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Abstract

Although the tools of complexity research have been applied to the phenomenon
of labor division, its underlying mechanisms are still unclear. Researchers have
used evolutionary models to study labor division in terms of global optimization,
but focusing on individual optimization is a more realistic, real-world approach.
We do this by first developing a multi-agent model that takes into account
information-sharing and learning-by-doing and by using simulations to demon-
strate the emergence of labor division. We then use a master equation method
and find that the computational results are consistent with the results of the
simulation. Finally we find that the core underlying mechanisms that cause
labor division are learning-by-doing, information cost, and random fluctuation.

Keywords: Division of labor; Multi-agent systems; Learning by doing; Master
equation.

1. Introduction

The division of labor in real-world settings is ubiquitous. In a bee hive the
worker bees work and the queen bee reproduces [1]. In an ant colony queens
and males reproduce, workers build and expand the colony and gather and
store food, and soldiers protect the colony [2, 3]. The labor division in different
groups varies, but in each case specialization enables the group to reproduce
and survive [4]. Labor division is also pervasive in human society. Employees
in an organization divide the work to be done according to function. The use
of the division of labor by scientists carrying out research allows an increase in
the level of specialization, reduces cost, and improves overall efficiency.

Most current research on the division of labor offers an experimental inter-
pretation of the phenomenon as found in biological systems. Robinson found
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that labor division among insects is predominantly agent specialization and the
plasticity of agent behavior [5]. Simola found that the genetic regulation of ani-
mal behavior plasticity is strongly affected by histone modification [6]. Lattorff
studied labor division in insects from the perspective of genome sequencing.
Little research has focused on the self-organizing mechanism underlying the
division of labor [7].

Duarte examined neural networks to study self-organization in labor divi-
sion [8]. A model was used that focuses on worker specialization and the ratio
of work performed by each task. Although the goal was to maximize network
fitness by reducing idleness and achieving an optimal work ratio, the complexity
of the neural network structure affects the degree of agent specialization, and its
evolution mechanism remains unclear. Nakahashi used a mathematical model
to investigate the effect of group size, resource sharing, and task allocation on
labor division [9]. The model considers the impact of endogenous factors on
labor division, but not the impact of the natural environment. Wu analyzed
the emergence of labor division in a multi-agent system by the method of sta-
tistical physics [10]. Di et al. uses ”Agent-based model” [11, 12] to examine the
genetic process of the survival of the fittest and finds that an increase in global
income encourages the division of labor [13]. The model maximizes the global
benefit and adjusts agent behavior according to global income rather than agent
income. This multi-agent simulation contradicts the rational agent hypothesis
in economics and is a bottom-up method that effectively explores system self-
organization [14, 15]. Agent-based model has been widely used in the fields of
economy, finance, game and so on [16, 17, 18, 19].

Using the complex adaptive system and fitness landscape theory [20], we
here use an evolutionary model to understand the general principle of labor
division. Using the Chai model as a basis [21], we expand it to include the
information cost of transactions. We also introduce a feedback mechanism[22]
to strengthen agent learning ability. From the perspective of the agent’s own
income optimization, the community realizes labor division. At the same time,
adjusting the information fee ratio changes agent structure and the total income
of all agents.

Using multi-agent simulation we can uncover the evolution mechanism from
the view of self-organization. We find that random fluctuations make the pro-
cess of evolution unstable, and we use a master equation [23] to describe the
evolution process mathematically. We describe the mechanism of interaction
between agents and their environment quantitatively. The simulation results
are consistent with the theoretical predictions.

The second section of the paper presents the multi-agent model of labor
division and the simulation results. The third section analyzes the model using
a master equation. The final section presents our conclusions.
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2. Multi-agent model and the mechanisms of labor division

2.1. Environment and agents

Resources are distributed in a closed environment that consists of L × L
lattices where each lattice is −→r . Renewable resources in the environment are
randomly distributed in the lattices and do not exceed the maximum capacity
of any lattice. The resource of each lattice is S−→r and the maximum capacity of
the lattice is M(−→r ). N agents are randomly distributed in the lattices and each
lattice can only contain one agent.

2.2. The behavior of agents

2.2.1. The decision-making of the agents

Agents make two kinds of decision: those pertaining to finding resources and
and those to exploiting resources. Here qi is the decision-making of agent i and
qi as one of the values 0, 0.1, 0.2, · · · , 0.9, 1. When qi tends toward 1, agent i
tends to find resources. Agent i marks the lattices in the visual field using the
agent’s ID i and this provides resource information to all other agents whether
or not a new lattice is marked by an agent. When other agents exploit resources
in a lattice marked by agent i, they provide information fees to agent i. When
qi tends toward 0, agent i tends to exploit resources, i.e., agent i moves to a
lattice where a maximum income can be obtained and resources exploited, but
other agents pay the information fee to the individual who marked the lattice.

2.2.2. Learn-by-doing

Agents are more proficient in functions they repeatedly carry out, which
is learning-by-doing [24, 25] economics. Thus an agent adept at exploiting re-
sources becomes increasingly efficient and the ability of an agent to discover
new resources constantly grows. The mathematical model for learning-by-doing
uses efficiency of exploitation b(qi) and visual field v(qi), the function of which
is

b(qi) =
2

1 + exp(6qi)
(1)

and

v(qi) =
10

1 + exp(−7qi + 7)
. (2)

2.3. Evolution of agent decision-making

The evolution process of agent decision-making has M generations and each
generation contains T moments. After the evolution of decision-making at mo-
ment t, the positions of agents and resources in the closed environment are
updated. At the end of each generation, the decision-making of the agent is up-
dated. The location of agent i is Li(m, t) and the lattice −→r is F−→r (m, t). Initially
the location of individual i is Li(1, 0) and the lattice is marked F−→r (m, 0) = 0.
The evolutionary process of agent decision-making is as follows.

(1) In m generation at t moment, agents must make a decision:
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When i finds resources, they randomly move to a lattice that contains no
other agent and mark the unmarked lattice in the visual field. The new location
of the agent and the process of marking the lattice in their visual field are

Li(m, t) = Li(m, t − 1) + δ (3)

and
F−→r (m, t) = {i||−→r − Li(m, t)| < v(qi)}, (4)

where δ is the distance of the agent’s random move.
When agent i exploits resources, they move to the lattice −→r ∗ marked to

obtain the maximum income to exploit those resources, and they pay the infor-
mation fees to the agent who marked the lattice. The −→r ∗ is

r⃗∗ = {r⃗| max
Fr⃗(m,t)̸=0

{
b(qi) · Sr⃗(m, t) − c · b(qi) · Sr⃗(m, t), Fr⃗(m, t) ̸= i
b(qi) · Sr⃗(m, t), Fr⃗(m, t) = i

}. (5)

where c is the information fee ratio the agent exploiting the resource pays as a
percentage of their income to the agent who marked the lattice, Sr⃗(m, t) is the
amount of resource in lattice r⃗∗ in m generation at t moment. When agent i
moves to lattice r⃗∗, the location of agent i is updated to Li(m, t) = r⃗∗. The
reduction in the exploited lattice resources is Er⃗(m, t)

Er⃗(m, t) = Sr⃗(m, t) · b(qi). (6)

At the end of generation m at moment t, the system calculates the income of
each agent. If i has searched for resources, their net income is now

πi(m, t) =





N∑

j=1,j ̸=i

c · b(qj) · Sr⃗(m, t)|Lj(m, t) = r⃗, Fr⃗(m, t) = i



 . (7)

If agent i has exploited resources, their net income is now

πi(m, t) =





b(qi) · (1 − c) · SLi(m,t)(m, t)

+

{
N∑

j=1,j ̸=i

c · b(qj) · Sr⃗(m, t)|Lj(m, t) = r⃗

}
, Fr⃗(m, t) ̸= i

b(qi) · SLi(m,t)(m, t)

+

{
N∑

j=1,j ̸=i

c · b(qj) · Sr⃗(m, t)|Lj(m, t) = r⃗

}
, Fr⃗(m, t) = i

.

(8)
At the end of generation m at moment t, the resources in the environment grow
according to a logistic curve, and the growth function is

Sr⃗(m, t + 1) = Sr⃗(m, t) + a · Sr⃗(m, t) · (1 − Sr⃗(m, t)

M(r⃗)
) − Er⃗(m, t). (9)

where a is the growth rate of the resource.
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(2) When running T moments, the evolution of generation m is complete
and each agent’s decision-making is adjusted according to the total income in
the m generation. Here the total income function of the agent in generation m
is

πi(m) =
T∑

t=1

πi(m, t). (10)

At the end of generation m, the agent’s decision-making is updated and agent
income strengthened. When an agent’s decision-making strategy increases their
income, they continue the strategy. We do not allow agent decision-making to
be less than 0 or more than 1. If a strategy makes agent decision-making drop
below 0, we adjust it to 0, and if it is more than 1, we adjust it to 1. The agent’s
decision-making strategy is

qi(m + 1) =

{
qi(m) + 2 · (qi(m) − qi(m − 1)), πi(m) ≥ πi(m − 1)
qi(m) − 2 · (qi(m) − qi(m − 1)), πi(m) < πi(m − 1)

. (11)

Following the first generation of experiments, agent decision-making changes
randomly. Random number X satisfies a uniform distribution. The updating
of the agent decision-making strategy is

qi(1) =

{
qi(0) + 0.1, qi(0) ≥ X, X ∼ U(0, 1)
qi(0) − 0.1, qi(0) < X, X ∼ U(0, 1)

. (12)

In the next generation of experiments, environmental resources are Sr⃗(m +
1, 1) = Sr⃗(m,T ). Environmental resources are again marked by agents.

(3) Agent decision-making repeats for M generations in accordance with the
above evolutionary rule.

2.4. The degree of labor division

In the simulation, if agent decision-making q is closer to 0, agent ability to
exploit resources is stronger. If agent decision-making q is closer to 1, agent
ability to find resources is stronger. We measure the degree of labor division
using index η, where

η = (
∑

qi>0.5

qi +
∑

qi≤0.5

(1 − qi))/N. (13)

2.5. Evolution results

Here the number of agents is N = 30, the growth rate of the resources
a = 0.3, and the information fee ratio c = 0.2. The evolution process has
M = 200 generations, and each generation m contains T = 150 moments. After
the agent decision-making parameters evolve through 200 generations under
different initial values, we get the final distribution shown in Fig. 1:

Figure 1 shows that there are an increasing number of agents with decision-
making that is close to 0 or 1 in the matrix color map showing the evolution.
Different initial conditions generate labor divisions at the end of the evolution.
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Figure 1: The horizontal axis represents the simulation generation and the vertical axis rep-
resents agent’ decision-making. The color bar represents the number of agents in different
generations and different decision-making. Closer to the red, shows a greater number of a-
gents. Before evolution, agent’ decision-making has four different states: (a)q = 0; (b)q = 1;
(c)q = 0.5; and (d)q is random distribution. Different initial conditions generate labor divi-
sions at the end of the evolution.
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The initial state of decision-making of the agent does not affect the creation of
labor division. The randomness in the simulation process results in ultimate
labor divisions that are not the same but that exhibit the same trend, i.e., that
there is always a clear labor division.

2.6. The influence of information fee ratio

The information fee ratio is between 0 and 1 at intervals of 0.1. We assume
that agent decision-making parameter q is randomly distributed. We repeat the
experiment 10 times and calculate the index η of the degree of labor division—
the average value of the total income for the 10 trials. The results are shown in
Fig. 2.
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Figure 2: The information fee ratio directly affects agent net income and also the degree of
labor division and total revenue. When the information fee ratio is 0.2, the influence of labor
division is the most obvious, and the total revenue is the largest. Very high or low information
fee ratios lead to a decline in total revenue. Only when the information fee ratio ensures that
the income of the agent who exploits resources balances the one who finds resources will the
system will achieve a maximum of labor division and an optimization of total revenue.

The information fee ratio directly affects agent net income and also the
degree of labor division and total revenue. When the information fee ratio is
0.2, the degree of labor division among the agents is the highest, and the total
revenue of the system is the largest.

When the information fee ratio is smaller, because of reduced income fewer
agents find resources. More agents exploit resources and discover that resources
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are limited, and this causes the income of agents exploiting resources to decline.
Because of the increase in income when the information fee ratio is larger, agents
find resources, the discovered resources are not exploited, and the income of all
agents declines. Only when the information fee ratio ensures that the income of
the agent who exploits resources balances the one who finds resources will the
system will achieve a maximum of labor division and an optimization of total
revenue.

2.7. Total revenue of the group

The decision-making parameters are randomly initialized and the informa-
tion fee ratio is c = 0.2. Figure 3 shows how the agent income optimization
mechanism affects the total revenue.
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Figure 3: The effect of the agent’s income optimization mechanism on total revenue. The
total revenue continues to increase with the evolution and tends to be stable after using a
moving method.

We use a moving average method to deal with total revenue and find that
agent optimization behavior causes the emergence of labor division and increases
the total revenue of the group as it evolves. Because the simulation includes
randomness, the total revenue fluctuates.

3. Master equation model

We use a mathematical model to explore and verify the results of the above
simulation. We assume that the closed environment is composed of n ∗ n dis-
crete lattices in which all resources are evenly distributed, and the lattice unit
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resources are S0. The decision-making variable of group j is qj , and agents
with the same decision-making are homogeneous. The space of decision-making
variables is divided into K, and Pj is the probability of decision j. Using the
optimization of agent income, we establish a discrete non-autonomous dynamic
model.

3.1. Master equation

There are T evolution generations. In the evolution process between two gen-
erations, the agent decision-making variables will evolve toward maximum agent
net income. In addition, the current decision-making state can only change to
adjacent states, and the probability of state j is

Pj(t + 1) = Pj(t) + wt(j + 1 → j) · Pj+1(t) + wt(j − 1 → j) · Pj−1(t)
−wt(j → j − 1) · Pj(t) − wt(j → j + 1) · Pj(t).

(14)

For the decision-making state j = 0 and j = K, the master equation satisfies

P0(t + 1) = P0(t) + wt(1 → 0)P1(t) − wt(0 → 1)P0(t). (15)

PK(t + 1) = PK(t) + wt(K − 1 → K)PK−1(t) − wt(K → K − 1)PK(t). (16)

where wt(i → j) is the transition probability of the decision-making state from
i to j in generation t.

3.2. State transition probability

The transition probability of the decision-making state from i to j is in
accordance with income in the different states [13],

wt(i → j) = α · [5 + 3 · sgn(πt(j) − πt(i))], (17)

where πt(j) − πt(i) is the difference in income between decision-making state i
and state j at generation t. The α value is a parameter related to the probabil-
ity of mutation. The transition probability model increases the probability of
moving to a state of increasing income.

3.3. Agent’s income in different decision-making states

Agent net income is determined by agent income and information cost. In-
come includes the income from resource exploitation and information collection.
Costs include the information cost. In generation t, the net income of the agent
in decision-making state j is

πj(t) = b(qj) · (v̄ · N) · S0 · (1 − c) + v(qj) · (b̄ · N) · S0 · c, (18)

where c is the information fee ratio, v(qj) the visual field radius of the agent
in decision state j, and b(qj) the exploitation ability of the agent in decision
state j. The b̄ values is the average capacity of agents to exploit resources. The
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v̄ value is the average resource lattice found by a agent. The agent can learn-
by-doing. If agents tend to exploit resources, their ability to exploit will grow.
On the other hand, their ability to discover resources will also grow. Thus the
model for the visual field radius of the agent and the exploitation capacity of
the agent are

b(qj) =
2

1 + exp(6qj)
(19)

and

v(qj) =
q5
j

0.55 + q5
j

. (20)

3.4. Model results

3.4.1. Evolution process and results of different initial distributions

In the theoretical model there are N = 30 agents, the probability interval
of the agent’s decision-making parameter is K = 20, the number of experiment
generations is T = 100, and the information fee ratio is c = 0.3. We adjust
the initial distribution of agents, apply it to four special cases, and show the
evolution process and the final distribution results in Fig. 4. We compare the
four graphs and find that the different initial distribution does not affect the
emerging labor division.

3.4.2. Evolution results

The optimal income for the agent is strongly affect by the relationship be-
tween the total group revenue and the agent’s income. In the theoretical model,
the emerging labor division depends on information sharing and adaptive s-
trategy adjustments. Figure 5 shows the change of total income in different
generations and the influence of the information fee ratio.

The total revenue is strongly affected by the information fee ratio. When
the information fee ratio parameter is 0.3, the total revenue increases with an
increase ing evolution. When the information fee ratio is too large or too small
the total revenue decreases. When the information fee ratio is too low, the
initiative to discover resources decreases because there are insufficient available
resources. When the information fee ratio is too high, agents may choose to
discover resources but, because there are fewer agents exploiting those resources,
the income of the discovering agents decreases. Thus the information fee ratio
directly affects agent income preference and this causes an imbalance in labor
division. The information fee ratio is the only factor that can balance the labor
division and maximize total revenue. The theoretical results quantifying this
are similar to the simulation results.

4. Conclusion

We have modeled the division of labor as a self-organization process. Driven
by individual income optimization, the system moves from disorder to order and
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Figure 4: The results of labor division: At the initial moment,the agent’s decision-making
has four different states: (a)q = 0; (b)q = 1; (c)q = 0.5; and (d)q is random distribution.
The different initial distribution does not affect the emerging labor division. And the agent’s
decision-making tends to 0 or 1 with the evolution.
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Figure 5: First picture shows the impact of the information fee ratio on total revenue. We
calculate the average of the total revenue in different information fee ratio. The total revenue
reached the maximum when the information fee ratio parameter is 0.3. Second picture shows
the change in total revenue in each evolution. When the information fee ratio parameter is
0.3, the total revenue increases with the evolution.
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a division of labor emerges. We do not set system-wide goals in the simulation
process but apply a set of rules governing how agents interact with each other
and with their environment. Agents seeking to increase their income is the
driving factor in this self-organized evolution.

The rational for labor division is as follows.

(1) Information sharing: Resource information is shared in a closed environ-
ment. This is a good approximation of the real-world information ex-
change process and makes the transaction rules between agents rational
and realistic.

(2) Learn-by-doing: This nonlinear mechanism enables agents to further im-
prove what they are good at and—through the effect of positive feedback—
become more strongly attached to doing it. Overall efficiency increases,
which is an important factor in the emergence of labor division.

(3) Random fluctuation: Stochastic fluctuation is a necessary condition for
self-organized evolution and determines the state the agent arrives at in
the final stage. In the process of evolution, a small change in the initial
state of the system can strongly affect the final state. In our study the
emergence of labor division does not depend on stochastic fluctuations,
but the final outcome of labor division does depend on them.

Within the research field on labor division, we here make two contributions.
(i) We introduce information cost as a factor in the formation of labor division
and find that the level of information cost governs the aggregate income of the
economy. This has significant implications for economic regulation and control.
(ii) We find that labor division is caused by individual optimization not global
optimization, but that stochastic characteristics can make the state of labor
division unstable.
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Highlight:
• We present two evolutionary models on division of labor.
• The models are established from the perspective of individual 

optimization;
• We introduce information cost to the model;
• Some self-organizing mechanisms were found.
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