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Abstract 

The field of spatial epidemiology has evolved rapidly in the past two decades.  This paper 

serves as a brief introduction to spatial epidemiology and the use of geographic information 

systems (GIS) in applied research in epidemiology.  We highlight technical developments, and 

highlight opportunities to apply spatial analytic methods in epidemiologic research, focusing on 

methodologies involving geocoding, distance estimation, residential mobility, record linkage and 

data integration, spatial and spatio-temporal clustering, small area estimation, and Bayesian 

applications to disease mapping.  The articles included in this issue incorporate many of these 

methods into their study designs and analytical frameworks.  It is our hope that these papers will 

spur further development and utilization of spatial analysis and GIS in epidemiologic research.  

 

Introduction 

Defining spatial epidemiology 

All students of epidemiology learn that descriptive epidemiology focuses on the triad of 

person, place and time [1].  While epidemiologic research focusing on place or location 

historically received considerably less attention, modern epidemiology increasingly incorporates 

the spatial perspective into research designs and models.  Spatial factors have also become 

prominent features in etiologic research, especially concerning host-vector-agent interactions, 

but also in guiding social and environmental epidemiologic investigations.   Spatial methods are 

also progressively incorporated into health services research focused on specific diseases, health 

conditions or risk factors. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3 
 

The field of spatial epidemiology has evolved over the years.  Elliot et al. [2] identified 

four types of spatial analyses in epidemiology: 1) disease mapping, 2) geographical correlation 

studies, 3) risk assessment in relation to point or line sources, and 4) cluster detection and disease 

clustering.  Only a few years earlier, English [3] had defined geographical epidemiology as “the 

description of spatial patterns of disease incidence and mortality”.   More recently, in a widely 

used spatial statistics text, Lawson [4] states that spatial epidemiology “concerns the analysis of 

the spatial/geographical distribution of the incidence of disease”.  Here, we argue that spatial 

epidemiology encompasses research that incorporates the spatial perspective into the design and 

analysis of the distribution, determinants, and outcomes of all aspects of health and well-being 

across the continuum from prevention to treatment.   

Spatial epidemiology is not synonymous with health/medical geography.  Spatial 

epidemiology refers to inquiries that use epidemiologic study designs that involve spatial data or 

spatially-derived information about study subjects, health facilities or sources of 

exposure.  Health or medical geography, a subdiscipline of human geography, encompasses 

research applying geographic analytical methods to health, disease or health care issues. Its 

distinguishing feature is the primary focus on spatial patterns and context, while spatial 

epidemiology is inherently focused on populations [5]. While many studies, especially those 

involving interprofessional research teams, combine the methods of both disciplines in creative 

and innovative ways, far more often spatial epidemiologic research does not fully incorporate the 

geographic perspective, and vice versa [6]. 

In this brief overview, we argue for an expanded role for spatial epidemiology within our 

discipline, and demonstrate the importance of a broader scope for spatial perspectives in the 
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study of epidemiology through the series of articles that follow in this symposium on 

“Geographic Information Systems and Spatial Methods in Epidemiology”. 

The concepts of place and neighborhood  

Health outcomes are influenced by an interplay of different factors, such as individual 

attributes, the physical and social environments an individual interacts with, cultural norms and 

both the provision and utilization of health services [7]. It is widely recognized that the place 

where an individual lives or works should be considered as a potential disease determinant [8]. 

For example, women living in rural areas may have to travel longer distances to reach 

mammography facilities, potentially leading to a decrease of mammographic breast screening or 

a delay in their diagnosis [9-11]. Children living in a pedestrian friendly environment where 

parks and playgrounds are readily accessible are more likely to engage in physical activity, 

reducing odds of obesity [12, 13]. Along the same vein, higher risk factors for obesity are 

generally observed in food desert areas, which are characterized by poor quality food 

environments and a lack of supply of supermarkets with fresh food [14, 15].  

Residents located in proximity of major traffic corridors are exposed to particulate matter 

and diesel exhausts, causing a variety of respiratory and cardiovascular diseases [16]. Individuals 

residing in high-crime neighborhoods may indirectly develop stress-related behaviors, such as 

anxiety and higher blood pressure [17, 18]. These instances illustrate the breadth of pathways 

through which both physical and social environments, as well as provision of health services, 

give rise to health disparities. Documenting the role of the geographic environment where 

individuals live and interact (often called “activity spaces”) will improve our understanding of 

health outcomes. This has deep policy implications for local health interventions and resource 

allocation decisions, ultimately leading to a reduction of health disparities. 
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A neighborhood is typically defined as the geographic area relevant to the specific health 

outcome being studied [8]. However, neighborhoods can be delineated by the extent of the 

individual’s spatial interaction, or administratively delimited at the scale at which policies are 

implemented (county, state). Secondary datasets -such as the American Community Survey 

published by the U.S. Census Bureau- help to overcome the absence of socioeconomic data in 

most U.S. medical records [19]. The scale at which the primary or secondary datasets are 

available often dictates the spatial granularity at which the analysis is conducted [20].  Spatial 

analyses with individual level data from public health databases are also often limited by privacy 

policies required by data managers. 

Patient information may be aggregated at the ZIP Code level to comply with the Health 

Insurance Portability and Accountability Act (HIPAA) [21]. As such, uniformity is assumed 

within the unit of analysis, but sharp contrasts may occur among adjacent units. Further, the 

aggregation of neighborhoods does raise the issue of the modifiable areal unit problem (MAUP); 

using different boundaries may lead to significantly different analytical results [22].  As a rule of 

thumb, analyses should be conducted at different levels of granularity to test the robustness of 

the spatial relationships and the effect of different artificial boundaries. 

What defines a neighborhood and the concept of scale (aggregated, disaggregated) will 

influence the choice of methodologies and ultimately impact the results. Spatially-based 

regression, contextual and multi-level modeling are some of the key methods developed to 

incorporate neighborhood effects [8, 23]. These approaches allow researchers to estimate the 

impact of neighborhood effects after controlling for individual characteristics. 
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Role of geographic information systems in spatial epidemiology  

Defined by Cromley and McLafferty [24] as “computer-based systems for the integration 

and analysis of geographic data,” geographic information systems (GIS) can describe, analyze, 

and predict patterns using feature (cartographic) and attribute data. GIS have been used in many 

epidemiologic applications, including disease mapping, rate smoothing, cluster or hot spot 

analysis, and spatial modelling. In its simplest form, GIS is often employed to create spatially-

explicit variables such as availability and accessibility scores (e.g., food access), built 

environment measures (e.g., land use), environmental exposures (e.g., air pollutant 

concentrations), and demographic indicators (e.g., percent of persons in poverty). Measuring and 

describing the extent of spatial relationships is also a key function of GIS, which can be as 

simple as calculating the distance between two points or as complex as quantifying spatial 

dependencies in analytic models or identifying locally-varying predictors. As described by 

Thornton et al. [25] GIS offers opportunities to integrate data across multiple databases and 

spatial scales for display, management, and analysis. In Table 1, we identify several ways to 

apply GIS to human immunodeficiency virus (HIV). 

 

Table 1. Functions of GIS and related epidemiologic applications in HIV research 

GIS Functions Application to HIV Research 

Store and measure spatial 
relationships 

Distance between homes of newly diagnosed HIV cases and the 
closest Ryan White Clinic 

Display spatial 
relationships 

Bivariate map showing the relationship between county HIV 
prevalence and poverty rate 

Analyze attribute and 
feature data 

Count of the number of HIV cases within 30 miles of each Ryan 
White Clinic  
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simultaneously 

Manage data from 
multiple sources 

Create a geodatabase with county HIV incidence and prevalence 
rates, Ryan White Clinic locations, community-based organizations 
providing HIV services, and county demographic indicators 

Identify spatial patterns Conduct a hot spot analysis of newly diagnosed HIV cases in U.S. 
counties 

Explain  spatial patterns Determine where the prevalence of men who have sex with men 
(MSM) is associated with the incidence rate for HIV in U.S. 
counties using GWR 

Footnote: A variety of studies have used GIS approaches in the context of HIV patient and 
service provider data [26-32]. 

 

In descriptive epidemiology, thematic or color-shaded maps produced with GIS are 

useful for identifying areas at high risk for epidemics, highlighting population health disparities, 

examining resource needs, and ultimately, formulating hypotheses that lead to generation of 

explanatory models. Analytically, GIS tools can be used to explore spatial or spatiotemporal 

clustering, investigate locally-varying relationships, and explicitly model or adjust for spatial 

dependencies in one’s data.  

Just as research has shown that interventions are most effective when implemented at 

multiple levels [33], we can gain more insight into individual-level outcomes by considering the 

context in which people live and work [8]. In the context of healthcare, it is equally important to 

consider the location and characteristics of where people seek their care (i.e., provider- and 

system-level factors). Contextual information can be considered in both descriptive and analytic 

ways. For example, one could explore the distribution of greenspace or recreational facilities 

within a region, as well develop a greenspace index to predict the probability of meeting physical 

activity guidelines or individual weight status. When both individual and area-level data are 

available, hierarchical models can be used to examine how outcomes vary at both the individual 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 
 

and/or group level (see example from Mobley et al., this issue [34]), as well as what factors 

outside an individual’s immediate control impact their health and wellbeing. Generalized 

estimating equations, which also account for the correlation of persons within groups, treat this 

group-level effect as a nuisance that simply needs to be adjusted for in one’s analysis. As 

epidemiologists, we need to be cautious about using methods to adjust away potentially 

meaningful information about the role of “place” – whether operationalized at the workplace, 

school, or residential level, on our health. 

Study Design Perspectives  
Cross-sectional studies typically examine the distribution of exposures and outcomes 

simultaneously, frequently through use of population-based administrative health data or 

representative sample surveys.  Studies using cross-sectional designs rarely integrate the spatial 

perspective directly, because spatial referents for each observation are not collected or are at a 

spatial resolution that does not permit localized investigations.  For example, the National Health 

Interview Survey includes a data element for broad U.S. Census regions (East, South, Midwest, 

West) [35], but nothing more spatially specific, while the public use version of the National 

Survey of Children’s Health has a data element for state of residence and another for residence in 

an Metropolitan Statistical Area (MSA) [36], but these do not permit spatial analyses within a 

state. Similarly, surveys such as the Behavioral Risk Factor Surveillance System (BRFSS) [37] 

will often mask county-level information due to small sample sizes. However, some states such 

as Florida routinely oversample to support ZIP Code-level analyses every third year.  Ecological 

studies are a form of cross-sectional study design in which the unit of analysis is grouped, by 

political unit (e.g. nation, state, county, ZIP Code, census tract), health facility, school, or other 

organizational unit.  Most ecological studies have the potential to incorporate the spatial 
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perspective into their study designs and analyses.  However, while researchers frequently map 

data from ecological studies using administrative or political units, the statistical analyses 

performed are typically aspatial (i.e., do not account for similarity or clustering between 

neighboring units).  With tools such as spatial smoothing techniques, spatial regression, and 

multi-level modeling readily available to epidemiologists, more sophisticated analyses that take 

into account the spatial dependence present in many datasets should be considered. 

    Case-control study designs compare exposure histories of persons with a disease or health 

condition (cases) with persons who do not have that disease or health condition but are 

representative of the population from which cases are identified (controls) [1].  In general, the 

case-control study does not lend itself well to spatial epidemiologic analysis, unless cases and 

controls are selected from a population-based sampling frame that incorporates location into its 

design.  However, there are several areas where the use of GIS tools and spatial statistical 

methods can enhance case-control studies.  These include estimation of measures of access (e.g. 

distance to a health facility, travel times), neighborhood amenities, and other local estimates 

derived from spatial surfaces (e.g., food swamps and deserts, residential segregation, inequalities 

in income and wealth or measures of neighborhood deprivation).  If addresses are available for 

all cases and controls, these can be geocoded (see Section 3), and linked to Census level socio-

demographic variables or environmental data (e.g. air pollutants, water quality, remotely sensed 

data on land use).  For example, Lupo et al. found that neighborhood deprivation, measured at 

the census tract level, was associated with presence of cleft lip (with or without cleft palate) 

among Texas residents in a birth defects registry [38]. If it is feasible to incorporate collection of 

spatially-specific identifiers into case-control study designs, these studies may become more 

informative. 
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Cohort studies follow study subjects over time, comparing those with and without 

exposures of interest to determine their outcomes (disease, mortality) [1].  These study designs 

can take many forms, and utilize a variety of sophisticated biostatistical techniques.  As with 

cross-sectional and case-control studies, epidemiologists typically do not incorporate spatial 

analysis directly into their study designs.  Cohort study data can be integrated with Census, 

environmental, and other administrative-level data when geocoded to specific addresses or 

administrative units (e.g., Zip Code centroids).  More often than not, these studies are spatially-

enabled, in that the researcher uses spatial referents to acquire additional data to associate with 

each study subject, but do not incorporate spatial analysis into their study designs. A common 

use of GIS-derived data in cohort studies is the use of environmental data such as air pollution 

and other environmental contaminants on health outcomes such as mortality, cancer, or 

respiratory illnesses [39, 40]. Additionally, studies have linked changes in the neighborhood food 

environment with body mass composition in prospective studies [41-43]. 

Methodologies  

Geocoding and uncertainty 

Locational information, for instance in the form of addresses, can be transformed into 

geographic coordinates through a process known as geocoding [44]. The procedure requires that 

addresses from the epidemiological dataset are standardized and comprised of an address 

number, street name, city or town name, state and ZIP Code [45]. Using a reference dataset -

typically a street database-, geographic coordinates can be estimated by comparing and 

interpolating the address to the range of addresses for each segment of the reference dataset. The 
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procedure is sensitive to the completeness of the addresses such as the presence of “P.O. Box” 

and on the quality of local and regional street road network files [46, 47]. 

The quality of the geocoding is evaluated based on the merits of three components [48]: 

the match rate (percentage of records being geocoded), the individual match score (how well the 

standardized address matches the street database) and the match type (e.g. geocoding at the street 

level or Zip Code). Low individual match score and low match type accuracy will increase 

positional errors, which are typically larger in rural areas. Such errors pose a serious challenge in 

spatial analysis, since it may result in (1) an underestimation of local risk, (2) the misplacement 

of high-risk areas of a disease, (3) a misevaluation of spatial association, and (4) biased evidence 

for decision makers. 

Geocoding can be implemented using either commercial GIS software or online. 

Although the set-up costs to prepare the reference dataset and standardize the addresses can be 

expensive when using commercial GIS software, this approach allows the researcher to geocode 

large amount of records. Online geocoders are free and typically use more recent street network 

data, which is likely to result in lower positional errors if one’s data is also fairly recent (if 

working with older data, the opposite is true). However, online geocoders are often limited as to 

how many records can be processed and raise important issues of confidentiality, since addresses 

are uploaded online [48].  

Due to privacy concerns such as HIPAA, health departments may release geocoded 

address information only in aggregate form, such as for five-digit ZIP Codes [24]. Alternatively, 

researchers can geomask the geocoded data to protect the privacy of individuals. Geomasking 

modifies the geographic coordinates of an individual event by displacing the original location to 
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some distance while maintaining spatial resolution for mapping purpose and cluster detection 

[49, 50].  

Distance estimation 

Geographic accessibility to a health service depends on its availability and the impedance 

to access that service. Greater travel impedance will affect both the provision and utilization of 

health services [51].  A low level of geographic accessibility may have dramatic consequences in 

terms of health outcomes. Due to recent advances in GIS, different metrics can be used to 

estimate travel impedance such as travel distance (Euclidean or network-based), travel time and 

travel cost [52, 53]. While estimating travel impedance by means of Euclidean distances is 

extremely straightforward, this approach can lead to serious underestimation of distances. When 

modeling travel, the ideal route between two points will be the one that minimizes the selected 

measure of impedance. Travel modeling should ideally incorporate speed limits, honor one-way 

restrictions, and reflect connectivity among roads - most of which can be specified in a GIS-

based analysis. Travel time may be a more precise measure of impedance since it incorporates 

en-route conditions, such as congestion. 

Online mapping providers such as GoogleMaps or MapQuest offer unprecedented 

support for estimating travel impedance.  However, similar to geocoding services, the number of 

analytical queries that can be requested is usually limited, the accuracy of the travel estimates has 

not been extensively studied, and such approaches raise issues concerning data confidentiality. 

Through its Network Analyst extension, ArcGIS desktop software can produce distance and 

travel time estimates that account for road features with relative ease. Similarly, ArcGIS Pro can 

be used to calculate distance and travel time using ESRI’s cloud-based road network data, 

although users are limited to no more than 1,000 origin-destination pairs.  
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While estimation of distance and/or travel time can now be done fairly simply, 

epidemiologists must consider which measures are most relevant to their population/region. The 

choice of origin and destination locations is also important, as variation in spatial scales, 

accuracy, and context can affect the results. For example, Khang et al. (this issue) [54] explores 

the probability of diagnostic resolution after an abnormal mammogram as a function of several 

operational definitions of distance: distance from the patient’s residence to the screening facility, 

the diagnosing facility and the closest mammography facility. Similarly, in a comparative 

analysis of GIS-based measures of access to mammography, Lian et al. [55] found that travel 

time and facility density were poorly correlated with odds of late-stage breast cancer, while 

spatial accessibility scores that considered both supply and demand (i.e., two-step floating 

catchment area) were significantly associated with late-stage diagnosis.  

Residential mobility 

Epidemiologists often include neighborhood factors in models examining determinants of 

individual health outcomes. In a GIS, neighborhood characteristics are assigned to individuals 

based on their residential location, a process known as spatial join. Results from this process are 

particularly informative to establish whether individual disease conditions may be caused by 

exposure to hazardous environment [56]. 

While residential mobility is widely recognized in the research literature, typically only 

the attributes of the neighborhood where the individual resides at the time of diagnosis are 

incorporated into spatial epidemiologic analyses [57]. Failure to include longitudinal residential 

profiles has serious implications since the location where the case was diagnosed may not 

necessarily coincide with the place where exposure started or occurred. In a seminal study by 

Pershagen et al. [58], the authors assessed the residential history of all study subjects, basing 
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their exposure assessment on radon measurements at all dwellings in which the subject lived for 

2 or more years over a period of 30+ years. The issue of residential histories is further 

exacerbated for (1) individuals with high mobility, (2) diseases with long periods of latency such 

as cancer and (3) places where the conditions of the environment may change rapidly [59]. 

In maternal and child health, most studies assume that residential mobility does not occur 

during pregnancy; as such the use of maternal residence at birth may result in exposure 

misclassification, biased estimates of association and imprecise risk estimation [60, 61]. In a 

study by Miller [62] in the metropolitan Atlanta region, approximately 22% of pregnant women 

changed their residential location from the date of conception to delivery [61], although most 

relocation distances were short and residential location remained generally within the same 

county. Exposures that are homogenous within a community may be well estimated with limited 

residential data, but this assumption may not hold for longer distances. 

 Although the U.S. Census Bureau publishes migration information between counties and 

the proportion of residents who lived in the same residence one year ago [63], the lack of data at 

a more disaggregated level may be one reason why most epidemiological do not incorporate 

residential histories. Hughes and Pruitt (this issue) [64] suggest that electronic medical records 

(EMR) derived address histories have the potential to alleviate this pitfall. More work is needed 

to develop spatiotemporal (cumulative) models of exposure [59]. 

Data linkages  

Geocoding is a form of record linkage, in which address information is converted into 

latitude-longitude (X-Y) coordinates or administrative unit codes (e.g., Federal Information 

Processing Standard/FIPS codes in the U.S.).  For example, Barnes et al. (this issue) converted 

the self-reported address of each survey respondent to an X-Y coordinate for the purpose of 
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measuring the presence, types of, and distance to food retailers around survey participants. More 

commonly however, researchers link data from various databases across spatial units using 

geocodes.  In a recent example [65], the association between income inequality and infant 

mortality was examined, using U.S. states as units of analysis.  While this study was aspatial, 

data from vital records were linked with socioeconomic data using state-level geocodes.  Health 

services researchers and epidemiologists should be familiar with the Area Health Resources Files 

(AHRF) [66], providing hundreds of data fields with socio-economic, demographic and health 

services provider and utilization data by county.  Similarly, epidemiologists frequently use 

geocodes for census units to access data from U.S. Census and associated American Community 

Survey databases.  Increasingly, researchers also use geocodes to link individual records or 

census units surrounding their residences to environmental databases, using GIS technologies to 

integrate data on ambient air pollution, soil contamination, land use cover, temperature 

fluctuations, and other measures of phenomena in the physical environment with data on health 

behaviors and outcomes. 

Overview of spatial and spatio-temporal clustering  

According to McLafferty (2015) [67], a spatial cluster –also termed hotspot- can be 

defined as “…an unusual number of cases within a population, place and time period…”. 

Practically, an epidemiologist may be interested to determine whether disease rates around a 

hazard site are elevated, or if the number of infected individuals is higher than would be 

expected. Accurate cluster information provides practical knowledge for public health 

interventions, such as screening, prevention and surveillance. A series of robust statistical 

approaches have been developed to detect spatial or spatiotemporal clusters of diseases.  
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According to Walter Tobler’s First Law of Geography, “everything is related to 

everything else, but near things are more related than distant things [68].” This principle, 

otherwise known as spatial autocorrelation or dependence, is a key component of spatial 

epidemiology. Traditional generalized linear models that assume the independence of modeled 

observations will likely produce inaccurate estimates in the presence of spatial autocorrelation. It 

is generally desirable to estimate the amount of clustering using spatial search strategies, test its 

significance (for instance by means of Monte Carlo simulations) and finally visualize location of 

clusters along with their magnitude or extent. Global clustering tests evaluate the presence of 

clustering over the study area, while local clustering statistics tests for specific clusters at a finer 

scale. With the increasing technology and data available to incorporate contextual or locational 

data into our epidemiologic models, epidemiologists would be remiss to ignore the potential for 

spatial autocorrelation or non-stationarity in their data.  

Spatial clustering 

Evaluating the clustering of individual disease cases is typically implemented using a 

count statistic [69]. The K-function is a clustering statistic which estimates the magnitude of 

clustering at different scales [70]. It uses a circular or elliptical search window over each case to 

count how many other cases occur in the near proximity. The window is then moved to the next 

points and the process repeated. The entire procedure is conducted at different search windows. 

The scale at which clustering is the greatest is then determined and can serve as an input for the 

kernel density estimation technique, which is essentially a point density function helping to 

visualize the location of clusters on the map [69]. Note that variable-size, adaptive filters can be 

used instead of static search strategies [67]; this is particularly important when there is a 
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substantial amount of heterogeneity in the underlying population, such as the small numbers 

problem [71, 72]. 

For clustering of cases aggregated into spatial units, spatial autocorrelation-based 

methods such as Moran’s I [73], tell us whether nearby units tend to exhibit similar rates. Spatial 

autocorrelation statistics measure the degree to which spatial features (e.g. Zip Codes, census 

tract) and their associated values tend to be clustered together in space or dispersed. Moran’s I 

value range from -1 to +1, with a value of -1 denoting that units with low rates are located near 

other units with high rates, while a Moran’s I value of +1 indicates a concentration of spatial 

units exhibiting similar rates. Although the Moran’s I statistic informs on the presence of 

clustering, it does not indicate where such clusters occur. The local version of the Moran’s I 

(local indicators of spatial association or LISA [74]) identifies both the locus and shape of these 

clusters. Another commonly used local clustering approach is the Kulldorff ‘s spatial scan 

statistic [75], which identifies the most likely disease clusters in a study area by maximizing the 

likelihood that disease cases are located within a set of concentric circles that are moved across 

the study area. Both number of observed and expected cases are counted and the most “unusual” 

excess of observed cases is reported. The approach is flexible to incorporate heterogeneous 

background population densities and adjust for multiple testing. Several packages (i.e., R, 

GeoDa, ArcGIS, SaTScan) can implement and visualize both global and local tests for 

clustering.  

Space-time clustering 

Several statistical approaches have been proposed to detect spatiotemporal clusters of 

diseases. For individual data, the Knox test for space-time interaction evaluates the presence of a 
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space-time cluster at given spatial and temporal distances [76]. Knox’s method is limited due to 

its arbitrary definition of closeness and the critical distance does not account for population 

heterogeneity [77, 78]. The Mantel test [79] incorporates the notion of distance decay in that 

nearby pairs of events are more important than distant pairs. However, the Mantel statistic 

assumes a linear association between space and time, which is violated, especially for infectious 

diseases. The Jacquez's k-Nearest Neighbor k-NN statistic [78] addresses the weaknesses of the 

Knox and Mantel statistics, by counting the number of pairs of events that are nearest neighbors 

in both space and time. The space-time Ripley’s K function evaluates the magnitude of space-

time clustering at different spatial and temporal scales [69]. Results from the Knox, Mantel, k-NN 

or the space-time K-function can serve as an input to visualize space-time patterns, for instance 

by means of the space-time kernel density estimation [80, 81].  

Local space-time clustering techniques include the space-time permutation statistic [82], 

which uses a cylinder with a circular (or elliptical) base, where the vertical axis represents time.  

Kulldorff ’s space-time scan statistic [83] or the extension of the LISA statistic in time are 

generally used to estimate space-time clustering of aggregated data, such as space-time change in 

disease rates across a study region. 

Although statistical tests of clustering are useful for retrospective analysis, prospective 

approaches such as the cumulative sum (cusum) method are designed for time series data which 

are updated on a regular basis, or when new events are observed [84]. These techniques are able 

to quickly detect deviations from the mean in a series of events to detect clusters as quickly as 

possible [85]. Software products such as SaTScan [86] and Geosurveillance [84] incorporate 

prospective tests.  
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Small area estimation  

Local health behavior and outcome data are important for program planning and 

evaluation, resource allocation, and policy-making activities. Although interest in local-level 

data is growing, population-based surveys powered to make national or state-level inferences are 

rarely adequate to support direct estimation for small areas such as counties.  Unit-level small 

area estimation (SAE) techniques have become the optimal method to derive rates for counties 

and other small geographic areas given these known limitations. Indirect estimates for small 

areas are usually derived using synthetic or multilevel modeling. Although both approaches are 

based on prediction models, indirect estimates based on multilevel modeling also account for 

random area-level effects not explained by the covariates alone [87]. Multilevel model-based 

approaches to small area estimation have been extensively applied to population-based health 

surveys such as BRFSS on topics ranging from COPD, periodontitis, smoking prevalence, 

obesity, and HPV vaccine uptake [88-92]. A multilevel, post-stratification approach developing 

for polling research has been used in more recent years to provide granular and precise disease 

estimates at a variety of spatial scales. The post-stratification approach is unique in that it 

accounts for the underlying distribution of population such as age, race, and gender at the small 

area level (k).[93] In essence, estimates are created for every possible subgroup combination and 

then averaged by their weighted distribution in small area k. In this issue, Lin et al. [94] applies 

this multilevel, post-stratification approach to estimation health-related quality of life in adults 

aged 65 and older using data from the Behavioral Risk Factor Surveillance System. One can also 

use the spatial structure of the data to improve the small area estimates utilizing the conditional 

autoregressive (CAR), intrinsic conditional autoregressive (ICAR) or simultaneous 

autoregressive (SAR) modelling frameworks. 
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Bayesian approaches to disease mapping  

The primary focus of disease mapping is on identifying local variations in the incidence or 

prevalence of a health condition, disease, or health outcome.  At its most elementary level, an 

analyst can plot the distribution of outcomes as a choropleth map, classifying each areal unit into 

one of a series of categories based on its relative frequency.  Increasingly however, spatial 

epidemiologists are turning to Bayesian methods for disease mapping and small area estimation.  

These methods have become increasingly sophisticated as tools for simulation analyses now run 

very efficiently on desktop computers.  Lawson provides a useful introduction to these 

approaches.[4]  Two papers in this issue demonstrate how these methods are being extended to 

improve small area estimates of health outcomes (Neyens et al. [95]) and improve modeling of 

rare outcomes through spatiotemporal mixture modeling (Carroll et al. [96]). 

Spatial regression models  

Standard regression models such as the Ordinary Least Squares (OLS) capture the 

average strength and significance of the predictor variables, but makes the assumption that rates 

at location i are independent of rates at neighboring units j and that the residuals are normally 

distributed. As such, OLS does not consider small-scale spatial variation and spatial 

autocorrelation in the residuals are indicative that those assumptions are violated [97]. There 

exist several techniques to incorporate spatial effects, such as the spatial regression [98] or the 

Geographically Weighted Regression (GWR) technique [99]. In spatial regression, 

autocorrelation in the dependent variable -such as when rates in location i are influenced by rates 

at location j -, justifies the use of a spatial lag model, which incorporates an autoregressive term 

for the dependent variable. Autocorrelation in the residuals however, indicates that variables may 

have been omitted and the prescription is to use a spatially lagged error model. Unlike OLS or 
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spatial regression that provides global estimates, GWR is a local regression technique used to 

measure how the strength of the relationships among the dependent and explanatory variables 

differ from location to location. In essence, for each location, GWR pools data from adjacent 

neighborhoods to conduct a local regression, resulting in an estimate of local regression 

coefficients for each of the predictor variables.  

Outlook 

There is increasing interest by policy-makers, public health practitioners, community 

planners and researchers in understanding the social, environmental and structural features of 

neighborhoods, which have been linked to a wide array of health outcomes. Identifying 

neighborhood-level assets and deficits provide a baseline for targeting resources and 

interventions appropriately to the unique needs of the underlying population. The stated goals of 

Healthy People 2020 [100],  however, demonstrate a move away from simply identifying health 

disparities, towards identifying and testing potential solutions that maximize each 

neighborhood’s opportunity to achieve health equity.  

At a foundational level, GIS software packages and online mapping applications offer a 

range of tools for stakeholders to visualize, analyze, and report on risk factors and outcomes at 

multiple geographic levels. These levels can have traditionally been defined based on 

administrative boundaries; however, empirical approaches based on the underlying data 

distribution rather than somewhat arbitrary geopolitical boundaries have also been proposed 

[101]. Using boundaries that mimic the actual travel patterns of the residents within areas or 

clustering of outcomes across areas seeks to minimize the modifiable area unit problem and 

understand how geography impacts areas differently. For example, when designing facility 
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service areas or hospital markets, one can use patient referral data to draw hospital market 

boundaries [102] or use local provider competition data (e.g., number of medical providers 

around a locality) to draw variably-sized market boundaries that account for the likelihood of 

travel outside the area [103]. 

Web-based mapping applications have also been on the rise, as technological advances such 

as application programming interfaces (APIs) including Google Maps API, ArcGIS Web APIs, 

and Bing Maps API, now readily enable programmers to build interactive web-based mapping 

tools. On the user end, these applications (such as HealthLandscape [104], HealthMap [105], 

Community Commons [106], and Dartmouth Atlas [102]) allow for the creation of customized 

maps and reports, though rarely allow for the direct export of the underlying data.. The vast 

majority of these on-line mapping applications have been restricted to the visualization of 

individual or aggregated data –partly due to protection of privacy and computational capabilities-

but in recent years, several initiatives have been undertaken to incorporate spatial and spatio-

temporal analytical capabilities over the web [107-109], such as kernel density estimation and 

space-time linkages.  

Fortunately, the era of big data and enhanced data sharing is here; epidemiologists working 

in many sectors will be affected and can positively impact the trajectory of the field. As 

evidenced by Vice President Joe Biden’s Moonshot Cancer Initiative, enhanced data sharing is a 

major need for clinical and epidemiological research in the next decade.  With small area (even 

address) level data being shared more readily with researchers (Table 2), more analyses are 

enabled that utilize a geospatial lens. Researchers looking to investigate geographic trends in 

provider availability, treatment patterns, and health outcomes may find resources such as 

www.healthindicators.gov offer a one-stop shop for access to geospatial data and is searchable 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 
 

by geographic level or risk factor/disease of interest. Many of the indicators listed on 

www.healthindicators.gov are cross-referenced to their respective Healthy People 2020[100] 

objective as well. 

Table 2. Sample of data sources that permit geographic analysis of provider availability, 
treatment patterns, and health outcomes 

Data Source Geographic 
Levels 

Description Outside Information 

Healthcare Cost 
and Utilization 
Project (HCUP) 

State, County, 
Zip 

Discharge-level information on 
inpatient, outpatient, and 
emergency department visits 
including charges, procedures 
and diagnosis codes, and 
demographics 

http://www.hcup-
us.ahrq.gov/ 

Medicare Fee-
For-Service 
Provider 
Payment and 
Utilization Data 

State, Zip, 
Address 

Provider-level utilization and 
average payment information 
on services/procedures 
provided to Medicare 
beneficiaries  

https://www.cms.gov/R
esearch-Statistics-Data-
and-Systems/Statistics-
Trends-and-
Reports/Medicare-
Provider-Charge-
Data/index.html 

County Health 
Rankings 

County County-level rates of risk 
behaviors and health outcomes 
such as premature death, adult 
smoking and teen births; online 
mapping tool available 

http://www.countyhealt
hrankings.org/ 

Kids Count County, Region, 
Congressional 
Districts 

Various demographic, 
economic, public safety, health 
behavior and outcome data 
available 

http://datacenter.kidsco
unt.org/ 

Area Health 
Resources Files 

County  County-level health status and 
provider availability indicators; 
online mapping tool available 

http://ahrf.hrsa.gov/ 

RTI Spatial 
Impact Factors 
Dataset 

County, ZCTA, 
PCSA, Tract, 
MSSA 

Various health, transportation, 
environmental, and 
demographic indicators for 
multiple geographies 

https://rtispatialdata.rti.
org/ 

National 
Provider 
Identifier 
Registry 

State, Zip, 
Address 

Provider-level information 
including medical specialty  

https://npiregistry.cms.
hhs.gov/ 

Hospital 
Compare 

State, Zip, 
Address 

Hospital-level information 
including complications and 

https://data.medicare.go
v/data/hospital-compare 
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readmissions, payment data, 
quality of care measures, and 
patient satisfaction scores  

Medicare 
Geographic 
Variation Public 
Use File 

State, HRR, 
County 

Demographic, spending, 
utilization and quality 
indicators for various 
geographic levels (some 
mapping tools available) 

https://www.cms.gov/R
esearch-Statistics-Data-
and-Systems/Statistics-
Trends-and-
Reports/Medicare-
Geographic-
Variation/GV_PUF.htm
l 

Footnotes: ZCTA = Zip code tabulation area, PCSA = Primary care service area; MSSA = 
Medical service study area (California only), HRR = Hospital referral region 

  

With the growth in public data sharing and technologies to measure the neighborhood 

environment [110] (e.g., social media, crowdsourcing, Google Street View), epidemiologists 

have more tools at hand to monitor population health and identify actionable targets for 

intervention. Where possible, researchers must get away from measuring contextual influences 

based only on the residential environment, in static space and time. Life-course approaches, that 

consider the cumulative exposures people face as they age, make occupational shifts, and 

relocate over time are starting to surface, as are activity-space approaches that account for where 

people choose to engage in daily activities (see example from Duncan et al., this issue [111]) 

[112, 113]. With its inherent ability to integrate data from multiple systems, users, geographies, 

and time points, GIS holds great potential to help health researchers explore these challenges.  
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