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Abstract

A new differential equation based model for stock price trend forecast is proposed as a tool to investigate

efficiency in an emerging market. Its predictive power showed statistically to be higher than the one of a

completely random model, signaling towards the presence of arbitrage opportunities. Conditions for accu-

racy to be enhanced are investigated, and application of the model as part of a trading strategy is discussed.

Keywords: Stock Markets, Financial Series, Differential Equation Models, Econophysics.

1. Introduction

As it is widely known, according to the efficient market hypothesis (EMH), for rational behavior and

market efficiency there is no information in the trading history of an asset that leads to arbitrage opportunities

[1]. Nevertheless, a large number of market players are engaged in obtaining such information: in fact,

although fundamentalists hold most of stocks, technical traders contribute to the majority of the volume

traded [2]. This discussion includes the definition of market efficiency and a non-trivial analysis of market

agents rationality; seminal ideas are found in Refs. [3–5]. Fundamental contributions to understanding

market dynamics have been developed in the context of behavioral economics and finance, where irrational

behavior is studied in detail [6, 7], and in experimental approaches to economics, where the conditions for

the market to evolve as predicted by economic theory are investigated [8, 9]. Adaptive market hypothesis

[10], which asserts that the market evolves according to natural selection of bounded rational agents, permits

return predictability from time to time, and has been argued to furnish satisfactory explanation in some cases.
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Recent empirical investigations of market efficiency have been carried out in many contexts using a

variety of statistical tools (see, for instance [11–26]). Deviations from efficiency were associated to a mul-

tiplicity of factors, e.g., operation costs [27], low liquidity [15, 28], information flux [29–31], central bank

interventions [32–35], political uncertainties [36] and financial crisis [37]. Knowledge about market in-

efficiencies are crucial in the context of risk management; indeed, correlations between stocks tend to be

greater in periods of market stress, what deteriorate the protection effects of diversification in portfolios in

the periods where they are most important [38–41]. On the other hand, noticeable changes in dynamics of

financial markets may be used by governments and market players to detect early signs of financial crises

[42, 43]. Understanding the way the market deviates from the standard models can also be employed to

build profitable trading strategies [44–46].

There are in the literature a plenty of articles focused on market dynamics forecast (a survey of papers

based on conventional methods is found in Ref. [47] and on soft computing methods in Ref. [48]). Forecast

models tend to be improved when collective behavior is taken into account [49]. Co-movement of asset

prices is studied in various ways [38–43, 49–53]. Although forecasts about trend reversals of asset prices

at a given time using information about other assets at the same time can achieve high accuracies, such

accuracies drop drastically for forecasts on future time [49]; this is in line with EMH. Predicting volatility

also does not contradict EMH: in fact, we can find methods based on historical series or on option prices

with satisfactory results (see Ref. [54] for a review, recent examples are in refs. [55–57]). On the other hand,

predicting the sign of asset returns may be related to market inefficiency. Efforts towards predicting return

signs are found in refs. [58–61]. In Ref. [62], the relation between forecastability of volatility and of return

sing is explored. Recently, the behavior of internet users has been used as a probe in the market. Significant

correlations between transaction volumes and search volumes in the search engine Google were found [63].

Behavioral data from the internet was also used as a key ingredient in trading strategies [45, 46, 64]. In the

same context, neural networks, fuzzy logic and support vector machines are popular tools which are often

used in conjunction (e.g., refs. [65–69]). In the present contribution, we propose a new tool for price trend

forecast which can be employed as part of trading strategies and to investigate market efficiency. It is based

on differential equations and take advantage of collective behavior by using data about multiple stocks.

Our main goal here is to study market efficiency by using the proposed model. We show that its success

rate in price trend forecasting is consistently higher than the one of a complete random model. This makes

explicit the existence of information about future prices in the series analyzed, what is empirical evidence of

market inefficiency. Our model is founded on the idea that the dynamics of the deviation of the price of an
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asset from its fair price depends on such deviation and also on the respective deviations of other prices. The

dependence is modeled through a system of linear differential equations. In view of simplicity, linear rela-

tions are natural choice for a first exploration of such a differential equation based model. However, we do

not expect that simple linear relations can exactly describe the dynamics of stock prices: the model proposed

here was employed as an approximation capable of providing some information about future movements.

The inclusion of nonlinear terms and the investigation of their effect in the model accuracy is subject matter

for future research. We chose to work in a scenario were predictability is more probable to be observed:

since inefficiencies tend to be stronger in emerging markets [13, 14], we tested our model with stocks from

the Brazilian market BM&FBOVESPA. We also used intraday data, where a richer panorama of correlations

is expected [70].

Two versions of the model are described in Section 2: one of them uses a minimum set of data points to

calculate the parameters of the model at each time step; the other one is fitted over larger intervals. While

calculation of the former is relatively direct, involving the inversion of a matrix as the most computationally

expensive step, the latter demanded the utilization of nonlinear optimization techniques. Results of differ-

ent ways of applying the model to empirical data are displayed in Section 3, where they are statistically

compared to outcomes of completely random forecasts. In the same section, we calculate some evalua-

tion metrics for the forecasts of the model in a version designed for application in trading strategies. Final

remarks are found in Section 4.

2. Model

2.1. Exact Fit Model

Let us consider N assets and denote the price of each one at time t by xk (t) (k = 1, 2, · · · ,N). We

work here with closing prices of candles corresponding to constant time intervals with size ∆t, coming from

empirical data. Aiming at setting up the differential equations based model, we define t as a continuous

variable whose sampling is discrete. Deviation from the fair value is defined as

Xk (t) = ln xk (t) − ln x̄k (t) . (1)

Of course, the fair value x̄k (t) is an idealized quantity; here, we use a moving average as an approximation

for it:

x̄k (t) =

t−1∑

τ=t−S

xk (τ) . (2)
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This model is built as a system of linear differential equations:

d
dt

X (t) = AX (t) , (3)

where

X(t) =



X1 (t)

X2 (t)
...

XN (t)



, A =



A1,1 A1,2 · · · A1,N

A2,1 A2,2 · · · A2,N

...
...

. . .
...

AN,1 AN,2 · · · AN,N



. (4)

If A does not depend on time, the solutions can be written in the form

X(t0 + t) = etAX(t0). (5)

In order to build the prediction model, we calculate matrices A from deviations Xk. Indeed, for computation

of each matrix A, we must consider Eq. (5) with N different pairs (t0, t) that lead to N independent equations.

This can be achieved with the help of the square matrices

XN(t) =



X1 (t − N + 1) · · · X1 (t − 1) X1 (t)

X2 (t − N + 1) · · · X2 (t − 1) X2 (t)
...

. . .
...

...

XN (t − N + 1) · · · XN (t − 1) XN (t)



, (6)

which contain values of deviations spaced by one unity of time and permit us to write

XN(t) = eAXN(t − 1), (7)

what lead us to

A = ln
[
XN(t)X−1

N (t − 1)
]
. (8)

Let us stress that matrix A is assumed to be constant in the calculation above, and defines a linear system

whose solution fall in the points given in XN(t) and XN(t− 1) corresponding to N + 1 instants of time. Let us

also note that A can vary with the choice of t in Eq. (8). Thus, we use the notation A (t) hereafter to denote

the matrix A calculated in the time window that ends in t.

Each matrix A (t) is employed in the attempt to get information about the deviations concerning the next

step by means of equation

X̂N(t + 1) = eA(t)XN(t). (9)
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Forecasted deviations are found in the N th column of X̂N(t+1). If A (t) = A (t + 1), then X̂N(t+1) = XN(t+1).

In this case, the real deviations Xk (t + 1) could be found in matrix X̂N(t+1). However, A (t) varies with time,

therefore we do not expect very accurate predictions (this would imply unrealistic arbitrage opportunities).

What we investigate here is whether some information about deviations Xk (t + 1) can be obtained by using

Eq. (9). Specifically, we compare price trend forecasts based on Eq. (9) with completely random predictions.

2.2. Approximate Fit Model

In the model presented above, if XN(t − 1) has an inverse we can find matrices A (t) perfectly fitted to

Eq. (7), i.e., the system defined this way presents solutions that fall in all points in the interval [t − N, t].

Now, we change the model seeking for matrices B (t) that are approximately fitted to larger intervals. This

procedure leads to matrices with lesser variation at each time step. As we will see, the predictive power of

the model increases with such a variation decrease.

Let us start by recalling the usual distance between two N × N matrices C and D:

d (C,D) =

√√√ N∑

i=1

N∑

j=1

∣∣∣[C]i, j − [D]i, j

∣∣∣2; (10)

here, we adopt the notation according to which [C]i, j ([D]i, j) is the element of the matrix C (D) in the ith line

and jth column. Considering a calculation analogous to the one in Eq. (7), but maintaining the same matrix

in the exponent for different intervals, we are lead, for each value of t, to

YN(t) = eB(t)XN(t − 1),

YN(t − 1) = eB(t)XN(t − 2),
...

YN(t − R + 1) = eB(t)XN(t − R), (11)

with integer R. We search for the matrix B (t) that leads to YN(τ) as close as possible to XN(τ) for τ varying

from t − R + 1 to t, namely, the matrix B (t) that minimize the sum of the squares of the distances between

the matrices YN(τ) and XN(τ) (t − R + 1 < τ < t). Thus, our objective function to be minimized is

f (B (t)) =

t∑

τ=(t−R+1)

N∑

i=1

N∑

j=1

∣∣∣∣[XN(τ)]i, j −
[
eB(t)XN(τ − 1)

]
i, j

∣∣∣∣
2
. (12)

As the optimization tool we use a hybrid method consisting in the combination of gradient and conjugate

gradient methods [71], with the step size given by golden section method and stopping criterion based on er-

ror stabilization (variation less than 10−9). The average of the matrices A relative to the interval [t − R + 1, t],
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B0 (t) =
1
R

t∑

τ=t−R+1

A (τ) , (13)

is employed as the initial value in the optimization process.

The exact model can be assumed as a particular case, corresponding to R = 1, of the model described in

this section. Therefore, we will not distinguish matrices A from matrices B in what follows. Equation

X̂N(t + 1) = eB(t)XN(t) (14)

generalizes the forecast model given in Eq. (9).

3. Application of Forecast Models

Deviations from efficiency are more likely to be found in emerging markets than in developed ones

[13, 14]. Aiming to test our forecast model in an emerging market, we chose three stocks from the Brazilian

market BM&FBOVESPA: Itaúsa (ITSA4), Bradesco (BBDC4) and Usiminas (USIM5). As will be clear

below, this choice also permit us to investigate the importance of linear correlation between stocks for the

predictive power of the model. The data we work with correspond to adjusted closing prices of 5 minutes

candles collected in an interval starting in 03/10/2014 and ending in 07/01/2014. From this set, we took

off the points of the days when the market did not operate full time. The fair prices x̄k (t) were computed

as averages taken in the hour just before the instant t (namely, S = 12 in Eq. (2)). In order to avoid the

influence of previous day in the calculation of the deviations Xk (t), we discarded the deviations relative to

the first negotiation hour of each day. With the points that lasted, we computed 4, 500 matrices B (t) for each

model employed, and also the Pearson correlation coefficient between ITSA4 and BBDC4 (0.3804), ITSA4

and USIM5 (0.0894), and BBDC4 and USIM5 (0.0689). Notice that the linear correlation between ITSA4

and BBDC4 is far more relevant than the other. As we shall see, the predictive power of the model is higher

for more correlated assets.

The model proposed here was analyzed with respect to its ability to forecast, at time t, if the price at

t + 1 will be higher or lower than at t, i.e., we focused only on the trend and not on the value of the prices

forecasted. To this end, we first used Eq. (14) to compute predicted deviations. The forecasted prices were

calculated from the deviations; the forecasted trends were computed from the prices. Our primary objective

is to verify the presence of information in the temporal series of prices. Thus, we compared the accuracy of

our forecasts with the accuracy of random predictions that the price will go up or down (with probability 0.5
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each one), i.e., forecasts similar to those of a fair coin. Since the fair coin model never predicts stability for

adjacent prices, it has no chance of providing a correct forecast in those cases; indeed, if we do not consider

computational limits, this chance is also null for our differential equation based model, given its continuous

nature. If we remove, from the set U of 4, 500 trend forecasts for a given stock, those concerning the intervals

where the actual variation of the price was zero, we get the subset Ū for which the fair coin model gives,

in average, the right trend prediction half of the times. Deviations from this proportion, observed for the

differential equation based forecast model, indicate the presence of information about future returns in the

time series. In order to investigate if the size of a predicted return carries information about the trend, we

divided U in four subsets U1, U2, U3 and U4 with 1, 125 elements each one, in such a way that any return

regarding a trend forecast in Ui is lower, in modulus, than the ones connected to the forecasts in Ui+1 (i = 1,

2 or 3). Thus, for each asset, U1 contains a quarter of the trend forecasts, the ones associated with the lowest

return moduli and U4, the fourth part of the trend forecasts connected to the highest return moduli; forecasts

related to intermediate return absolute values are included in the sets U2 and U3. By removing from U1, U2,

U3 and U4 the forecasts associated to the intervals in which the actual variation is null, we get the sets Ū1,

Ū2, Ū3 and Ū4 where the differential equation model can be compared to the fair coin model.

In tables (1, 2 and 3), we show the accuracy

a =
nc

n
, (15)

where nc is the number of correct trend forecasts and n is the total number of forecasts, of the trend forecasts

of the differential equation based model, for the three stocks studied. Such accuracies were calculated for the

sets Ū, Ū1, Ū2, Ū3 and Ū4, and for different sizes of the intervals used to find the matrices B (t) (R varying

from 1 to 10). The hypothesis tests that the accuracies are statistically different from 0.5 were made:


H0 : a = 0.5

H1 : a , 0.5
.

For each case in tables (1, 2 and 3), a z-test was performed in which the stochastic variable is the sequence

of successes and fails of the model trend forecasts. The assumptions of normality and homoscedasticity

are verified by the sizes of the samples [72]; the assumption of independence was tested with run test for

randomness. Tables (1, 2 and 3) display the p-values of z-tests. The p-values less than or equal to 0.05

are bold, corresponding to the cases in which our model wins the fair coin model, and the colored cells

correspond to those with p-values less than or equal to 0.05 in run test, meaning lack of independence.

Notice that in both cases the sequences of successes and fails of the model forecasts are statistically different
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than the ones from a fair coin. In 41% of the cases in tables (1, 2 and 3) the sample is considered to be

random (not colored cell) and the accuracy is statistically equal to 0.5 (not bold numbers), which represents

the case of a fair coin. However, if we take into account only the correlated stocks ITSA4 and BBDC4, this

percentage drops to 32% and 34%, respectively, and, if we compute exclusively in the sets Ū4, we find a

single fair coin case for BBDC4 and none for ITSA4. For USIM5, three fair coin cases are found in Ū4, all

of them for R < 6. Generally speaking, the model results tend to move away from the ones of a fair coin for

the correlated stocks ITSA4 and BBDC4 and when R increases; this is more evident for the sets Ū3 and Ū4.

The p-values found for those cases indicate that the probability of the fair coin model to generate equivalent

results is very low. On the other hand, results concerning USIM5 are less significant.

The gain obtained employing the approximate fit model may be related to the decrease, with the increase

of R, of the variation of the matrices calculated at each step. The computation of each matrix B (t) is

performed using points distributed at N +R instants of time. Thus, increased R leads to larger amount of data

shared in the calculation of two matrices B regarding adjacent times. In Figure 1, we show the distributions

of the distances d (B (t − 1) ,B (t)) for different values of R: notice that the increase of R actually leads, in

average, to lesser distances. Great variability of the matrices deteriorate the model predictive power. For the

range of values of R studied, as we calculate matrices that fit over longer intervals, the variability decreases

and the information about the future price becomes more relevant.
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Table 1: Statistics of forecasts for ITSA4 in the sets Ū, Ū1, Ū2, Ū3 and Ū4 for different values of the parameter R.

ITSA4 R 1 2 3 4 5 6 7 8 9 10

Ū

n 3291 3291 3291 3291 3291 3291 3291 3291 3291 3291

a 0.5090 0.5332 0.5366 0.5369 0.5360 0.5426 0.5420 0.5378 0.5454 0.5448

p 0.3017 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Ū1

n 803 784 772 769 789 775 774 782 785 789

a 0.4770 0.5089 0.5168 0.5058 0.5183 0.5277 0.5284 0.5063 0.5235 0.5031

p 0.1923 0.6242 0.3524 0.7490 0.3078 0.1236 0.1142 0.7264 0.1902 0.8650

Ū2

n 812 808 805 821 809 811 813 794 809 827

a 0.5170 0.5074 0.5366 0.5286 0.5055 0.5092 0.5141 0.5314 0.5302 0.5296

p 0.3252 0.6744 0.0384 0.1032 0.7566 0.6030 0.4238 0.0780 0.0870 0.0890

Ū3

n 809 848 845 827 828 820 815 827 816 805

a 0.5093 0.5731 0.5408 0.5417 0.5471 0.5597 0.5607 0.5368 0.5551 0.5540

p 0.5967 <0.001 0.0178 0.0168 0.0068 <0.001 <0.001 0.0348 <0.001 0.0022

Ū4

n 867 851 869 873 865 885 889 888 881 870

a 0.5306 0.5404 0.5500 0.5681 0.5699 0.5706 0.5624 0.5720 0.5698 0.5885

p 0.0715 0.0188 0.0032 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Note: The symbol n represents the total number of forecasts, a is the accuracy and p is the p-value for hypothesis test assuming as the

null hypothesis that the forecast model gives the right answer half of the times in the sets analyzed. Highlighted in bold 28 p-values

less than 0.05, corresponding to nearly 56% of the cases. The colored cells correspond to the cases where the sample violates the

premise of independence of data (30%).
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Figure 1: Distributions of distances between matrices B regarding adjacent times for different values of the parameter R. Higher values

of R correspond to larger amounts of shared data in the calculation of adjacent matrices, which leads to smaller distances between them.
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Table 2: Statistics of forecasts for BBDC4 in the sets Ū, Ū1, Ū2, Ū3 and Ū4 for different values of the parameter R.

BBDC4 R 1 2 3 4 5 6 7 8 9 10

Ū

n 4118 4118 4118 4118 4118 4118 4118 4118 4118 4118

a 0.5078 0.5128 0.5223 0.5269 0.5356 0.5337 0.5359 0.5378 0.5356 0.5371

p 0.3167 0.1001 0.0042 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Ū1

n 1012 1014 1013 1002 1016 996 1007 1011 1011 1011

a 0.4881 0.5000 0.5123 0.4940 0.4960 0.5050 0.5004 0.5222 0.5103 0.5133

p 0.3764 1.000 0.4354 0.7114 0.8026 0.7566 0.9840 0.1586 0.5156 0.4010

Ū2

n 1029 1026 1024 1023 1005 1023 1015 1018 1013 1016

a 0.4791 0.5136 0.4931 0.5083 0.5255 0.5161 0.5172 0.5147 0.5074 0.5068

p 0.1799 0.3844 0.6600 0.5962 0.1096 0.3078 0.2758 0.3524 0.6384 0.6672

Ū3

n 1034 1041 1045 1038 1043 1040 1040 1037 1042 1034

a 0.5213 0.5120 0.5244 0.5385 0.5465 0.5326 0.5298 0.5313 0.5566 0.5570

p 0.1707 0.4412 0.1164 0.0132 0.0028 0.0358 0.0548 0.0444 <0.001 <0.001

Ū4

n 1043 1037 1036 1054 1054 1059 1056 1052 1052 1057

a 0.5417 0.5255 0.5588 0.5654 0.5730 0.5588 0.5937 0.5817 0.5665 0.5695

p 0.0070 0.1010 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Note: The symbol n represents the total number of forecasts, a is the accuracy and p is the p-value for hypothesis test assuming as the

null hypothesis that the forecast model gives the right answer half of the times in the sets analyzed. Highlighted in bold 23 p-values

less than 0.05, corresponding to nearly 46% of the cases. The colored cells correspond to the cases where the sample violates the

premise of independence of data (24%).
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Table 3: Statistics of forecasts for USIM5 in the sets Ū, Ū1, Ū2, Ū3 and Ū4 for different values of the parameter R.

USIM5 R 1 2 3 4 5 6 7 8 9 10

Ū

n 3450 3450 3450 3450 3450 3450 3450 3450 3450 3450

a 0.5064 0.5095 0.5081 0.5057 0.5098 0.5139 0.5133 0.5127 0.5153 0.5200

p 0.4521 0.2670 0.3422 0.5092 0.1032 0.1032 0.1188 0.1362 0.0734 0.0192

Ū1

n 811 829 817 823 821 817 836 846 845 843

a 0.5080 0.5211 0.4895 0.5066 0.4993 0.5030 0.4940 0.5023 0.5053 0.5077

p 0.6486 0.2262 0.5486 0.7114 0.9680 0.8650 0.7338 0.8966 0.7642 0.6600

Ū2

n 833 838 834 844 838 855 831 825 840 850

a 0.4862 0.4701 0.5191 0.5000 0.5000 0.5087 0.5162 0.5115 0.5011 0.5200

p 0.4256 0.0836 0.2714 1 1 0.6170 0.3524 0.5092 0.9522 0.2460

Ū3

n 872 874 882 863 876 860 870 868 846 838

a 0.4966 0.5114 0.5056 0.5005 0.5159 0.5058 0.5000 0.4907 0.5153 0.5190

p 0.8408 0.5028 0.7414 0.9840 0.3472 0.7338 1 0.5892 0.3734 0.2714

Ū4

n 934 909 917 919 915 918 913 911 919 919

a 0.5321 0.5333 0.5169 0.5157 0.5224 0.5359 0.5410 0.5444 0.5375 0.5321

p 0.0497 0.0456 0.3078 0.3422 0.1770 0.0300 0.0136 0.007 0.0226 0.0524

Note: The symbol n represents the total number of forecasts, a is the accuracy and p is the p-value for hypothesis test assuming as the

null hypothesis that the forecast model gives the right answer half of the times in the sets analyzed. Highlighted in bold 7 p-values less

than 0.05, corresponding to nearly 14% of the cases. The colored cells correspond to the cases where the sample violates the premise

of independence of data (32%).

According to tables (1, 2 and 3), the probability of obtaining correct trend forecasts tends to enhance

when the absolute value of the associated predicted return grows, since the model predictive power is gen-

erally higher for the forecasts belonging to the sets Ū3 and Ū4. In order to better analyze this, we have built

figures 2, 3 and 4, where each accuracy is computed in a set Ūk,∆ of trend forecasts constructed as follows:

the trend forecasts are ordered according to the absolute value of the predicted returns associated to them

(from smallest to largest); Ūk,∆ is the set of forecasts from the position k to the position k + ∆ − 1, where

∆ is the number of elements of Ū divided by four (rounded to the closest integer). In other words, Ūk,∆

corresponds to a sliding window of size ∆ which encompasses trend forecasts associated to growing pre-

dicted returns as k increases. Although the curves are not monotonic, clearly we observe a tendency that the

accuracy grows with increasing k, which is confirmed in Table 4 showing the angular coefficients β resulting

from linear regressions performed on the points in figures 2, 3 and 4: notice that all coefficients are positive;
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their magnitude orders (10−5 or 10−6) are related to the typical range of variation of the accuracies observed

here (10−1) and the number of points in figures 2, 3 and 4, which is of the order of 103. The coefficient of

determination r2 of each adjust is also displayed, showing that the linear approximations tend to perform

better when the model performs better (ITSA4 and BBDC4).

A procedure analogous to that described above can be used to investigate the influence of volatility on

forecasts accuracy. For each prediction from the 101st of each set, we computed the volatility in the interval

of 100 points just before it. Then we sorted the forecasts according to their associated volatility in ascending

order and computed the accuracy in sliding windows similar to Ūk,∆. Here, the window size ∆ for each stock

is the number of forecasts with associated volatility divided by four (rounded to the closest integer) and k

starts at 101. The dependence of accuracy on k for R = 10 is shown in Fig. 5; no qualitative differences

were observed for other values of R. Angular coefficients β and coefficients of determination r2 resulting

from linear regressions performed on the points of Fig. 5 and on the corresponding points for other values

of R are found in Table 5. Given the sign variation of those coefficients, we conclude that our computation

of volatility did not furnish a clue for accuracy improvement.

Let us now focus on the use of the model as part of a trade strategy. According to the discussion above,

such a strategy should employ the trend forecasts related to the predicted returns with the higher absolute

values, which tend to be more accurate. In tables (1, 2 and 3), this corresponds to the sets Ū4. For application

in trade strategy, one has to be able to classify a predicted return as part of the set with the higher absolute

values using only past data. Notice that the classification of a forecast in the set Ū4 is performed employing

all the series, i.e., for a point in the middle of the series, future data are used to do so. Bearing this in

mind, we built the sets V̄4, analogous to Ū4, with the difference that the classification of each trend forecast

as belonging or not to them is performed by considering only the 100 forecasts immediately preceding it,

instead of the whole series. Statistics for the sets V̄4 are presented in Table 6: as they are not qualitatively

different than the statistics of Ū4, we conclude that the use of future data to classify forecasts in Ū4 is not the

source of the gain in accuracy observed for these sets.

Still thinking in using the model in trading strategies, we built new sets of trend forecasts obtained from

a voting method involving, at every step, only the trend forecasts of the sets V̄4 concerning the top half of

R values (R ranging from 6 to 10). This choice of voters is natural, since the accuracies tend to be greater

for higher values of R, as well as for predictions in the set V̄4. For the steps where there is a draw or no

voters, no forecast is generated. Confusion matrices for these new sets are shown in Table 7, and evaluation

metrics derived from them, in Table 8. The accuracies reached are close to the accuracies of the predictions

13



Table 4: Slopes of the lines of best fit (β) of the graphs in figures 2, 3 and 4 and corresponding coefficients of determination (r2).

R 1 2 3 4 5

ITSA4
β 1.88 × 10−5 2.89 × 10−5 9.05 × 10−6 1.58 × 10−5 3.34 × 10−5

r2 0.7936 0.6579 0.6084 0.6170 0.7915

BBDC4
β 2.02 × 10−5 3.10 × 10−6 1.90 × 10−5 2.87 × 10−5 2.19 × 10−5

r2 0.7015 0.0943 0.6477 0.8610 0.7832

USIM5
β 1.24 × 10−5 2.50 × 10−5 5.83 × 10−6 7.37 × 10−6 1.52 × 10−5

r2 0.4747 0.4000 0.1692 0.0953 0.7180

R 6 7 8 9 10

ITSA4
β 3.15 × 10−5 1.75 × 10−5 2.27 × 10−5 2.13 × 10−5 2.73 × 10−5

r2 0.7197 0.5712 0.6620 0.8415 0.8850

BBDC4
β 1.98 × 10−5 2.54 × 10−5 2.16 × 10−5 2.40 × 10−5 1.90 × 10−5

r2 0.6933 0.7544 0.5203 0.8625 0.6197

USIM5
β 8.16 × 10−6 1.28 × 10−5 5.09 × 10−6 8.39 × 10−6 4.64 × 10−6

r2 0.3281 0.5542 0.0997 0.3581 0.2206

Note: All coefficients β are positive. Their magnitude orders (10−5 or 10−6) are related to the typical range of variation

of the accuracies (10−1) and the number of points (of the order of 103) in figures 2, 3 and 4.
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Table 5: Slopes of the lines of best fit (β) and coefficients of determination (r2) of the graphs in figure 5 and the corresponding graphs

for other values of R.

R 1 2 3 4 5

ITSA4
β 4.29 × 10−6 −2.28 × 10−5 −3.94 × 10−6 −8.74 × 10−6 −2.02 × 10−5

r2 0.1618 0.7513 0.0437 0.2453 0.5032

BBDC4
β 6.50 × 10−6 −5.86 × 10−6 6.36 × 10−6 −2.22 × 10−6 4.95 × 10−6

r2 0, 3134 0, 3166 0.2865 0.0220 0.0839

USIM5
β −1.35 × 10−5 6.05 × 10−6 1.58 × 10−5 2.43 × 10−5 1.39 × 10−5

r2 0.2796 0.1887 0.6849 0.8808 0.6235

R 6 7 8 9 10

ITSA4
β −2.24 × 10−5 −2.91 × 10−5 −1.50 × 10−5 −2.71 × 10−5 −1.35 × 10−5

r2 0.6921 0.6724 0.3844 0.6755 0.5594

BBDC4
β 1.88 × 10−5 1.20 × 10−5 −5.20 × 10−6 4.83 × 10−6 −2.89 × 10−6

r2 0.6902 0.4065 0.2980 0.0638 0.0463

USIM5
β 1.71 × 10−5 2.04 × 10−5 4.08 × 10−6 1.69 × 10−6 1.45 × 10−5

r2 0.7107 0.6014 0.0241 0.0044 0.4707

Note: The variation in the sign of the coefficients β indicate that the increase in volatility is not directly related to

improvement in model accuracy.
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Figure 2: Accuracy of the forecasts in the set Ūk,∆ as a function of k for ITSA4 (∆ = 823). Results are shown for R varying from 1 to

10. Although the curves above are not monotonic, they show the tendency that the accuracy grows with increasing k. This is confirmed

by the positive angular coefficients resulting from linear regressions displayed in Table 4.

that took part in the voting; the advantage achieved with the voting is the number of predictions obtained,

which is greater than in any set Ū4 or V̄4. Sensitivity and specificity are related to the predictive power of the

model in the subsets of actual positive and negative returns, respectively. As we see in Table 8, sensitivity

is higher than specificity for ITSA4, and lower for BBDC4 and USIM5; thus, we can not say the model

fits better in one subset than in the other. Negative and positive predictive values give the success rate of

forecasts for predicted positive and negative returns, respectively. Here again we can not assign to the model

a better performance in any subset. The results for F1 scoreA (F1 scoreB), which correspond to the harmonic

mean of sensitivity and positive predictive value (specificity and negative predictive value), also show the

similarity of the model performance for all classes. Notice that the fraction of positive and negative actual
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Figure 3: Accuracy of the forecasts in the set Ūk,∆ as a function of k for BBDC4 (∆ = 1030). Results are shown for R varying from 1 to

10. Although the curves above are not monotonic, they show the tendency that the accuracy grows with increasing k. This is confirmed

by the positive angular coefficients resulting from linear regressions displayed in Table 4.

returns in each series analyzed is close to 0.5.

As a last investigation, we focus on the influence of the variation of the number of assets N on accuracy.

For this analysis, we choose the five stocks that integrate Ibovespa’s theoretical portfolio (the most important

indicator in Brazilian stock market) with the highest participation in the first four-month period of 2014:

Itaú Unibanco (ITUB4), Petrobras (PETR4), Vale (VALE5), Bradesco (BBDC4) and Ambev (ABEV3), in

descending order of participation. The data corresponds to the same period and sampling procedure of the

previous investigation. Forecasts were performed according to the same scheme for the preparation of Table

8, i.e., by means of votings involving the predictions in the sets of the type V̄4 concerning R ranging from 6

to 10. Accuracies are displayed in Table 9. Relevant gain in accuracy is observed when N goes from 2 to 3,
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Figure 4: Accuracy of the forecasts in the set Ūk,∆ as a function of k for USIM5 (∆ = 863). Results are shown for R varying from 1 to

10. Although the curves above are not monotonic, they show the tendency that the accuracy grows with increasing k. This is confirmed

by the positive angular coefficients resulting from linear regressions displayed in Table 4.

but no consistent improvement is noted for further increase in such number.

4. Final Remarks

We proposed a model for stock price trend forecast based on differential equations that was used as a

tool for the investigation of market efficiency. For a realistic situation, it is not expected that any model

can accurately predict future prices. In the present case, this is reflected in the variability of the matrices

that define the differential equations used to perform the forecasts at every time step. We expect, however,

that even with such variation, some predictive power remains. Although predictability in trend forecasting

does not always lead to arbitrage opportunity, which depends on factors such as the distributions of returns,
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Figure 5: Accuracy of the forecasts in the set Ūk,∆ as a function of k for ITSA4 (∆ = 804), BBDC4 (∆ = 1006) and USIM5 (∆ = 841).

Results are shown for R = 10. The curves suggest that there is no consistent tendency of increasing or decreasing of accuracy when k is

increased. This is confirmed by the variation of the sign of the angular coefficients resulting from linear regressions displayed in Table

5.

the limitations of computational speed and communication, and trading fees, such predictability is at least

market inefficiency clue.

We applied the model using data on shares of companies in the Brazilian stock exchange BM&FBOVESPA;

for each asset, we collected a number of prices sampled every 5 minutes enough to perform 4, 500 forecasts.

The choice of stocks of an emerging market allowed us to perform this first model test in an instance where

predictability is more probable to be observed. For this data, we found through statistical hypothesis tests

that the accuracies of the predictions obtained are greater than that of a completely random model in a sig-

nificant number of cases. The differential equation model produced results statistically different from the
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Table 6: Statistics of forecasts in the sets V̄4 for different values of the parameter R.

ITSA4 R 1 2 3 4 5 6 7 8 9 10

V̄4

n 857 844 873 889 878 866 876 879 873 869

a 0.5309 0.5427 0.5601 0.5703 0.5706 0.5715 0.5719 0.5756 0.5864 0.5903

p 0.0704 0.0131 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

BBDC4 R 1 2 3 4 5 6 7 8 9 10

V̄4

n 1057 1035 1048 1057 1067 1097 1082 1077 1083 1082

a 0.5260 0.5188 0.5572 0.5506 0.5651 0.5806 0.5878 0.5831 0.5641 0.5730

p 0.0900 0.2264 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

USIM5 R 1 2 3 4 5 6 7 8 9 10

V̄4

n 913 882 903 914 925 903 916 913 902 888

a 0.5334 0.5328 0.4939 0.5164 0.5243 0.5293 0.5436 0.5377 0.5399 0.5360

p 0.0435 0.0513 0.7139 0.3213 0.1393 0.0782 0.0083 0.0227 0.0165 0.0319

Note: The symbol n represents the total number of forecasts, a is the accuracy and p is the p-value for hypothesis test assuming as the null hypothesis that

the forecast model gives the right answer half of the times in the sets analyzed. Highlighted in bold 22 p-values less than 0.05, corresponding to

approximately 73% of the cases. The colored cells correspond to the cases where the sample violates the premise of independence of data (27%).

ones of the fair coin model, i.e., high accuracies or correlated sequences of successes and fails were found,

in nearly 59% of the cases in tables (1,2 and 3), which presents results for all subsets Ū, Ū1, Ū2, Ū3 and Ū4,

and in approximately 83% of the cases in Table 6, where the results refer to V̄4. This indicates the presence

of information on future price in the series analyzed.

The accuracies calculated showed a tendency to be higher when the model was adjusted using data

covering larger intervals (high values of R). In such situations, the average variability of adjacent matrices

decreased, since more data were shared in the calculation of matrices corresponding to adjacent times.

This decreased variability promoted the effectiveness of the model. Accuracy was also likely to rise when

computed considering only the trends associated with the forecasted returns with high magnitudes (the ones

in Ū4 or V̄4). This shows that the absolute values of predicted returns also carry information about future

prices. Finally, the presence of linear correlation collaborated to enhance the predictive power of the model.

Thus, results statistically different than the ones from a fair coin model was found in all cases regarding the

highly correlated stocks ITSA4 and BBDC4 for R ≥ 3 and forecasts in the sets Ū4 or V̄4 (see tables (1,2, 3

and 6)).

We analyzed the influence of volatility, calculated for each forecast in a period immediately preceding

it, on accuracy: no relation was observed. The dependence of accuracy on the number of stocks used in
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Table 7: Confusion matrices of forecasts resulting from votings involving the forecasts in the sets V̄4 with R ranging from 6 to 10.

ITSA4
PPPPPPPPPPPActual

Predicted
High Low

High 365 (59%) 253 (41%)

Low 279 (45%) 343 (55%)

BBDC4
PPPPPPPPPPPActual

Predicted
High Low

High 434 (56%) 335 (44%)

Low 333 (42%) 456 (58%)

USIM5
PPPPPPPPPPPActual

Predicted
High Low

High 335 (51%) 321 (49%)

Low 297 (45%) 359 (55%)

the model was also studied. The model was fed with data of 2, 3, 4 and 5 stocks. A clear increase in the

predictive power was observed when we change from 2 to 3 assets, but no consistent further gain was found

for 4 and 5 stocks. Since the model proposed here is not among the extensively explored in the literature,

there are many possibilities for further refinements which may lead to greater accuracies. The introduction

of nonlinearities is one of them.

The utilization of the model as part of a trading strategy was investigated taking into account a voting

method including forecasts from different versions of it. The accuracies found for this case are close to the

ones resulting from the versions that took part in the votings, but a greater number of predictions were pro-

vided. According to the evaluation metrics calculated, the performance of the model for predicted positive

returns is equivalent to its performance for negative ones; the same is valid for actual positive and negative

returns.

The application of this model to assets of different markets and the use of other sampling intervals, in
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Table 8: Evaluation metrics of forecasts resulting from votings involving the forecasts in the sets V̄4 with R ranging from 6 to 10.

Terminology Formula ITSA4 BBDC4 USIM5

Accuracy
T p+Tn

n 0.5709 0.5712 0.5289

Error 1-Accuracy 0.4290 0.4288 0.4710

Sensitivity
T p

T p+Fn 0.5906 0.5643 0.5106

Specificity Tn
Tn+F p 0.5514 0.5779 0.5472

Positive predic-

tive value

T p
T p+F p 0.5667 0.5658 0.5300

Negative pre-

dictive value

Tn
Tn+Fn 0.5755 0.5764 0.5279

F1 scoreA
2T p

2T p+F p+Fn 0.5784 0.5651 0.5201

F1 scoreB 2Tn
2Tn+Fn+F p 0.5632 0.5772 0.5374

Note: The symbol T p represents the true positive forecasts, Tn the true negative forecasts, F p the false

positive forecasts, Fn the false negative forecasts and n the total number of forecasts.

order to verify if the results found here remain, correspond to future steps of this research. In order to

more fully explore collective dynamics, it would be useful to perform forecasts involving larger numbers

of shares (N > 5). A question to be answered refers to the possibility of improving the model predictive

power by means of increasing the intervals where the coefficient matrices are fitted (R > 10). A related topic

concerns the seeking of values of R beyond which the accuracies decay: for too large intervals, part of the

data feeding the model may be non correlated with the forecasts, disturbing the model functioning. New

computation tools are necessary for significantly enhance N or R. In view of the study of market efficiency,

it is also worthwhile to perform a realistic simulation of a trading strategy based on the model aiming at the

effective verification of arbitrage opportunities.
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Table 9: Statistics of forecasts for variable number of stocks in the model.

N ITUB4 PETR4 VALE5 BBDC4 ABEV3
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3
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4
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a 0.5482 0.5668 0.5407 0.5761

5
n 1593 1521 1544 1588 1395

a 0.5417 0.5700 0.5310 0.5761 0.5373

Note: The forecasts whose statistics are shown are the result of votings involving the forecasts in the sets

V̄4 with R ranging from 6 to 10. In each line are displayed the results concerning the stocks used to run the

model. The symbol N represents the number stocks, n is the number of forecasts and a is the accuracy.

nology for the Web (grant no. 573871/2008-6), MASWeb (grant FAPEMIG/PRONEX APQ-01400-14),

CAPES, CNPq (grant 459301/2014-4), Finep, and Fapemig.

References

[1] P. A. Samuelson, Proof that properly anticipated prices fluctuate randomly, 1965.

[2] L. Feng, B. Li, B. Podobnik, T. Preis, H. E. Stanley, Linking agent-based models and stochastic models

of financial markets, Proceedings of the National Academy of Sciences 109 (22) (2012) 8388–8393.

doi:10.1073/pnas.1205013109.

[3] B. G. Malkiel, E. F. Fama, Efficient capital markets: A review of theory and empirical work, The

journal of Finance 25 (2) (1970) 383–417. doi:10.2307/2325486.

[4] R. J. Shiller, Do stock prices move too much to be justified by subsequent changes in dividends?

(1980). doi:10.3386/w0456.

[5] L. P. Hansen, K. J. Singleton, Generalized instrumental variables estimation of nonlinear rational

expectations models, Econometrica: Journal of the Econometric Society 50 (5) (1982) 1269–1286.

doi:10.2307/1911873.

23



[6] D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica: Journal

of the econometric society 47 (2) (1979) 263–291. doi:10.2307/1914185.

[7] R. J. Shiller, S. Fischer, B. M. Friedman, Stock prices and social dynamics, Brookings papers on

economic activity 1984 (2) (1984) 457–510. doi:10.2307/2534436.

[8] V. L. Smith, An experimental study of competitive market behavior, The Journal of Political Economy

70 (2) (1962) 111–137. doi:http://www.jstor.org/stable/1861810.

[9] G. Caginalp, D. Porter, V. Smith, Financial bubbles: Excess cash, momentum, and incomplete in-

formation, The Journal of Psychology and Financial Markets 2 (2) (2001) 80–99. doi:10.1207/

S15327760JPFM0202_03.

[10] A. W. Lo, The adaptive markets hypothesis: Market efficiency from an evolutionary perspective, Jour-

nal of Portfolio Management, Forthcoming 30 (5) (2004) 15–29. doi:10.3905/jpm.2004.442611.

[11] J. T. Barkoulas, C. F. Baum, Long-term dependence in stock returns, Economics Letters 53 (3) (1996)

253–259. doi:10.1016/S0165-1765(96)00935-4.

[12] D. Grech, Z. Mazur, Can one make any crash prediction in finance using the local hurst exponent

idea?, Physica A: Statistical Mechanics and its Applications 336 (1) (2004) 133–145. doi:10.1016/

j.physa.2004.01.018.

[13] D. O. Cajueiro, B. M. Tabak, The hurst exponent over time: testing the assertion that emerging markets

are becoming more efficient, Physica A: Statistical Mechanics and its Applications 336 (3) (2004) 521–

537. doi:10.1016/j.physa.2003.12.031.
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