network.

Demand and supply variations

Mill breakdowns may lead to a decrease in its storage capacity. The demand

of some products must therefore be adjusted downwards. Also, we may have an

increase in the demand for some products. If the mill is not already connected to

forest sites where the product is available, we add empty and loaded driven arcs

between the mill and these forest sites. We also adjust the demand parameter
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in the input data. Similarly, if, during the day, we have more accurate data

about the supply, its parameter is updated in the input data.

Loader breakdowns

We assume to have an estimate of the necessary repair time and we update

the number of available loaders during this period.

Figure 2 presents an example of a time-space network modification. This is

a simple case involving one mill, one forest site, and one truck. We assume that

the truck has a breakdown at the 7th time interval while it was heading to the

mill. The truck was planned to arrive at the 9th time interval and we assume

that three time intervals are necessary to fix it. Therefore, it is now planned

to arrive at the 12th time interval at the mill. The source vertex is moved to

represent the current truck position. The only arc that the truck is allowed to

take from this vertex is linked to the mill at the 12th time interval. After that,

it can either wait or unload. Note that there is no need to use waiting arcs

in this case since there is only one truck. We keep them only for explanation

purposes because these arcs are used when we have more than one truck. The

remaining arcs are feasible for the truck and it is up to the mathematical model

to choose the ones to include in the optimal solution.

Note that the number of forest vertices is smaller than mill vertices. This

is because we take into account the travel time necessary to go back and forth

between the mill and forest site within the mill opening hours. Other constraints

may include limits on maximal driving hours, which can be incorporated in the

network by removing end arcs leaving mill vertices at time intervals that exceed

these limits. A disruption might happen in the middle of a time interval and the

truck will not arrive exactly at one of the vertices of the network. In this case,

we link its source vertex to the closest following vertex. In practice, the truck

might have to wait anyway if other trucks are being unloaded. Otherwise, this

can be considered as an additional time margin for its following trips. Another

solution could be to refine the time-space network by decreasing the time step.
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(a) Initial network.

(b) Modified network.

Figure 2: Example of network modification.

This would yield, however, a larger network and therefore higher computational

time. To solve a weekly LTSP, which is decomposed into daily LTSPs, [23]

studied the impact of using a 10-minute discretization step to refine the solution

found with a 20-minute step. The solution was improved only for 2 out of 21

daily LTSPs by about 2%. For a real-time application, solutions must be found

quickly. Therefore, we do not consider further refinement of the solution.

When an arc is modified in the network, its cost is also updated according

the nature of the disruption. Once the new time-space network is obtained, it is

combined with the new cost matrix, the remaining demand and supply, and the
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number of available trucks and loaders. These constitute the input parameters

of the mathematical programming model.

3.3. Mathematical programming model

A two-phase approach for solving a weekly LTSP is introduced in [23]. The

authors solve, in the first phase, a tactical MIP to assign forest supply to mills.

In the second phase, they solve seven daily LTSPs where the demand is expressed

as a set of trips between forest sites and mills obtained from the assignment

phase. As the resulting transportation plans are vulnerable to unforeseen events,

the following mathematical model presents the results of adapting this work to a

real-time context. For example, as the demand and supply may vary over time,

we reintroduce supply constraints and disaggregate the demand by products in

the daily LTSP. The demand and supply are expressed in full truckloads since

the fleet is homogeneous and the supply is quite large in the case studies we

consider.

Some unforeseen events can have severe impacts on the supply chain and

prevent the demand satisfaction. A penalty cost for each unmet demand is

incurred. The penalty cost is chosen large enough to ensure demand satisfaction

whenever it is possible.

As the input data and the time-space network evolve over time, depending

on the nature of the revealed unforeseen events, one must index all the model

parameters and variables by the event category and by their occurrence time.

However, for the sake of clarity and ease of reading, we omit these indices.

Hereafter, we list the parameters and the variables of the model, and then

introduce the model itself.
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Parameters

F : set of forest sites,

M : set of mills,

V : set of trucks,

P : set of wood products,

I : set of time intervals,

N : set of vertices,

A : set of arcs,

A+(n) : set of outgoing arcs from vertex n,

A−(n) : set of incoming arcs into vertex n,

Aloaded
fmp : set of loaded driven arcs from forest site f to mill m transporting wood

product p,

AWLE : set of waiting, loaded and empty driven arcs,

Startv : start vertex for truck v,

Endv : end vertex for truck v,

AU
mi : unloading arc at mill m at time interval i,

AL
fi : loading arc at forest site f at time interval i,

ca : cost associated with arc a,

c : penalty cost of unmet demand,

dmp : demand of product p at mill m in full truckloads,

sfp : supply of product p at forest site f in full truckloads,

lmi : number of available loaders at mill m at time interval i,

lfi : number of available loaders at forest site f at time interval i.

Variables

xa : number of trucks that follow arc a,

δmp : unmet demand of product p at mill m.
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Model

Min
∑

a∈A
caxa +

∑

m∈M

∑

p∈P
cδmp (6)

∑

a∈A+(Startv)

xa ≤ 1, ∀v ∈ V (7)

∑

a∈A+(Startv)

xa =
∑

a∈A−(Endv)

xa, ∀v ∈ V (8)

∑

a∈A+(n)

xa =
∑

a∈A−(n)

xa, ∀n ∈ N\ ∪v∈V {(Startv, Endv)} (9)

∑

f∈F

∑

a∈Aloaded
fmp

xa + δmp = dmp, ∀m ∈M,∀p ∈ P (10)

∑

m∈M

∑

a∈Aloaded
fmp

xa ≤ sfp, ∀f ∈ F,∀p ∈ P (11)

xa ∈ {0, 1} , ∀a ∈ A+(Startv) ∪A−(Endv) (12)

xa ∈ {0, . . . , lmi} , ∀m ∈M, ∀i ∈ I, ∀a ∈ AU
mi (13)

xa ∈ {0, . . . , lfi} , ∀f ∈ F,∀i ∈ I, ∀a ∈ AL
fi (14)

xa ∈ {0, . . . , |V |} , ∀a ∈ AWLE (15)

δmp ∈ {0, . . . , dmp} , ∀m ∈M, ∀p ∈ P (16)

The objective function (6) minimizes the total cost, including waiting, load-

ing and unloading, and loaded and empty driven trips. The total cost includes

also the penalty costs of the unmet demand.Constraints (7) ensure that each

truck uses, at most, one start arc. Constraints (8) ensure that every used truck

goes back to its base. Constraints (9) are flow conservation constraints for each

mill and forest site vertex. This means that the number of trucks entering a

vertex must be equal to the number of trucks exiting from this vertex. Con-

straints (10) and (11) guarantee the satisfaction of the remaining demand while

not exceeding the supply. Constraints (12) ensure the unicity of the capacity

of start and end arcs. Constraints (13) and (14) ensure that each loader only

serves one truck at a time. Constraints (15) limit the capacity of waiting, loaded

and empty driven arcs to the number of available trucks. Finally, constraints
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(16) ensure the non-negativity of the unmet demand and limits its value to the

actual demand.

We assume that we have a weekly transportation plan as the starting point.

The transportation operations follow this schedule until an unforeseen event is

revealed. The time-space network and the input parameters are updated accord-

ing to the nature of the unforeseen event, then we solve the model for the current

day. Many vertices and arcs are removed from the time-space network to take

into account operational constraints. Indeed, the opening hours of wood mills

limit the number of feasible vertices. In practice, some forest sites are assigned

to only a subset of mills, which reduces the number of feasible arcs. Moreover,

the size of the time-space network becomes smaller as the transportation opera-

tions progress. The mathematical model can then be solved within a reasonable

computational time using a state-of-the-art commercial solver. These solvers

include some routines that are able to further reduce the size of the model dur-

ing the pre-processing phase. The transportation plan obtained for the current

day is used until another unforeseen event is revealed, and the optimization

approach starts over again. In the following day, we start with the initial trans-

portation plan for that day and solve the new daily problem if an unforeseen

event occurs. We use this approach in a controlled testing environment, where

we limit the impact of the disruptions to the current day. In practice, if an

event lasts beyond the end of the current day, the initial transportation plan for

the following day is no more relevant. In this case, optimization methods for

solving daily and weekly LTSPs ([8, 23, 26]) can be used offline to produce a

new transportation plan for the following days, since more computational time

is available.

4. Computational results

FPInnovations, a non-profit forest research centre dedicated to the improve-

ment of the Canadian forest industry through innovation, provided us with six

case studies from Canadian forest companies. All these case studies represent



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

weekly planning problems. Moreover, we developed a disruptions generator that

produces several “weeks” of unforeseen events. A week of unforeseen events is a

set of disruptions scattered over one week. The goal is to assess the performance

of the proposed approach on different forest supply chain configurations under

different disruption scenarios. The main performance indicators considered in

this paper are demand satisfaction, transportation cost and computational time.

4.1. Unforeseen events

Unforeseen events have different impacts on the transportation network. For

testing purposes, these events and their impacts are randomly generated. We

developed a discrete-event simulation procedure that produces a succession of

events that happen at different discrete times. Note that different events are

allowed to happen at the same time. The aim of this simulation is to generate

unforeseen events that may happen during a full week. Therefore, after running

the simulation procedure several times, we obtain different types of weeks with

regard to the severity of the impacts. A hard week, for example, may be con-

sidered as a spring week with thawing soils, traffic jams and increasing risk of

accidents because of the opening of the fishing season.

Some assumptions regarding the probability distributions of the disruptions

and their impacts were made. To represent the impacts of these events, one

needs to have an estimate of the expected time of the return to normal opera-

tions. It is common for the impacts to last for a shorter time and only a smaller

amount of the impacts lasts for a longer time. We use then an exponential dis-

tribution to generate the disruptions duration. Note that the impacts of some

unforeseen events are not measured in time units such as changes in the demand

but the same observation could be applied to the demand variation volumes.

As for the disruptions occurrence time, we assume that they can occur at any

time in the week. Therefore, we use the uniform distribution to generate their

occurrence time. We make also some assumptions about the maximum number

of events that can happen simultaneously. This is done for each single unfore-

seen event category presented in Section 3.2 and also for the total number of



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

all the event categories. During the events generation, if an unforeseen event

is generated and the maximum number of simultaneous disruptions is attained,

this event is rejected. Consequently, we need to keep track of the start and the

end of the unforeseen events and to maintain a list of the current events. To

generate the sequence of disruptions, we represent each disruption category by a

special data type in our program that memorizes the occurrence time and dura-

tion of the disruption. For each disruption, we consider two types of simulation

events : Start and End. The role of these events is to update the state of the

simulation given that a disruption starts or ends. This includes generating the

occurrence time and duration of the disruption, in addition to scheduling future

events as follows:

Event 1 Start

if the maximum number of simultaneous events is not attained then

Generate the current disruption random duration d

Schedule the end of the event in d time units

else

Reject the event

end if

Generate a random occurrence time t

Schedule the future disruption at time t

Update the number of current events and the statistics.

Event 2 End

Update the number of current events and the statistics.

To start the simulation, we schedule a dummy first Start event at the be-

ginning of the planning horizon. We also schedule an end-of-simulation event

at the planning horizon end to stop the simulation and extract the statistics.

This simulation was done using SSJ, a framework for Stochastic Simulation in

Java [27] .
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4.2. Case studies

The collaboration with FPInnovations allowed us to obtain realistic data

about the forest supply chain and to validate the proposed methods. We were

provided with six weekly planning problems. We assume that these problems

are initially solved using an optimization method rather than manually by a

dispatcher. For testing purposes, we use the method described in [23] to derive

a weekly transportation plan. In these case studies, the number of initially

available trucks is provided. However, the optimization method may pick only

a subset of these trucks to transport the wood products. Table 2 describes the

six case studies that we denote C1 through C6. For each case study, we provide

the number of wood mills (|M |), forest sites (|F |), wood products (|P |), the

total demand (D) in full truckloads, the number of initially available trucks

(|V |) and the number of trucks used in the resulting transportation plan (|Vu|).
The approximate driving cost (cD) is around 100$ per hour in average and the

average waiting cost (cW ) is about 75$ per hour. The difference between loaded

and empty driving costs is captured in the duration of these trips. The trip

duration between forest sites and wood mills ranges from 1 to 6 hours in the

6 case studies. The loading and unloading times (tLU ) depend on the used

equipment and the nature of the wood products. They are estimated at 20 or

30 minutes for these case studies. Therefore, we use 20 or 30 minutes steps to

discretize the planning horizon. The 6 case studies are weekly LTSPs, but we

solve the model (6)− (16) only for the current day of the disruption. The size

of the daily problem varies depending on the nature and the occurrence time of

the disruption. The last two columns of Table 2 represent the average number

of variables (V ar) and constraints (Constr) of the daily models that we solve

for each case.

To assess our approach, we performed complete information tests on the case

studies and compared the results to our real-time re-optimization approach. We

refer to complete information tests as settings where we assume we know all

the unforeseen events in advance and we run the optimization method on the

case studies taking into account these disruptions. In contrast, as we progress
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Case |M | |F | |P | D |V | |Vu| |cD| |cW | |tLU | Var Constr

C1 5 6 3 618 26 11 90 75 30 717 251

C2 5 6 3 400 13 8 90 75 30 628 238

C3 1 5 1 200 37 7 110 100 20 480 169

C4 1 5 1 215 10 8 90 75 20 373 142

C5 1 5 1 215 8 8 90 75 20 351 140

C6 4 59 12 273 40 11 90 60 20 5686 2002

Table 2: Description of case studies.

through the planning horizon and each time an unforeseen event is revealed, our

real-time re-optimization approach produces a new transportation plan for the

current day. This plan is used until the next disruption. Although the complete

information setting is expected to outperform our approach because it takes into

account all the disruptions in advance, we are nevertheless able to demonstrate

the effectiveness of our real-time approach, as we show next.

4.3. Experimental results

We implemented the algorithms in C++, and used Gurobi 6.0 with default

settings to solve the mathematical programming model. All experimentation

was done on an Intel Core i7, 2.2 GHz processor with 16 GB of memory. We

used the disruptions generator to derive several “weeks” of unforeseen events.

We used two copies of each week and sorted the weeks according to two criteria:

the total duration of all disruptions of a week for the first copy and the average

occurrence time for the second one. We then picked the 10th, 50th, 75th and

90th percentiles of these weeks. The lowest percentile, for instance, consists of

a week with events having the lowest impacts among the generated weeks (close

to the 10th percentile of disruption duration) and happening at the beginning

of the day (close to the 10th percentile of occurrence time). In contrast, the

highest percentile means that the events have hard impacts and occur close to

the end of the days. We also combined weeks with hard impacts (75th and

90th percentiles of disruption duration) and early occurrences (10th percentile

of occurrence time), and vice-versa (10th and 50th percentiles of disruption
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duration with 90th percentile of occurrence time). Note that a different set of

weeks is generated for each case study. The first part of Table 3 describes 8

weeks (W ) that we picked for each case study. For each week, we provide the

number of additional demand (DM) in full truckloads, the number of loader

breakdowns (LO), the number of closures (CL) and the number of delays (DL).

We do not generate additional supply since the latter is up to three times larger

than the demand. This kind of events will not have a considerable impact on

the solution. Some weeks may have the same number of disruptions but their

occurrence times are different, which explains the differences in performance.

For each of these weeks, we first transform the weekly time-space network

according to the generated events. Note that we limit the duration of an un-

foreseen event to the current day, to have a fair comparison with the real-time

approach. We then solve the problem for the whole week. This is the complete

information test. The second part of Table 3 compares the results of complete

information tests to the initial transportation plan without any disruption. All

the instances were solved to optimality. We first report the number of additional

trucks (AT ) used in the optimal solution compared to the initial transportation

plan. The usage of an additional truck implies a fixed cost so the model tries

to minimize the number of used trucks. This allows to use the under-utilized

trucks rather than using additional trucks. However, the model prioritizes the

demand satisfaction since a higher penalty is incurred in the event of default.

We report the unmet demand (UD) under these disruptions. In fact, in some

cases, even if the disruptions are known in advance, nothing can be done to

satisfy all the demand within the planning time. This includes, for example,

the case where a product is available at only a set of forest sites that are closed

by an unforeseen event or the case where the unloading equipment at a mill is

broken for a long time. The results for case study C6 show an example of this

behaviour.

The third part of Table 3 compares the results of the proposed real-time

approach, where the model is solved every time an unforeseen event is revealed,

to the initial transportation plan. The model is solved for a planning horizon
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Disruptions Complete information Real-time Deviation

W DM LO CL DL AT UD AT UD Co De

C1

1 5 3 2 13 0 0.48% 1 0.48% 0.00% 0.00%

2 20 6 6 17 0 1.72% 0 1.72% 0.00% 0.00%

3 22 7 7 20 0 2.03% 0 2.19% -0.15% 0.16%

4 31 9 7 23 0 0.92% 1 2.47% -1.06% 1.54%

5 6 3 3 13 0 0.00% 0 0.00% 0.00% 0.00%

6 21 6 3 17 1 0.47% 1 0.47% 0.25% 0.00%

7 14 7 5 20 0 1.58% 0 1.58% 0.00% 0.00%

8 26 9 9 23 0 1.86% 1 2.48% -0.33% 0.62%

C2

1 5 1 1 10 0 0.74% 0 0.74% 0.00% 0.00%

2 12 5 3 15 0 2.18% 0 2.18% 0.00% 0.00%

3 19 5 4 15 0 2.39% 1 2.63% 0.20% 0.24%

4 15 8 6 18 0 0.00% 1 0.00% 0.00% 0.00%

5 7 2 2 10 0 0.00% 0 0.25% -0.27% 0.25%

6 10 4 4 15 0 0.00% 0 0.00% 0.13% 0.00%

7 14 6 4 19 0 0.48% 0 0.48% 0.00% 0.00%

8 19 8 7 20 0 0.95% 1 1.19% 0.13% 0.24%

C3

1 7 2 1 8 1 0.00% 2 0.00% 1.05% 0.00%

2 14 5 5 13 0 0.00% 1 0.00% 0.52% 0.00%

3 17 6 5 16 1 0.00% 3 0.92% -0.40% 0.92%

4 19 8 6 19 2 0.00% 2 0.00% 0.49% 0.00%

5 9 2 2 9 3 0.00% 4 0.96% -1.93% 0.96%

6 11 5 6 14 0 0.00% 1 0.00% 0.00% 0.00%

7 17 5 6 16 1 0.00% 2 0.00% 0.50% 0.00%

8 23 9 7 20 2 0.00% 8 2.69% -3.08% 2.69%

DM number of additional demand in full truckloads LO number of loader breakdowns

CL number of closures DL number of delays

AT number of additional trucks UD proportion of unmet demand

Co transportation cost De deviation in unmet demand
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Disruptions Complete information Real-time Deviation

W DM LO CL DL AT UD AT UD Co De

C4

1 7 2 2 10 0 0.00% 1 0.00% 0.00% 0.00%

2 14 5 5 15 0 0.00% 1 1.75% -1.86% 1.75%

3 24 6 6 17 0 0.00% 2 1.67% -1.74% 1.67%

4 19 8 7 20 0 0.00% 1 0.85% -0.91% 0.85%

5 9 2 2 10 0 0.00% 2 0.00% 0.00% 0.00%

6 11 5 5 15 0 0.00% 2 0.00% 0.00% 0.00%

7 17 6 6 17 0 0.00% 0 0.00% 0.00% 0.00%

8 19 8 7 20 0 0.00% 1 2.99% -3.01% 2.99%

C5

1 7 2 2 10 0 0.00% 0 0.00% 0.00% 0.00%

2 14 5 5 15 0 0.00% 0 2.62% -2.80% 2.62%

3 24 6 6 17 0 0.00% 0 2.51% -2.63% 2.51%

4 19 8 7 20 0 0.00% 0 2.56% -2.73% 2.56%

5 9 2 2 10 0 0.00% 0 1.34% -1.43% 1.34%

6 11 5 5 15 0 0.00% 0 0.88% -0.95% 0.88%

7 17 6 6 17 0 0.00% 0 0.43% -0.46% 0.43%

8 19 8 7 20 0 0.00% 0 3.42% -3.64% 3.42%

C6

1 5 2 2 8 0 0.72% 0 0.72% 0.00% 0.00%

2 12 5 4 16 0 1.05% 6 1.05% 0.74% 0.00%

3 19 7 4 17 0 4.79% 0 4.79% 0.00% 0.00%

4 15 9 5 20 0 5.21% 0 5.21% 0.00% 0.00%

5 7 2 1 10 0 2.50% 0 2.50% 0.00% 0.00%

6 10 5 3 15 0 3.53% 0 3.53% 0.00% 0.00%

7 14 8 6 18 0 4.88% 0 4.88% 0.00% 0.00%

8 19 10 7 21 0 5.14% 0 5.14% 0.06% 0.00%

Table 3: Results on case studies.
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starting at the event occurrence time and ending at the current day end. For

case studies C1 through C5, an optimal solution was found within 1 minute.

Case C6 is larger and was solved to optimality within 10 seconds to 5 minutes

depending on the nature of the events. We report the number of additional

trucks used by our approach compared to the initial transportation plan and

the unmet demand. The fourth part of Table 3 represents the deviation in

transportation cost (Co) and unmet demand (De) compared to the complete

information test. The unmet demand deviation is computed as the difference

between the two approaches resulting unmet demand divided by the total de-

mand. This includes both the initial demand and the new requests revealed

during the week. The deviation in transportation cost does not include both

the fixed cost for using trucks and the unmet demand penalty. The compar-

ison is done only for routing costs. Negative values of cost deviation do not

mean that the real-time approach does better than the complete information

approach. It only means that the real-time model was unable to satisfy as much

demand as in the complete information setting. This happens generally when

the request of additional volumes is revealed close to the end of the day. Know-

ing in advance this information, the complete information approach manages to

satisfy the demand. In contrast, the real-time approach does not have enough

time to satisfy this late revealed demand.

Although the complete information benefits from an information advantage,

the real-time approach offers the same performance in about 50% of the cases.

Only, one must note that in some cases, even though the unmet demand and cost

deviation are equal for both approaches, the number of used trucks might be

unequal. If a truck undergoes a breakdown or a lot of delay, the first approach,

knowing this information in advance, picks another truck instead beforehand. In

contrast, the real-time approach uses this truck until these events are revealed

and decides then to add an additional truck as a replacement. The routes

produced by the two approaches are the same, but they are not operated by the

same trucks.

The case study C5 is the same as C4 under the same disruptions scenarios.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The only difference is that no additional truck is allowed in C5. The results show

that the real-time approach yields an average difference between the two cases of

0.81% for the unmet demand and -0.89% for transportation cost. Since the main

goal is to satisfy the demand, adding a truck is the best option for this context.

Also, for these two case studies, one may notice that the deviations in costs are

approximately proportional to the unmet demand deviations. This is due to

the configuration of these case studies. In fact, we have one product and one

mill and the distances between the forest sites and the mill are approximately

similar. Therefore, the cost of transportation is approximately proportional to

the number of demand that is satisfied.

Compared to the complete information scenario, the proposed real-time ap-

proach produces good quality solutions since the cost deviation remains under

3.64% and the demand deviation is under 3.42%. This includes three extreme

cases: C3, C4 and C5 under week 8. In these cases, there were late requests

for new wood loads. Around 5% of the total initial demand was added close to

the end of the day. This naturally explains the performance difference between

the two approaches. In the real-time approach, some demand is revealed too

late that it is impossible to satisfy it, while we assume that we are aware of this

demand in the beginning of the week in the complete information approach.

Another extreme case is C6. The results for C6 show an example where diffi-

culties are met to satisfy the demand even for the complete information setting.

We recall that some events prevent the demand satisfaction. For example, the

demand cannot be satisfied if a loader at a mill is broken for a long period on

a certain day. With an equal performance with regards to demand satisfac-

tion, the complete information approach outperforms our approach by 0.06 and

0.75% in two of the eight generated weeks for this case, while it produces the

same results for the 6 remaining weeks. This shows that the proposed approach

results deviate slightly from the ideal setting where all the information about

the disruptions is known in advance, and therefore demonstrates effectiveness

of the real-time approach.
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5. Conclusion

We have introduced a new approach to re-optimize the log-truck transporta-

tion plans in real-time when an unforeseen event is revealed. This approach uses

a time-space network to represent the evolution of the transportation network

over time and the changes it undergoes following a disruption. The allowed

trips and loading/unloading operations are used as an input for the mathemat-

ical model. The latter is solved to obtain a new transportation plan. Ease of

deployment of this new plan is taken into account through ensuring the continu-

ity of trips that are in progress when the disruption is revealed unless they are

directly impacted by the disruption. A simulation procedure was developed to

generate the unforeseen events for real applications provided by FPInnovations.

Compared to a complete information scenario where disruptions are assumed to

be known in advance, the proposed approach produces very good results. Also,

the mathematical model was solved in a few seconds and is thus well suited for

a real-time context.

Future work involves using a heterogeneous fleet of trucks. The presence of

trucks with a loader onboard may give more recourse strategies especially when

facing loader breakdowns at forest sites or mills. The approach proposed in

this paper could be adapted to this context. The time-space network could be

used to represent the disruptions impacts on the forest supply chain. However,

since the trucks may have different capacities and loading constraints, one must

duplicate the arcs for each truck class. This will increase the size of the problem.

In this context, column generation could be used for solving this problem.

In the problem that we study, a part of the input is revealed dynamically

and the routes are modified accordingly. The dynamic input corresponds to

the unforeseen events and the transportation plan is re-optimized every time a

disruption happens. One drawback of this approach is that it does not anticipate

the disruptions. A stochastic model would be able to produce solutions that

are less vulnerable to disruptions. Unfortunately, there exists no study on the

probability distributions of such events in the forest industry. Conducting such
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a study is challenging given that it is hard to get historical data. This is,

however, an avenue for future research since many forest companies are investing

in log-trucks with onboard computers, positioning systems, and communication

technologies that can be used to collect accurate data on disruptions.

Acknowledgements

The authors would like to thank the Natural Sciences and Engineering Re-

search Council of Canada (NSERC) Strategic Network on Value Chain Op-

timization (VCO) for their financial support. In addition, we wish to thank

FPInnovations for their valuable collaboration.

References

[1] A. Weintraub, C. Romero, Operations research models and the manage-

ment of agricultural and forestry resources: a review and comparison, In-

terfaces 36 (5) (2006) 446–457.
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[15] M. Rönnqvist, Or challenges and experiences from solving industrial appli-

cations, International Transactions in Operational Research 19 (1-2) (2012)

227–251.

[16] A. Alonso-Ayuso, L. F. Escudero, M. Guignard, M. Quinteros, A. Wein-

traub, Forestry management under uncertainty, Annals of Operations Re-

search 190 (1) (2011) 17–39.
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