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Abstract

The field of spatial epidemiology has evolved rapid the past two decades. This paper
serves as a brief introduction to spatial epideogpland the use of geographic information
systems (GIS) in applied research in epidemiold@gie highlight technical developments, and
highlight opportunities to apply spatial analytietimods in epidemiologic research, focusing on
methodologies involving geocoding, distance esiiomatesidential mobility, record linkage and
data integration, spatial and spatio-temporal elusg, small area estimation, and Bayesian
applications to disease mapping. The articlesuged in this issue incorporate many of these
methods into their study designs and analyticah&aorks. It is our hope that these papers will

spur further development and utilization of spadiahlysis and GIS in epidemiologic research.

I ntroduction

Defining spatial epidemiology

All students of epidemiology learn that descriptamdemiology focuses on the triad of
person, place and time [1]. While epidemiologise@ch focusing on place or location
historically received considerably less attentimodern epidemiology increasingly incorporates
the spatial perspective into research designs atkls. Spatial factors have also become
prominent features in etiologic research, espgca@hcerning host-vector-agent interactions,
but also in guiding social and environmental epidogic investigations. Spatial methods are
also progressively incorporated into health ses/iesearch focused on specific diseases, health

conditions or risk factors.



The field of spatial epidemiology has evolved otrer years. Elliot et al. [2] identified
four types of spatial analyses in epidemiologydisase mapping, 2) geographical correlation
studies, 3) risk assessment in relation to poifinersources, and 4) cluster detection and disease
clustering. Only a few years earlier, Englishthiap defined geographical epidemiology as “the
description of spatial patterns of disease incideartd mortality”. More recently, in a widely
used spatial statistics text, Lawson [4] statesgpatial epidemiology “concerns the analysis of
the spatial/geographical distribution of the incide of disease”. Here, we argue that spatial
epidemiology encompasses research that incorpdregespatial perspective into the design and
analysis of the distribution, determinants, andtontes of all aspects of health and well-being

across the continuum from prevention to treatment.

Spatial epidemiology is not synonymous with heatdical geography. Spatial
epidemiology refers to inquiries that use epideoga study designs that involve spatial data or
spatially-derived information about study subjebtsalth facilities or sources of
exposure. Health or medical geography, a subdiseipf human geography, encompasses
research applying geographic analytical methodwetdth, disease or health care issues. Its
distinguishing feature is the primary focus on gpgatterns and context, while spatial
epidemiology is inherently focused on populatidsis YWhile many studies, especially those
involving interprofessional research teams, comtimeemethods of both disciplines in creative
and innovative ways, far more often spatial epiddogic research does not fully incorporate the

geographic perspective, and vice versa [6].

In this brief overview, we argue for an expandde for spatial epidemiology within our

discipline, and demonstrate the importance of ad®oscope for spatial perspectives in the



study of epidemiology through the series of arficteat follow in this symposium on

“Geographic Information Systems and Spatial Methinodspidemiology”.

The concepts of place and neighborhood

Health outcomes are influenced by an interplayifd¢iebnt factors, such as individual
attributes, the physical and social environmentsdividual interacts with, cultural norms and
both the provision and utilization of health seedd7]. It is widely recognized that the place
where an individual lives or works should be coasid as a potential disease determinant [8].
For example, women living in rural areas may havieavel longer distances to reach
mammography facilities, potentially leading to &m&ase of mammographic breast screening or
a delay in their diagnosis [9-11]. Children livimga pedestrian friendly environment where
parks and playgrounds are readily accessible are hikely to engage in physical activity,
reducing odds of obesity [12, 13]. Along the saramyhigher risk factors for obesity are
generally observed in food desert areas, whicltla@eacterized by poor quality food
environments and a lack of supply of supermarkéts fresh food [14, 15].

Residents located in proximity of major traffic ddors are exposed to particulate matter
and diesel exhausts, causing a variety of respyratiod cardiovascular diseases [16]. Individuals
residing in high-crime neighborhoods may indireci&velop stress-related behaviors, such as
anxiety and higher blood pressure [17, 18]. Thaes&ances illustrate the breadth of pathways
through which both physical and social environmeagswell as provision of health services,
give rise to health disparities. Documenting the af the geographic environment where
individuals live and interact (often called “actiwvspaces”) will improve our understanding of
health outcomes. This has deep policy implicationsocal health interventions and resource

allocation decisions, ultimately leading to a reglut of health disparities.



A neighborhood is typically defined as the geograjginea relevant to the specific health
outcome being studied [8]. However, neighborhoaislme delineated by the extent of the
individual’s spatial interaction, or administratiyelelimited at the scale at which policies are
implemented (county, state). Secondary datasett a&sithe American Community Survey
published by the U.S. Census Bureau- help to oweecihe absence of socioeconomic data in
most U.S. medical records [19]. The scale at whiehprimary or secondary datasets are
available often dictates the spatial granularitwhich the analysis is conducted [20]. Spatial
analyses with individual level data from public lea@atabases are also often limited by privacy
policies required by data managers.

Patient information may be aggregated at the ZIBeGQevel to comply with the Health
Insurance Portability and Accountability Act (HIPAR1]. As such, uniformity is assumed
within the unit of analysis, but sharp contrasty mecur among adjacent units. Further, the
aggregation of neighborhoods does raise the isstne modifiable areal unit problerMAUP);
using different boundaries may lead to significadifferent analytical results [22]. As a rule of
thumb, analyses should be conducted at differaeideof granularity to test the robustness of
the spatial relationships and the effect of diffeerartificial boundaries.

What defines a neighborhood and the concept oé fegigregated, disaggregated) will
influence the choice of methodologies and ultimatelpact the results. Spatially-based
regression, contextual and multi-level modelingsome of the key methods developed to
incorporate neighborhood effects [8, 23]. These@gghes allow researchers to estimate the

impact of neighborhood effects after controlling iiedividual characteristics.



Role of geographic information systemsin spatial epidemiology

Defined by Cromley and McLafferty [24] as “computssed systems for the integration
and analysis of geographic data,” geographic in&tion systems (GIS) can describe, analyze,
and predict patterns using feature (cartograpmd)aitribute data. GIS have been used in many
epidemiologic applications, including disease magprate smoothing, cluster or hot spot
analysis, and spatial modelling. In its simplestfpGIS is often employed to create spatially-
explicit variables such as availability and acdassy scores (e.g., food access), built
environment measures (e.g., land use), environmexgpasures (e.g., air pollutant
concentrations), and demographic indicators (paggent of persons in poverty). Measuring and
describing the extent of spatial relationshipdss a key function of GIS, which can be as
simple as calculating the distance between twotpa@nas complex as quantifying spatial
dependencies in analytic models or identifying lige@arying predictors. As described by

Thornton et al. [25] GIS offers opportunities tteigrate data across multiple databases and

spatial scales for display, management, and asallysirable 1, we identify several ways to

apply GIS to human immunodeficiency virus (HIV).

Table 1. Functions of GISand related epidemiologic applicationsin HIV research

GI S Functions Application to HIV Research

Store and measure spatiaDistance between homes of newly diagnosed HIV casdghe
relationships closest Ryan White Clinic

Display spatial Bivariate map showing the relationship between tptiVv
relationships prevalence and poverty rate

Analyze attribute and Count of the number of HIV cases within 30 milegath Ryan
feature data White Clinic




simultaneously

Manage data from Create a geodatabase with county HIV incidencepaedalence
multiple sources rates, Ryan White Clinic locations, community-baseghnizations
providing HIV services, and county demographic catiors

Identify spatial patterns Conduct a hot spot anslgEnewly diagnosed HIV cases in U.S.
counties

Explain spatial patterns| Determine where the geexa of men who have sex with men
(MSM) is associated with the incidence rate for HiMJ.S.
counties using GWR

Footnote: A variety of studies have used GIS apgres in the context of HIV patient and
service provider data [26-32].

In descriptive epidemiology, thematic or color-sbddnaps produced with GIS are
useful for identifying areas at high risk for epigies, highlighting population health disparities,
examining resource needs, and ultimately, formuogdgliypotheses that lead to generation of
explanatory models. Analytically, GIS tools canused to explore spatial or spatiotemporal
clustering, investigate locally-varying relationssi and explicitly model or adjust for spatial

dependencies in one’s data.

Just as research has shown that interventions @seeffective when implemented at
multiple levels [33], we can gain more insight imdividual-level outcomes by considering the
context in which people live and work [8]. In thentext of healthcare, it is equally important to
consider the location and characteristics of wipe@ple seek their care (i.e., provider- and
system-level factors). Contextual information cancbnsidered in both descriptive and analytic
ways. For example, one could explore the distrdsutif greenspace or recreational facilities
within a region, as well develop a greenspace indgxedict the probability of meeting physical
activity guidelines or individual weight status. ¥Whboth individual and area-level data are

available, hierarchical models can be used to exambow outcomes vary at both the individual



and/or group level (see example from Mobley etthlis, issue [34]), as well as what factors
outside an individual’'s immediate control impactitrhealth and wellbeing. Generalized
estimating equations, which also account for tireetation of persons within groups, treat this
group-level effect as a nuisance that simply néed® adjusted for in one’s analysis. As
epidemiologists, we need to be cautious about usigitnods to adjust away potentially
meaningful information about the role of “placetvhether operationalized at the workplace,

school, or residential level, on our health.

Study Design Per spectives

Cross-sectional studies typically examine the idhgtron of exposures and outcomes
simultaneously, frequently through use of populattased administrative health data or
representative sample surveys. Studies using-sexg®nal designs rarely integrate the spatial
perspective directly, because spatial referentedgh observation are not collected or are at a
spatial resolution that does not permit localizecestigations. For example, the National Health
Interview Survey includes a data element for brda®l Census regions (East, South, Midwest,
West) [35], but nothing more spatially specific,ilglthe public use version of the National
Survey of Children’s Health has a data elemensfate of residence and another for residence in
an Metropolitan Statistical Area (MSA) [36], buese do not permit spatial analyses within a
state. Similarly, surveys such as the Behaviorsk Ractor Surveillance System (BRFSS) [37]
will often mask county-level information due to dhsample sizes. However, some states such
as Florida routinely oversample to support ZIP Cledel analyses every third year. Ecological
studies are a form of cross-sectional study desigvhich the unit of analysis is grouped, by
political unit (e.g. nation, state, county, ZIP @pdensus tract), health facility, school, or other

organizational unit. Most ecological studies hthespotential to incorporate the spatial



perspective into their study designs and analysksvever, while researchers frequently map
data from ecological studies using administrativpdlitical units, the statistical analyses
performed are typically aspatial (i.e., do not astdor similarity or clustering between
neighboring units). With tools such as spatial sthing techniques, spatial regression, and
multi-level modeling readily available to epidenagists, more sophisticated analyses that take
into account the spatial dependence present in matagets should be considered.
Case-control study designs compare exposuterieis of persons with a disease or health
condition (cases) with persons who do not havedisaase or health condition but are
representative of the population from which casesdentified (controls) [1]. In general, the
case-control study does not lend itself well tatiggh@pidemiologic analysis, unless cases and
controls are selected from a population-based sagfsame that incorporates location into its
design. However, there are several areas whengsthef GIS tools and spatial statistical
methods can enhance case-control studies. Thelseénestimation of measures of access (e.qg.
distance to a health facility, travel times), ndigthood amenities, and other local estimates
derived from spatial surfaces (e.g., food swampkdmserts, residential segregation, inequalities
in income and wealth or measures of neighborhopd\dsgion). If addresses are available for
all cases and controls, these can be geocode&éstien 3), and linked to Census level socio-
demographic variables or environmental data (e:gradlutants, water quality, remotely sensed
data on land use). For example, Lupo et al. fahatineighborhood deprivation, measured at
the census tract level, was associated with preseihdeft lip (with or without cleft palate)
among Texas residents in a birth defects regiS8Y. [f it is feasible to incorporate collection of
spatially-specific identifiers into case-contral@dy designs, these studies may become more

informative.



Cohort studies follow study subjects over time, parmg those with and without
exposures of interest to determine their outcordiseése, mortality) [1]. These study designs
can take many forms, and utilize a variety of sepitéted biostatistical techniques. As with
cross-sectional and case-control studies, epidegigik typically do not incorporate spatial
analysis directly into their study designs. Colstudy data can be integrated with Census,
environmental, and other administrative-level dalteen geocoded to specific addresses or
administrative units (e.g., Zip Code centroids)or®loften than not, these studies are spatially-
enabled, in that the researcher uses spatial rdfet@ acquire additional data to associate with
each study subject, but do not incorporate spatialysis into their study designs. A common
use of GIS-derived data in cohort studies is tleeaf®environmental data such as air pollution
and other environmental contaminants on healthom¢s such as mortality, cancer, or
respiratory illnesses [39, 40]. Additionally, steslihave linked changes in the neighborhood food

environment with body mass composition in prospecstudies [41-43].

Methodologies

Geocoding and uncertainty

Locational information, for instance in the formaxfdresses, can be transformed into
geographic coordinates through a process knoweasoging [44]. The procedure requires that
addresses from the epidemiological dataset arelatdized and comprised of an address
number, street name, city or town name, state dRdCode [45]. Using a reference dataset -
typically a street database-, geographic coordinet@ be estimated by comparing and

interpolating the address to the range of addrdssemch segment of the reference dataset. The
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procedure is sensitive to the completeness ofddesases such as the presence of “P.O. Box”
and on the quality of local and regional streetiroatwork files [46, 47].

The quality of the geocoding is evaluated basethemmerits of three components [48]:
the match rate (percentage of records being gedgotie individual match score (how well the
standardized address matches the street datalmast)eamatch type (e.g. geocoding at the street
level or Zip Code). Low individual match score do@ match type accuracy will increase
positional errors, which are typically larger imaliareas. Such errors pose a serious challenge in
spatial analysis, since it may result in (1) anarnedtimation of local risk, (2) the misplacement
of high-risk areas of a disease, (3) a misevalonaifcspatial association, and (4) biased evidence
for decision makers.

Geocoding can be implemented using either commdatta software or online.

Although the set-up costs to prepare the referdataset and standardize the addresses can be
expensive when using commercial GIS software,dpgoach allows the researcher to geocode
large amount of records. Online geocoders aredneetypically use more recent street network
data, which is likely to result in lower positiorators if one’s data is also fairly recent (if
working with older data, the opposite is true). léaer, online geocoders are often limited as to
how many records can be processed and raise imp@tsaies of confidentiality, since addresses
are uploaded online [48].

Due to privacy concerns such as HIPAA, health depamts may release geocoded
address information only in aggregate form, sucfoafve-digit ZIP Codes [24]. Alternatively,
researchers can geomask the geocoded data totghequivacy of individuals. Geomasking

modifies the geographic coordinates of an indivicdwent by displacing the original location to

11



some distance while maintaining spatial resoluf@mapping purpose and cluster detection

[49, 50].
Distance estimation

Geographic accessibility to a health service depeamdts availability and the impedance
to access that service. Greater travel impedanitaffact both the provision and utilization of
health services [51]. A low level of geographicessibility may have dramatic consequences in
terms of health outcomes. Due to recent advanc&sSndifferent metrics can be used to
estimate travel impedance such as travel distdfueeiflean or network-based), travel time and
travel cost [52, 53]. While estimating travel impede by means of Euclidean distances is
extremely straightforward, this approach can leasktrious underestimation of distances. When
modeling travel, the ideal route between two pomtsbe the one that minimizes the selected
measure of impedance. Travel modeling should igéadlorporate speed limits, honor one-way
restrictions, and reflect connectivity among roadsost of which can be specified in a GIS-
based analysis. Travel time may be a more precessuane of impedance since it incorporates
en-route conditions, such as congestion.

Online mapping providers such as GoogleMaps or MegsQoffer unprecedented
support for estimating travel impedance. Howesenjlar to geocoding services, the number of
analytical queries that can be requested is usliadited, the accuracy of the travel estimates has
not been extensively studied, and such approadigsissues concerning data confidentiality.
Through its Network Analyst extension, ArcGIS degksoftware can produce distance and
travel time estimates that account for road featwih relative ease. Similarly, ArcGIS Pro can
be used to calculate distance and travel time US8BRI's cloud-based road network data,

although users are limited to no more than 1,0@§lredestination pairs.
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While estimation of distance and/or travel time caw be done fairly simply,
epidemiologists must consider which measures ast retevant to their population/region. The
choice of origin and destination locations is ataportant, as variation in spatial scales,
accuracy, and context can affect the results. kKample, Khang et al. (this issue) [54] explores
the probability of diagnostic resolution after @marmal mammogram as a function of several
operational definitions of distance: distance friv@ patient’s residence to the screening facility,
the diagnosing facility and the closest mammogrdphbiity. Similarly, in a comparative
analysis of GIS-based measures of access to marapiogrLian et al. [55] found that travel
time and facility density were poorly correlatediwodds of late-stage breast cancer, while
spatial accessibility scores that considered bopiply and demand (i.e., two-step floating
catchment area) were significantly associated iatistage diagnosis.

Residential mobility

Epidemiologists often include neighborhood faciarsiodels examining determinants of
individual health outcomes. In a GIS, neighborhobdracteristics are assigned to individuals
based on their residential location, a process knasgpatial join Results from this process are
particularly informative to establish whether indiwval disease conditions may be caused by

exposure to hazardous environment [56].

While residential mobility is widely recognizedtime research literature, typically only
the attributes of the neighborhood where the intlial resides at the time of diagnosis are
incorporated into spatial epidemiologic analyséd.[Bailure to include longitudinal residential
profiles has serious implications since the locatihere the case was diagnosed may not
necessarily coincide with the place where expostaged or occurred. In a seminal study by

Pershagen et al. [58], the authors assessed idemgal history of all study subjects, basing

13



their exposure assessment on radon measuremetitshaellings in which the subject lived for

2 or more years over a period of 30+ years. Theeisd residential histories is further
exacerbated for (1) individuals with high mobili) diseases with long periods of latency such
as cancer and (3) places where the conditionsecétirironment may change rapidly [59].

In maternal and child health, most studies assiaerésidential mobility does not occur
during pregnancy; as such the use of maternaleesalat birth may result in exposure
misclassification, biased estimates of associaimhimprecise risk estimation [60, 61]. In a
study by Miller [62] in the metropolitan Atlantagien, approximately 22% of pregnant women
changed their residential location from the dateafception to delivery [61], although most
relocation distances were short and residentiation remained generally within the same
county. Exposures that are homogenous within a aamtgnmay be well estimated with limited
residential data, but this assumption may not faidonger distances.

Although the U.S. Census Bureau publishes mignatitormation between counties and
the proportion of residents who lived in the sae®dence one year ago [63], the lack of data at
a more disaggregated level may be one reason wkyepaemiological do not incorporate
residential histories. Hughes and Pruitt (this@3464] suggest that electronic medical records
(EMR) derived address histories have the potetdialleviate this pitfall. More work is needed

to develop spatiotemporal (cumulative) models gfcesure [59].
Data linkages

Geocoding is a form of record linkage, in which g information is converted into
latitude-longitude (X-Y) coordinates or adminisivatunit codes (e.g., Federal Information
Processing Standard/FIPS codes in the U.S.). »@ample, Barnes et al. (this issue) converted

the self-reported address of each survey respondem X-Y coordinate for the purpose of
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measuring the presence, types of, and distanatbretailers around survey participants. More
commonly however, researchers link data from vardatabases across spatial units using
geocodes. In arecent example [65], the assosibtbween income inequality and infant
mortality was examined, using U.S. states as whignalysis. While this study was aspatial,
data from vital records were linked with socioeammodata using state-level geocodes. Health
services researchers and epidemiologists shoulanhiéar with the Area Health Resources Files
(AHRF) [66], providing hundreds of data fields wihcio-economic, demographic and health
services provider and utilization data by courBymilarly, epidemiologists frequently use
geocodes for census units to access data fromQ&i&us and associated American Community
Survey databases. Increasingly, researchers s¢sgaocodes to link individual records or
census units surrounding their residences to emviemtal databases, using GIS technologies to
integrate data on ambient air pollution, soil comtaation, land use cover, temperature
fluctuations, and other measures of phenomenaeiphlysical environment with data on health

behaviors and outcomes.

Overview of spatial and spatio-temporal clustering

According to McLafferty (2015) [67], a spatial ctas—also termed hotspot- can be
defined as “...an unusual number of cases withinpuladion, place and time period...”".
Practically, an epidemiologist may be interesteddtermine whether disease rates around a
hazard site are elevated, or if the number of tef@adividuals is higher than would be
expected. Accurate cluster information providespeal knowledge for public health
interventions, such as screening, prevention anceglance. A series of robust statistical

approaches have been developed to detect spatiphttotemporal clusters of diseases.
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According to Walter Tobler’s First Law of Geographgverything is related to
everything else, but near things are more reldtad tlistant things [68].” This principle,
otherwise known aspatial autocorrelatioror dependence, is a key component of spatial
epidemiology. Traditional generalized linear modékt assume the independence of modeled
observations will likely produce inaccurate estiesain the presence of spatial autocorrelation. It
is generally desirable to estimate the amountusteling using spatial search strategies, test its
significance (for instance by means of Monte Cantoulations) and finally visualize location of
clusters along with their magnitude or extent. @latlustering tests evaluate the presence of
clustering over the study area, while local clusggstatistics tests for specific clusters at @ifin
scale. With the increasing technology and datalawai to incorporate contextual or locational
data into our epidemiologic models, epidemiologwtalld be remiss to ignore the potential for

spatial autocorrelation or non-stationarity in thaata.

Spatial clustering

Evaluating the clustering of individual diseaseesais typically implemented using a
count statistic [69]. Th&-function is a clustering statistic which estimatfes magnitude of
clustering at different scales [70]. It uses audac or elliptical search window over each case to
count how many other cases occur in the near pibxiithe window is then moved to the next
points and the process repeated. The entire proeeslaonducted at different search windows.
The scale at which clustering is the greatestas thetermined and can serve as an input for the
kernel density estimation technique, which is esalya point density function helping to
visualize the location of clusters on the map [68]te that variable-size, adaptive filters can be

used instead of static search strategies [67]jspsrticularly important when there is a
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substantial amount of heterogeneity in the undeglyiopulation, such as the small numbers

problem [71, 72].

For clustering of cases aggregated into spatia$ uspatial autocorrelation-based
methods such adoran’s 1[73], tell us whether nearby units tend to exhdomilar rates. Spatial
autocorrelation statistics measure the degree tohvdpatial features (e.g. Zip Codes, census
tract) and their associated values tend to bearledttogether in space or disperdddran’s |
value range from -1 to +1, with a value of -1 damgthat units with low rates are located near
other units with high rates, whilehdoran’s | value of +1 indicates a concentration of spatial
units exhibiting similar rates. Although tiMoran’s | statistic informs on the presence of
clustering, it does not indicate where such clgstecur. The local version of tivoran’s |
(local indicators of spatial associationld&A[74]) identifies both the locus and shape of these
clusters. Another commonly used local clusteringraach is th&ulldorff ‘s spatial scan
statistic [75], which identifies the most likelysgiase clusters in a study area by maximizing the
likelihood that disease cases are located witlsietaf concentric circles that are moved across
the study area. Both number of observed and expeetges are counted and the most “unusual”
excess of observed cases is reported. The appioéekible to incorporate heterogeneous
background population densities and adjust for ipleltesting. Several packages (i.e., R,
GeoDa, ArcGIS, SaTScan) can implement and visublizl global and local tests for

clustering.

Space-time clustering

Several statistical approaches have been proposieteéct spatiotemporal clusters of

diseases. For individual data, tkeoxtest for space-time interaction evaluates thegmes of a
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space-time cluster at given spatial and temposthdces [76]. Knox’s method is limited due to
its arbitrary definition of closeness and the catidistance does not account for population
heterogeneity [77, 78]. THdanteltest [79] incorporates the notion of distance gecdhat
nearby pairs of events are more important thamligiairs. However, thdantel statistic
assumes a linear association between space andithieh is violated, especially for infectious
diseases. Thdacquez's k-Nearest Neighbor k-Nfdtistic [78] addresses the weaknesses of the
KnoxandMantel statistics, by counting the number of pairs ofrese¢hat are nearest neighbors
in both space and time. The space-tRigley’s Kfunction evaluates the magnitude of space-
time clustering at different spatial and tempocalss [69]. Results from thenox Mantel k-NN

or thespace-time K-functionan serve as an input to visualize space-timepett for instance

by means of the space-time kernel density estim4&0, 81].

Local space-time clustering techniques includestiece-time permutation statistic [82],
which uses a cylinder with a circular (or elliptickase, where the vertical axis represents time.
Kulldorff ’'s space-time scan statistic [83] or the extensioiie LISA statistic in time are
generally used to estimate space-time clusterirgggfegated data, such as space-time change in

disease rates across a study region.

Although statistical tests of clustering are usébulretrospective analysis, prospective
approaches such as the cumulative sum (cusum) thatkadesigned for time series data which
are updated on a regular basis, or when new eweatsbserved [84]. These techniques are able
to quickly detect deviations from the mean in aeseof events to detect clusters as quickly as
possible [85]. Software products such as SaTSa@jrej8d Geosurveillance [84] incorporate

prospective tests.
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Small area estimation

Local health behavior and outcome data are impbftaprogram planning and
evaluation, resource allocation, and policy-malaagvities. Although interest in local-level
data is growing, population-based surveys poweayadake national or state-level inferences are
rarely adequate to support direct estimation foalsareas such as counties. Unit-level small
area estimation (SAE) techniques have become tamethod to derive rates for counties
and other small geographic areas given these kfiowations. Indirect estimates for small
areas are usually derived using synthetic or newidl modeling. Although both approaches are
based on prediction models, indirect estimatescaramultilevel modeling also account for
random area-level effects not explained by the Gates alone [87]. Multilevel model-based
approaches to small area estimation have beenstxgnapplied to population-based health
surveys such as BRFSS on topics ranging from C@ebodontitis, smoking prevalence,
obesity, and HPV vaccine uptake [88-92]. A multdg\post-stratification approach developing
for polling research has been used in more reagarsyto provide granular and precise disease
estimates at a variety of spatial scales. The ginatification approach is unique in that it
accounts for the underlying distribution of popidatsuch as age, race, and gender at the small
area levelK).[93] In essence, estimates are created for ga@sygible subgroup combination and
then averaged by their weighted distribution in k@@ak. In this issue, Lin et al. [94] applies
this multilevel, post-stratification approach tadiestion health-related quality of life in adults
aged 65 and older using data from the Behaviorsik Ractor Surveillance System. One can also
use the spatial structure of the data to improeesthall area estimates utilizing the conditional
autoregressive (CAR), intrinsic conditional autoesgive (ICAR) or simultaneous

autoregressive (SAR) modelling frameworks.
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Bayesian approaches to disease mapping

The primary focus of disease mapping is on idemigfyocal variations in the incidence or
prevalence of a health condition, disease, or heaitcome. At its most elementary level, an
analyst can plot the distribution of outcomes abkaropleth map, classifying each areal unit into
one of a series of categories based on its rel&tggiency. Increasingly however, spatial
epidemiologists are turning to Bayesian methodsli®®ase mapping and small area estimation.
These methods have become increasingly sophistieatéools for simulation analyses now run
very efficiently on desktop computers. Lawson paleg a useful introduction to these
approaches.[4] Two papers in this issue demoestiaty these methods are being extended to
improve small area estimates of health outcomegdhet al. [95]) and improve modeling of

rare outcomes through spatiotemporal mixture mad€lCarroll et al. [96]).

Spatial regression models

Standard regression models such as the Ordinaist Sepuares (OLS) capture the
average strength and significance of the predi@oables, but makes the assumption that rates
at locationi are independent of rates at neighboring yratsd that the residuals are normally
distributed. As such, OLS does not consider sntalesspatial variation and spatial
autocorrelation in the residuals are indicative thase assumptions are violated [97]. There
exist several techniques to incorporate spatialotsf such as the spatial regression [98] or the
Geographically Weighted Regression (GWR) techn[§9¢ In spatial regression,
autocorrelation in the dependent variable -suchten rates in locationare influenced by rates
at location -, justifies the use of a spatial lag model, whiatorporates an autoregressive term
for the dependent variable. Autocorrelation inrisiduals however, indicates that variables may

have been omitted and the prescription is to ustally lagged error model. Unlike OLS or
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spatial regression that provides global estim&@&%¥R is a local regression technique used to
measure how the strength of the relationships arttengependent and explanatory variables
differ from location to location. In essence, fack location, GWR pools data from adjacent
neighborhoods to conduct a local regression, rieguih an estimate of local regression

coefficients for each of the predictor variables.

Outlook

There is increasing interest by policy-makers, puldalth practitioners, community
planners and researchers in understanding the sexciaronmental and structural features of
neighborhoods, which have been linked to a widayaof health outcomes. Identifying
neighborhood-level assets and deficits providesglio@e for targeting resources and
interventions appropriately to the unique need$hefunderlying population. The stated goals of
Healthy People 2020 [100however, demonstrate a move away from simply itlént) health
disparities, towards identifying and testing poi@rgolutions that maximize each

neighborhood’s opportunity to achieve health equity

At a foundational level, GIS software packages @amiche mapping applications offer a
range of tools for stakeholders to visualize, aralyand report on risk factors and outcomes at
multiple geographic levels. These levels can headitionally been defined based on
administrative boundaries; however, empirical apph@s based on the underlying data
distribution rather than somewhat arbitrary gedmal boundaries have also been proposed
[101]. Using boundaries that mimic the actual ttgagterns of the residents within areas or
clustering of outcomes across areas seeks to nz@ithe modifiable area unit problem and

understand how geography impacts areas differeftllyexample, when designing facility
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service areas or hospital markets, one can usenpaéferral data to draw hospital market
boundaries [102] or use local provider competitiata (e.g., number of medical providers
around a locality) to draw variably-sized marketibdaries that account for the likelihood of

travel outside the area [103].

Web-based mapping applications have also beeneonst, as technological advances such
as application programming interfaces (APIs) inglgdGoogle Maps API, ArcGIS Web APIs,
and Bing Maps API, now readily enable programmeisuild interactive web-based mapping
tools. On the user end, these applications (su¢teakthLandscape [104], HealthMap [105],
Community Commons [106], and Dartmouth Atlas [1G2Ipw for the creation of customized
maps and reports, though rarely allow for the diexport of the underlying data.. The vast
majority of these on-line mapping applications hbeen restricted to the visualization of
individual or aggregated data —partly due to pradecof privacy and computational capabilities-
but in recent years, several initiatives have hewtertaken to incorporate spatial and spatio-
temporal analytical capabilities over the web [I@B], such as kernel density estimation and

space-time linkages.

Fortunately, the era of big data and enhancedsthetang is here; epidemiologists working
in many sectors will be affected and can positiveipact the trajectory of the field. As
evidenced by Vice President Joe Biden’s Moonshaoic€alnitiative, enhanced data sharing is a
major need for clinical and epidemiological resbarcthe next decade. With small area (even
address) level data being shared more readily mwgharchers (Table 2), more analyses are
enabled that utilize a geospatial lens. Researdbekng to investigate geographic trends in
provider availability, treatment patterns, and tiealitcomes may find resources such as
www.healthindicators.gov offer a one-stop shopafteess to geospatial data and is searchable
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by geographic level or risk factor/disease of ieserMany of the indicators listed on

www.healthindicators.gov are cross-referenced ¢ tliespective Healthy People 2020[100]

objective as well.

Table 2. Sample of data sourcesthat permit geographic analysis of provider availability,
treatment patterns, and health outcomes

Data Source

Geographic
Levels

Description

Outside Information

Healthcare Cost
and Utilization
Project (HCUP)

State, County,
Zip

Discharge-level information of
inpatient, outpatient, and
emergency department visits
including charges, procedures
and diagnosis codes, and
demographics

1 http://www.hcup-
us.ahrg.gov/

Medicare Fee- | State, Zip, Provider-level utilization and | https://www.cms.gov/R

For-Service Address average payment information | esearch-Statistics-Data

Provider on services/procedures and-Systems/Statistics

Payment and provided to Medicare Trends-and-

Utilization Data beneficiaries Reports/Medicare-
Provider-Charge-
Data/index.html

County Health | County County-level rates of risk http://www.countyhealt

Rankings

behaviors and health outcome
such as premature death, adu
smoking and teen births; onlin
mapping tool available

dirankings.org/
It
e

Kids Count

County, Region,
Congressional
Districts

Various demographic,
economic, public safety, healt
behavior and outcome data
available

http://datacenter.kidsca
hunt.org/

Area Health
Resources Files

County

County-level health status an
provider availability indicators
online mapping tool available

dhttp://ahrf.hrsa.gov/

1

RTI Spatial County, ZCTA, | Various health, transportation| https://rtispatialdata.rti.
Impact Factors | PCSA, Tract, environmental, and org/
Dataset MSSA demographic indicators for

multiple geographies
National State, Zip, Provider-level information https://npiregistry.cms.
Provider Address including medical specialty | hhs.gov/
Identifier
Registry
Hospital State, Zip, Hospital-level information https://data.medicare.g
Compare Address including complications and | v/data/hospital-compar

[}
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readmissions, payment data,
quality of care measures, and
patient satisfaction scores

Medicare State, HRR, Demographic, spending, https://www.cms.gov/R
Geographic County utilization and quality esearch-Statistics-Data-
Variation Public indicators for various and-Systems/Statistics-
Use File geographic levels (some Trends-and-
mapping tools available) Reports/Medicare-
Geographic-

Variation/GV_PUF.htm
I

Footnotes: ZCTA = Zip code tabulation area, PCSArimary care service area; MSSA =
Medical service study area (California only), HRRiespital referral region

With the growth in public data sharing and techga@e to measure the neighborhood
environment [110] (e.g., social media, crowdsowgciBoogle Street View), epidemiologists
have more tools at hand to monitor population heatid identify actionable targets for
intervention. Where possible, researchers mushwgat from measuring contextual influences
based only on the residential environment, instgtace and time. Life-course approaches, that
consider the cumulative exposures people faceegsatje, make occupational shifts, and
relocate over time are starting to surface, asetigity-space approaches that account for where
people choose to engage in daily activities (seengke from Duncan et al., this issue [111])
[112, 113]. With its inherent ability to integradata from multiple systems, users, geographies,

and time points, GIS holds great potential to Hedplth researchers explore these challenges.
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