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Available online at www.sciencedirect.com

ScienceDirect
43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89
For over 100 years it has been recognized that insect pests

evolve resistance to chemical pesticides. More recently,

managers have advocated restrained use of pesticides, crop

rotation, the use of multiple pesticides, and pesticide-free

sanctuaries as resistance management practices. Game theory

provides a conceptual framework for combining the resistance

strategies of the insects and the control strategies of the pest

manager into a unified conceptual and modelling framework.

Game theory can contrast an ecologically enlightened

application of pesticides with an evolutionarily enlightened one.

In the former case the manager only considers ecological

consequences whereas the latter anticipates the evolutionary

response of the pests. Broader applications of this game theory

approach include anti-biotic resistance, fisheries management

and therapy resistance in cancer.
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Introduction
Game theory is the field of mathematics devoted to

solving conflicts of interest between two or more players.

It solves problems where your best action (strategy)

depends upon the strategies of others. In nature, game

theory is particularly suited for understanding adaptations

emerging from evolution by natural selection [1�]. “The

deer flees and the wolf pursues” [2] succinctly describes

games between predators and prey. The evolution of

pesticide resistance represents a special and economically

crucial case of predator–prey games. Here, we illustrate
Please cite this article in press as: Brown JS, Sta�nková K: Game theory as a conceptual framework for
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how classical game theory and evolutionary game theory

can be conjoined to produce bioeconomic games of pes-

ticide resistance. Game theory and pest management thus

become part of integrated pest management [3,4].

The evolution of biocide resistance marks the most

dramatic, damaging and rapid manifestations of natural

selection. Examples of rapid evolution in response to

humans attempts to chemically control pests include

herbicide resistance [5–8], antiobiotic resistance (e.g.,
MRSA [9]), drug resistance by parasites (e.g., malaria,

[10,11]), and at the most personal level, the evolution

of therapy resistance in human cancers [12,13]. Here we

shall focus on the use of pesticides to control insect

damage to agricultural crops, but the concepts and models

can be extended to these other examples of disease and

pest control.

We shall review the problem of pesticide resistance as a

bio-economic game. The game has insect players that

may evolve pesticide resistance, and the farmers in addi-

tion to the manufacturers and regulators represent players

with economic and social interests. Such games can

consider human health and environmental consequences

of pesticides, and they can be added as costs and exter-

nalities. With the aim of sharing the contexts of pesticide

games, we shall introduce a simple model for illustrating

concepts. We shall emphasize the comparison between

ecologically versus evolutionarily enlightened [14]

approaches to pesticide applications [15�]. Throughout,

we shall discuss parallels in such systems as fisheries

management [16], anti-biotic resistance in infectious dis-

eases [17�], and therapy resistance in cancer [18]. In

conclusion, we advocate greater use of game theory in

developing resistance management practices [19].

Pesticide management as game
The interacting players in the game can be diverse and

include society at large, regulators, biocide manufac-

turers, seed companies breeders, the birds or spiders that

consume the pest, and of course, the farmers and the

insect pest [20]. The insects and other species within the

ecosystem find themselves in an eco-evolutionary game
where ecological dynamics occur through changes in

population size and evolutionary dynamics involve heri-

table changes in the species. In an evolutionary game the

individuals (players come and go through births and

deaths), their strategies are inherited, and their payoffs

take the form of increased survivorship and breeding [21].

The solution to such games are often evolutionarily stable
 managing insect pests, Curr Opin Insect Sci (2017), http://dx.doi.org/10.1016/j.cois.2017.05.007
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C

rategies (ESS) [22]. An ESS is a strategy (or coexisting set

f strategies) that when common cannot be invaded by

ny rare alternative strategies.

he farmers or other human players engage in a more

aditional, classical game. They choose rather than

herit their strategies, and payoffs take the form of

onetary and/or utility rewards. Furthermore, the human

layers can anticipate and plan for the responses of other

layers [23]. Players in evolutionary games can never

volve a response to something that has not yet hap-

ened. The solution to classical games can be the Nash
olution [24]. This is a no regret strategy. When all players

re at a Nash solution no individual player can benefit

om unilaterally changing his/her strategy.

s humans we can anticipate the evolutionary conse-

uence of our actions on nature. Yet in managing, we

ften do not anticipate but merely respond to the evolu-

onary changes we cause. And so it is with much of pest

anagement. We respond to the ecological costs and

enefits of our biocides without regard to their evolution-

ry consequences. We shall call this ecologically enlightened
anagement. Game theory explains the temptation to

mply be ecologically enlightened stewards. Game

eory is also ideal for anticipating and incorporating

e eco-evolutionary dynamics that we cause. When both

e population and evolutionary dynamics of the species

f interest are incorporated into human decision making

e shall refer to this as evolutionarily enlightened manage-
ent (sensu [25]).

o keep things simple, we will view pesticides as a game

f the farmers versus the insect pests. The game may take

 general form of:

 u; m; Nð Þ ¼ F u; Nð Þ � m u; mð Þ ð1Þ
Please cite this article in press as: Brown JS, Sta�nková K: Game theory as a conceptual framework f

Table 1

Model basics

Pests’ perspective
Dynamics of pests’ density N

_N ¼ dN

dt
¼ NG u; m; Nð 

Fitness generating function G u; m; Nð Þ ¼ r 1�uð ÞK�N
K

Optimal level of pesticide resistance u* u� ¼ argmax
u

G u; m; Nð Þ
Equilibrium density of pests N* N� ¼ K 1 � uð Þ � mK

kþbuð Þ
Farmer’s perspective

Net profit of the farmer P P m; N; Yð Þ ¼ Y 1 � aN
� 

Ecologically enlightened pes
@P
@m

�2aYN@N
@m � c

@N�
@m

� K
r kþbuð Þ

urrent Opinion in Insect Science 2017, 21:1–7 
P u; m; Nð Þ ¼ Y u; Nð Þ � cm ð2Þ

where G is the per capita growth rate of the insect pest and

P is the net profit to the farmers. The per capita growth

rate of the insects is the difference between their growth

rate in the absence of pesticides, F, and the mortality rate

induced by the application of pesticides, m. The farmers’

net profit is the difference between the crop harvest, Y,
and the cost of the pesticides. Each of these are functions

of the resistance strategy of the insects, u, the rate at

which pesticides are applied, m, and the density of

insects, N.

We can assume that the insect’s per capita growth rate, F,
in the absence of pesticide declines with insect density,

N, and that their resistance strategy, u: @F/@N < 0 and @F/
@u < 0 represent negative density-dependence from com-

petition and the cost of resistance, respectively. The

insect’s mortality rate from the pesticide declines with

their resistance strategy (@m/@u < 0) and increases with

the dosage of pesticide (@m/@m > 0). In this formulation

the population growth rate of the insects is given by
dN
dt ¼ NG u; m; Nð Þ. See Table 1 for more details regarding

the model assumptions.

Crop yield will decline with the density of insects

(@Y/@N < 0) and it may decline directly with the resis-

tance strategy of the insects if this renders the insects less

efficient foragers (an additional cost of resistance;

@Y/@u > 0). The cost of pesticides is simply the product

of their cost, c, and the rate at which pesticides are

applied, m.

In the absence of pesticide, or under some critical level of

pesticide, the optimal level of pesticide resistance for the

insects will be u* = 0. As applications of pesticide

increase, the optimal level of resistance will also increase.
or managing insect pests, Curr Opin Insect Sci (2017), http://dx.doi.org/10.1016/j.cois.2017.05.007

Þ
� m

kþbu

 ¼ ffiffiffiffi
m
rb

p � k
b

r

2
�� cm � g

t control Evolutionarily enlightened pest control Neither

�2aYN @N
@m þ @N

@u
@u
@m

� �� c �2aYN � c

�K @u
@m � rK kþbuð Þ�bmrK @u

@m

r kþbuð Þ2
n.a.
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This can be represented as a best response curve in the

state space of m versus u (Figure 1). The best response

curve shows how the optimal resistance strategy of the

insects, u*, increases with the amount of pesticide

applied. It can be thought of as the functional relationship

between u* and m: u� mð Þ.

There may also be some equilibrium abundance of

insects, N*, where G = 0 when evaluated at N*. For a

fixed level of resistance, the equilibrium abundance of

insects will decline with the pesticide (@N*/@m < 0). The

equilibrium will also be influenced by the insect’s resis-

tance strategy. The ESS level of resistance is a level of

resistance which, if adopted by the insect population,

cannot be invaded by any alternative level of resistance

that is initially rare.

Ecologically enlightened management
Ecologically enlightened farmers anticipate the conse-

quences of their actions on the population size of pests,

N*, but they do not consider the evolutionary conse-

quences of their actions. They simply respond to the

insects’ current value of resistance. Hence, the farmers

also have a best response curve. Given a certain resistance

strategy among the insects, the farmers can select their

optimal level of pesticides that maximizes their net profit.

This m* considers the effects of the pesticide on the

residual abundance of insects, N*. The farmer’s optimal

value for m* becomes a function of the insect’s resistance

strategy: m� uð Þ. The first order necessary condition for m*
requires that @P

@m ¼ 0 which yields:
Please cite this article in press as: Brown JS, Sta�nková K: Game theory as a conceptual framework for

Figure 1

m

u∗  (m

m∗ (u)   with

m∗ (u)   with a lower cost of pesticid

u

The ESS-Nash solution for ecologically enlightened management. The insec

of resistance that will evolve as a function of the amount of pesticide. The f

optimal level of pesticide that should be used in response to a particular lev

farmers’ curves shows the ESS-Nash solution u*, m*. The different intersect

insects or changing the cost of the pesticide to the farmer. The model is sh

www.sciencedirect.com 
@Y

@N

@N

@m
¼ c ð3Þ

The left hand side of the equality considers how reducing

the density of pests will improve yields and this is

multiplied by the marginal reduction in insects caused

by a marginal increase in pesticides. The farmers are

ecologically enlightened. They base their decision on the

pesticide’s effect on the insect’s population, N*. The

right hand side of the expression gives the marginal costs

of the pesticides. The value of m* that satisfies Eq. (3) will

vary with the resistance strategies of the insects, u. This

function, m� uð Þ represents the best response curve of the

farmer’s (Figure 1).

It can take on a variety of shapes. The value of m*
may continually increase with the level of resistance

(@m*/@u > 0) if greater amounts of pesticide can compen-

sate for the higher levels of resistance. The relationship

between m* and u might be humped shaped. At first,

more pesticide compensates for increased resistance, but

beyond some point, the level of resistance renders the

pesticide ineffective and so applying more is no longer

worth the cost. For the model illustrated in Figure 1, m*
declines with u.

Possible solutions to this bioeconomic game occur at the

intersection of the insects’ and farmers’ best response

curves (Figure 1). This point is a Nash equilibrium for the

farmers and an ESS for the insects. The farmers can do no
 managing insect pests, Curr Opin Insect Sci (2017), http://dx.doi.org/10.1016/j.cois.2017.05.007

)  with a higher cost of resistence

 a higher cost of pesticide

e

u∗ (m)  with a lower cost of resistance

Current Opinion in Insect Science 

t’s best response curves u*(m) have positive slope and show the level

armers’ best response curves m*(u) have negative slope and show the

el of resistance by the insects. The intersection of the insect’s and

ions show the consequence of changing the cost of resistance to the

own in Table 1.
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Figure 2

tragedy of commons

ecologically enlightened

evolutionarily enlightened

m

∏
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The effect on the farmers’ profits, P, of changing the level of

pesticides, m. The profit curve for ecologically enlightened

management has the farmer reacting to the level of pesticide

resistance that evolves in the insects. It is constructed by fixing the

resistance level of insects to their ESS value shown in Figure 1 from

the intersection of the insect’s and farmers’ best response curves. The

profit curve takes on a maximum with respect to m at the value m*

that is at that intersection. The evolutionarily enlightened manager

anticipates the evolution of the insects. All along this profit curve the

resistance strategy of the insects are changing according to their best

response curve. The evolutionarily enlightened profit curve reaches a

higher profit at a lower level of pesticides, m**, than the ecologically

enlightened one. The curve labelled ‘tragedy of the commons’ shows

the profit that farmers could achieve in the short-term by changing

their pesticide usage while the insects still have the resistance

strategy based on m**. While the peaks of the evolutionarily and

ecologically enlightened profit curves are sustainable, the peak of the

tragedy of the commons curve is not. At a pesticide use of m > m**

the insects will over time evolve higher resistance. As the farmers

react to these higher levels of resistance they will eventually drive the

system to the lower peak of the ecologically enlightened profit curve.

C

etter given the strategy of the insects and the current

sistance strategy of the insects cannot be invaded by an

lternative rare mutant strategy.

ven in this general form several results emerge. Increas-

g the cost of resistance to the insects will shift their best

sponse curve downwards resulting in a lower level of

sistance, an increase in the application of pesticides, a

rge decrease in the population of insects, N*, and an

crease in profit to the farmers. Increasing the cost of

esticides to the famers shifts their best response curve

owards the left) resulting in a reduction of pesticide, a

duction in the resistance strategy of the insects, a large

crease in their population size, and a reduction in net

rofit to the farmers.

ut is this Nash equilibrium the best the farmers can do?

terestingly, if one fixes the resistance strategy of the

sects to their Nash equilibrium, then the farmers’

aximize their net profit by using their Nash equilibrium

f pesticide (Figure 2). So at first glance it seem the

rmers can do no better. In fact, the farmers can do better

 they anticipate the evolutionary response of the insects.

volutionarily enlightened management
hat if the farmers’ also anticipate their evolutionary

onsequences. An evolutionarily enlightened manager

ould incorporate both the ecological, N� mð Þ, and the

volutionary, u� mð Þ, components into their net profit

nction. The farmers know that in time the insects will

volve a resistance strategy that lies on their best response

urve. It now behooves the farmers to select their m** so

s to find the value of m along u� mð Þ that maximizes their

rofits. The first order necessary condition for this m** is:

Y

N

@N

@m
þ @N

@u

@u�

@m

� �
¼ c ð4Þ

or most assumptions regarding the functional forms of

ese relationships, the value of m** will be less than m*.
he evolutionarily enlightened managers will be more

strained in their use of pesticides than the ecologically

nlightened ones.

igure 2 illustrates both types of management strategies

ith curves of net profit as functions of pesticide use. The

volutionarily enlightened curve reaches a higher peak at

 lower value of pesticide use than the ecologically

nlightened curve. As it must, the evolutionarily enlight-

ned curve intersects the ecologically enlightened from

bove and at the peak of the ecologically enlightened

urve. While the solution of m��; u� m��ð Þð Þ is unavailable

 the ecologically enlightened farmers, the Nash solution
� uð Þ; u� mð ÞÞ of the ecologically enlightened farmers is

vailable to the evolutionarily enlightened ones.
Please cite this article in press as: Brown JS, Sta�nková K: Game theory as a conceptual framework f
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When viewing pesticide resistance as games between the

managers and the insect pest, the managers’ best long-

term strategy considers the consequences of their actions

on the evolution of resistance. The application of pesti-

cides will likely result in some resistance and the insects

will evolve towards their ESS. But now, their ESS is no

longer in response to the Nash equilibrium of the man-

agers. Instead the mangers have changed to a Stackelberg
game defined as a leader-follower game [26,27]. As leaders

in the Stackelberg game, the farmers can steer the pest’s

evolution. As followers, the insects simply react along

their best response curve. To maintain a less resistant pest

population, the managers moderate their pesticide use

below that which would maximize economic gain given

the current level of resistance in the pest population. This

may become a triple win. The manufacturer maintains a

viable product, the farmers experience insect pests that

can be managed at acceptable levels with less pesticide,

and society has reduced exposure to negative externali-

ties of toxic biocides. This line of reasoning has and is

being applied within a game theoretic context to other

systems.
or managing insect pests, Curr Opin Insect Sci (2017), http://dx.doi.org/10.1016/j.cois.2017.05.007
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Other systems
Pesticide resistance of problem plants and weeds repre-

sents a parallel scenario to pesticide resistance in insects

[28]. Most of the ideas presented above also apply to

herbicide resistant weeds, but the models might involve

the competition between the weeds and the crop, or

problems arising from the weeds contaminating the seed

crop or the quality of say alfalfa or timothy grass hay.

While these problems have not generally been

approached as explicitly game theoretic, suggestions for

reducing the spread of herbicide resistant weeds include

reduced herbicide applications [29], crop rotation, and

varied forms of weeding [19].

Fisheries management provides some of the earliest

game theory models for managing evolving resources

[30–32,33�]. While long debated, it is now known that

size selective harvesting of fish selects for fish that

evolve to mature and maintain a smaller size and fish

that breed earlier in life [34]. The fishing industry and

society lose twice. The fishing itself reduces fish stocks

and the remaining fish stocks may be less profitable

and valuable by virtue of their smaller size. Cod and

herring represent two striking examples of evolving

much smaller mature fish [35,36]. In Australia, New

England (USA) and the Canadian maritime provinces,

lobster fisheries have thrived under evolutionarily

enlightened management [37] that involves, among

other things, releasing the very small and the very large

lobsters. Ecologically this maintains a stock of breeding

individuals, and evolutionarily this reduces the evolution

of smaller lobster.

Over-use of antibiotics in livestock and humans has been

advocated as a means of forestalling the evolution of

antibiotic resistant pathogens. A tragedy of the commons

encourages each patient and physician to maximize suc-

cess by using high doses of drugs. But, this action spread

over literally millions of patients insures the rapid evo-

lution and spread of resistant bacteria. Evolutionarily

enlightened management suggests minimal short-term

losses to individuals for ultimate long-term gains [38,39�].

Finally, clonal evolution by cancer cells [40] and therapy

resistance in cancer is what makes cancers lethal [41].

Standard of care advocates maximum tolerable doses of

drugs, radiation and/or immunotherapy. If the therapies

kill all of the cancer cells, then success has been achieved.

But, if residual populations of cancer cells survive they

will evolve resistance, proliferate and ultimately result in

patient death. Game theory models are being used to

model cancer therapy [42] and how reduced doses of

drugs can be used to maintain acceptably low populations

of cancer cells that retain drug sensitivity (e.g., adaptive

therapy [43,44�]). If treating to kill results in the lethal

evolution of resistance, then treating to contain becomes

an attractive alternative.
Please cite this article in press as: Brown JS, Sta�nková K: Game theory as a conceptual framework for
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Broader context of integrated pest
management as a game
In principle a game theoretic approach to pest manage-

ment seems straightforward. Yet, there are social,

scientific and modeling challenges to achieving

evolutionarily enlightened management. For instance,

an ecologically enlightened approach may result because:

(1) evolution is thought to be too slow or negligible, (2)

insufficient data or knowledge exists to anticipate the

resistance responses of the pest, (3) as a group the

individuals may desire an evolutionary approach but some

individuals may ‘cheat’ and create a tragedy of the com-

mons [45,46], and (4) even best practice may result in

pests that evolve high resistance resulting in unaccept-

able levels of crop damage. The optimal strategy for

fighting the pest may require the joint and cooperative

actions of many managers and farmers. But, in reality, a

farmer’s decision may be based on guidance from the

commercial advisors, and perceptions of the immediate

and local threat of the pest. In some cases, farmers may be

tempted to over-use pesticides on their own farm while

advocating restraint by all of the others, or if pesticides are

proving effective over a large scale a famer may be

tempted to forgo applying pesticides and free-load from

the actions of others [47�].

Even an enlightened strategy may simply delay complete

resistance rather than achieving a more or less static and

sustainable equilibrium. In this case the dynamic path to

equilibrium may be of the most interest, and such paths

could be framed as evolutionary games. Such economic

processes do not progress steadily toward some pre-deter-

mined and unique equilibrium [48]. The outcome of

these path-dependent process will not always converge

on a unique equilibrium. There may even be several

equilibria (sometimes known as absorbing states) [49].

With path dependence, both the starting point and acci-

dental events (noise) can have irreversible consequences

for the ongoing trajectory and outcomes [50].

The interplay between data, management options, and

modelling become essential [51]. What are the resistance

strategies and mechanisms of the pests? What are the

available options? Who are the players, and what are the

consequences of their actions [52]? In constructing the

model, all of these need to be measured, estimated or

assumed. More sophisticated management strategies may

include the application of several pesticides, and tempo-

ral or spatial variability in their application [53�]. For

instance, a double-bind strategy would be ideal if the

resistance strategy of the pest to one chemical makes it

more susceptible to another and vice-versa [54]. Depend-

ing upon the pest’s life history and dispersal tendencies,

leaving some fields or areas pesticide free may create

temporal and spatial refugia that favor non-resistant pests.

The opportunity for more realistic and sophisticated

models is manifold.
 managing insect pests, Curr Opin Insect Sci (2017), http://dx.doi.org/10.1016/j.cois.2017.05.007
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C

side from the evolution of resistance, pests have other

ays to escape control. They may undertake otherwise

sky migrations to establish a population elsewhere [55]

r they may move into a refuge, give up reproduction

nd enter a state of physiological dormancy [56,57].

esistance may simply involve avoiding contact with or

gestion of the chemical agent. Life history strategies

ay adjust to create temporal avoidance. Hence,

ffective pesticide management may include the use of

ultiple chemicals, crop rotation, and other forms of

eterrence in a highly dynamics manner that adapts to

hanging circumstances and that formulates the best

quence of pest control actions [58�,59]. Regardless of

e simplicity or complexity of the system, the control of

ests and the management of their resistance responses

vites the application of game theory and game theoretic

inking. In the eco-evolutionary dynamics of crop pests

nd the countermeasures we take to maintain yields its

ame on!
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