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Highlights

• An MILP-based fair profit distribution framework is developed for multi-echelon supply

chains.

• Transfer pricing, production, distribution and capacity planning of the supply chains are

considered as the key decisions.

• Solution approaches are developed using Nash bargaining and lexicographic maximin princi-

ples under proportional and max-min fairness criteria.

• A tailored hierarchical approach developed for approximate max-min fair solutions demon-

strates computational advantage.

• Results from two examples demonstrate the applicability of the proposed models and ap-

proaches.
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Abstract

The total profit maximisation of a supply chain network may result in an uneven and impractical

profit distribution among the members. This work addresses the fair profit distribution within

a multi-echelon supply chain using transfer prices. A mixed integer linear programming (MILP)

model framework is proposed for the optimal production, distribution and capacity planning of a

supply chain network of an active ingredient (AI), consisting of AI plants, formulation plants and

markets. The transfer prices of the AI from AI plants to formulation plants, and those of products

from formulation plants to markets are to be optimised. The proportional and max-min fairness

criteria are adopted to define fair profit distributions. Considering bargaining powers of supply

chain members, game theoretic solution approaches are developed for fair solutions using Nash

bargaining and lexicographic maximin principles. Especially, a hierarchical approach is developed

to obtain an approximate optimal fair solution efficiently. The applicability and efficiency of the

proposed approaches are demonstrated by two examples, including a real world agrochemical supply

chain network.
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1. Introduction

Over the past decades, supply chains have been reshaped into complex networks involving

suppliers, production sites, distribution facilities and markets. The optimisation of supply chains

in the process industry has received extensive attention in the literature (Grossmann, 2005; Shah,

2005; Papageorgiou, 2009; Barbosa-Póvoa, 2012). Many supply chain optimisation models and5

approaches just consider one supply chain as a whole (Tsiakis & Papageorgiou, 2008; Sousa et al.,

2011; Longinidis & Georgiadis, 2011; Liu et al., 2012; Cardoso et al., 2013; Muñoz et al., 2015;

Gaur et al., 2017). However, in real practice, there are conflicting interests of individual supply

chain members that all aim to pursue the most profit and benefit for themselves, which need to

be taken into account for optimisation. When the total profit of a supply chain is maximised to10

enhance its performance, the profit of the whole supply chain is usually distributed to its members

in an uneven way, which could lead to negative impacts, including dissatisfaction of members,

instability of systems and coalition, disadvantage in competitive edge, loss of markets, increasing

costs and reduction in revenue. Thus, a fairer profit distribution is preferred to maintain stability

and competitiveness of supply chain networks.15

The fairness issues have been widely investigated in some fields, e.g. welfare economics (Varian,

1975; Fleurbaey, 2008), telecommunications (Jain et al., 1984; Mazumdar et al., 1991), and supply

chain contracting (Cui et al., 2007; Katok & Pavlov, 2013; Ho et al., 2014). The concept, perception

and interpretation of fairness vary depending on problems and people involved, and there is no single

fairness criterion applicable to all problems. In the literature, there are two widely accepted fairness20

criteria: proportional fairness and max-min fairness (Bertsimas et al., 2011), which satisfy a set of

generally agreed axioms for ideal fairness criterion. This paper aims to develop an optimisation

framework for fair profit distribution among supply chain members using transfer prices under these

two fairness criteria.

Transfer price is generally referred to as the intra-company price that a selling department, di-25

vision or subsidiary of a company charges for a product or service supplied to a buying department,

division, or subsidiary of the same company (Abdallah, 1989; Pfeiffer, 1999). However, recently the

terminology has been extended to inter-company payments in decentralised supply chain networks
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(Gjerdrum et al., 2002; Lakhal, 2006). In this work, the considered multi-echelon supply chain

members are regarded as independent profit centres that can determine their transfer prices. The30

transfer pricing has been used as an income-shifting mechanism to the subsidiaries in lower tax

countries so as to increase their after-tax profits (O’Connor, 1997; Vidal & Goetschalckx, 2001;

Shunko & Gavirneni, 2007; Miller & de Matta, 2008; Ernst & Young, 2013). In the meantime, it

is also important to determine profit-based incentives for members or divisions involved in a sup-

ply chain network (Lakhal, 2006; Shunko et al., 2014; Hammami & Frein, 2014; Liu et al., 2015).35

Although, in the international trading, transfer pricing is controversial and under restriction and

scrutiny from many regulations, rules and guidelines of fiscal agencies and governments to avoid

the manipulation of transfer prices (Mehafdi, 2000), companies usually still have the flexibility to

determine the transfer price level from some range of values within given limits (Vidal & Goetschal-

ckx, 2001). There is a range of acceptable transfer prices, instead of only a single transfer price,40

allowed by the Organization for the Economic Cooperation and Development (OECD) and the

United States (Markham, 2005).

Research studies and papers are emerging on the use of transfer price to distribute profit fairly

in supply chains. Mixed integer nonlinear programming (MINLP) models were developed by Gjer-

drum et al. (2001, 2002), where Nash bargaining approach was used for fair profit distribution in45

a multi-enterprise supply chain. Chen et al. (2003) developed a fuzzy-based decision model for

multiobjective optimisation of the production and distribution planning of a multi-echelon supply

chain network, considering profit maximisation, customer service level minimisation, and ensuring

fair profit distribution. Then, Chen & Lee (2004) extended the above work for the uncertainties of

both demand and price. A cooperative game constructed by Rosenthal (2008) fairly allocated the50

net profit using transfer prices, considering both perfect information and asymmetric information

environment. Leng & Parlar (2012) developed a cooperative game to determine optimal transfer

prices for fair profit allocation within a two-echelon supply chain with one upstream division and

multiple downstream ones. Yue & You (2014) developed an MINLP model for profit allocation

strategy using material transfer prices and revenue share policies of cellulosic bioethanol supply55

chains. Recently, Liu et al. (2016) proposed a mixed integer linear programming (MILP) model
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for optimal fair transfer prices of a two-echelon supply chain. However, this work did not clearly

justify the criterion of fair solutions and consider the different negotiation abilities of the supply

chain members.

In this work, we aim to develop an optimisation-based fair profit distribution framework for inte-60

grated production, distribution and capacity planning of multi-echelon supply chains, by extending

the work of Liu et al. (2016). In order to reflect real practice, different bargaining powers of supply

chain members are considered. Here, we use two well accepted fairness criteria, proportional and

max-min fairness, to define fair profit distribution. It is beyond the scope of this work to investigate

the negotiation process of fairness criterion, and examine whether a fairness criterion is accepted by65

all members of the supply chain. To find fair solutions under these two fairness criteria, two game

theoretic principles, Nash bargaining and lexicographic maximin principles, are adopted to develop

solutions approaches for fair profit distribution. To overcome the computational difficulties of large

problem instances, a tailored efficient solution approach based on the classic lexicographic maximin

approach is developed for max-min fair profit distribution. Overall, the main novel contributions70

of this paper can be summarised as follows:

• An optimisation model is developed for production, distribution and capacity planning of

three-echelon supply chain networks;

• Two fairness criteria are defined for supply chain profit distribution;

• Bargaining powers of supply chain members are considered under the two fairness criteria;75

• MILP-based solution approaches are developed using literature game theoretic principles un-

der the two fairness criteria;

• A tailored hierarchical solution approach is proposed for max-min fair solutions, with advan-

tage in efficiency for large instances;

• Two examples, including a large real world supply chain network in agrochemical industry,80

are investigated.

The rest of this paper is organised as follows. Section 2 provides the problem statement, while

the mathematical formulation of the proposed model is described in Section 3. The definitions of
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fairness criteria and the development of fair solution approaches in Section 4. In Section 5, two

examples are described, followed by the computational results and discussion in Section 6. Finally,85

some concluding remarks are drawn in Section 7.

2. Problem Statement

In this work, a three-echelon supply chain network of one active ingredient (AI) in a process

industry, such as pharmaceutical, and chemical industry, is considered, consisting of AI plants,

formulation plants and markets, as illustrated in Figure 1. At the primary manufacturing stage, one90

AI, which is the substance biologically or chemically active within the products and is the specific

component responsible for the desired effect of the products, e.g. drugs and pesticides, considered

in the problem. The considered AI, a low-volume high-value product, is produced centrally in

few AI plants, and then shipped to different formulation plants, where different final products

are produced in secondary manufacture, according to different recipes, formulation, packaging and95

labelling requirements. It is assumed that each formulation plant can only be able to produce the

products belonging to certain product groups, depending on its production capability. At last,

final products are shipped to various markets for sales to customers. Considering the potential

advantages of certain supply chain members to attain higher profits than others, it is assumed that

the involved supply chain members may have different bargaining powers.100
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Figure 1: Supply chain network example of an AI.

The production, distribution and capacity planning of this three-echelon supply chain network is

addressed in this work. It is assumed that the existing capacities of the AI plants and formulation

plants cannot satisfy rapidly increased demand. Thus, capacity increment strategies are to be

optimised, as well as production and distribution planning decisions.

The division of costs among supply chain members can be much different, depending on contracts105

and agreements on transportation responsibilities. In this work, we consider all trades are on Ex

Works basis (International Chamber of Commerce, 2010), in which all costs and risks involved in

taking the goods from the seller’s premises are the obligation of the buyer or customer (Monczka

et al., 2011). Note that the proposed model in this work can be easily modified to accommodate

other trade responsibilities. The AI plants are responsible for AI’s raw materials cost, AI production110

cost, AI inventory cost, and capital investment cost. The costs of formulation plants include the

payments to AI plants to purchase the AI, raw materials cost, product formulation cost, inventory

costs of both AI and products, AI transportation cost from AI plants to formulation plants, capital

investment cost, and duties paid for AI importation. Each market pays for the purchase of products
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to formulation plants, product inventory, product transportation from formulation plants, duties115

for product importation, and unfulfilled demand.

The revenues of the AI and formulation plants come from the transfer payments from formulation

plants and markets, respectively. Thus, transfer prices of the AI from AI plants to formulation

plants, and those of products from formulation plants to markets, have significant effects on the

profit of each member in the supply chain network. The transfer pricing decisions are to be optimised120

in this problem, based on given discrete penitential price levels and the bargaining powers of supply

chain members. Meanwhile, it is assumed that the final selling prices of the products at markets

are known.

In this problem, we aim to achieve a fair profit distribution among the supply chain members.

Here, to define a fair profit distribution, we adopt two broadly accepted fairness criteria: propor-125

tional fairness and max-min fairness. In this work, a proportionally fair profit distribution is the

one that any profit transfer leads to no increase in total proportional change of profit, while in a

max-min fair profit distribution, any feasible profit increase of one member reduces the profit of an

equal or less profitable member.

In summary, this optimisation problem can be described as follows:130

Given are:

• supply chain network of an AI, consisting of AI plants, formulation plants, and markets;

• products and their products groups;

• capabilities and capacities of AI and formulation plants;

• product demands at markets;135

• unit consumption of AI consumption for each product formulation;

• fixed and variable costs of AI production, product formulation, and transportation;

• transportation times of AI and products;

• unit raw materials cost, inventory cost, duties of AI and products;

• unit capital cost for capacity expansion at AI and formulation plants;140
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• minimum and maximum AI/product production and transportation flows;

• lost sales penalty of products;

• potential transfer price levels of AI and products;

• selling prices of products at markets;

• bargaining powers of supply chain members;145

to determine:

• transfer prices of AI and products;

• productions of AI and products;

• distribution flows of AI and products;

• capacity increments of AI and formulation plants;150

• inventory levels of AI and products at plants and markets;

• sales of products at markets;

so as to maximise the total profit of the supply chain network with a fair distribution to its

members, under proportional and max-min fairness .

3. Mathematical Formulation155

The proposed optimisation model for the fair profit distribution problem is extended from a

literature supply chain optimisation model (Liu & Papageorgiou, 2013), which only considered total

cost of the whole supply chain as objective function, and ignored transfer prices between supply

chain members. In this work, considering a three-echelon supply chain, consisting of AI plants,

formulation plants, and markets, each member is an individual profit centre, and its profit is aimed160

to be optimised to achieve a fair solution distribution through transfer prices. The definitions of all

mathematical symbols used are given in the Nomenclature.
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3.1. Production Constraints

If the AI is produced at AI plant a during time period t, its production amount, PAat, is restricted

by given minimum (MinPAa ) and maximum (MaxPAa ) production limits, which are determined by

production rates and operating time limits of the machines.

MinPAa ·WA
at ≤ PAat ≤MaxPAa ·WA

at, ∀a, t (1)

where WA
at is a binary variable indicating whether the AI is produced at AI plant a in time period

t.165

Similarly, the production amount of product i produced at formulation plant j during time

period t, PPijt, is limited by upper and lower bounds (MinPPij and MaxPPij ). By using the binary

variable WP
ijt (=1 if the product i produced at formulation plant j during time period t), we have

the following constraints:

MinPPij ·WP
ijt ≤ PPijt ≤MaxPPij ·WP

ijt, ∀j, g ∈ Gj , i ∈ Īg, t (2)

where Gj refers to the set of product groups g that can be formulated in plant j, and Īg indicates

the set of products belonging to product group g.

3.2. Capacity Constraints

The total production at each AI and formulation plant is limited by its existing capacity (CapAa

for AI plant a and CapFj for formulation plant j), plus any corresponding capacity increment

(∆CapAa and ∆CapFj , respectively), which are to be optimised.

PAat ≤ CapAa + ∆CapAa , ∀a, t (3)

∑

g∈Gj

∑

i∈Īg

PPijt ≤ CapFj + ∆CapFj , ∀j, t (4)
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Note that some capacity expansion strategies (Liu & Papageorgiou, 2013) can be addressed by

this model with additional constraints.170

3.3. Flow Constraints

When there exists a shipment of the AI from AI plant a to formulation plant j during time period

t, i.e. binary variable Y Aajt = 1, the shipped flow amount (FAajt) cannot go beyond its minimum

(MinFAaj) and maximum (MaxFAaj) limits.

MinFAaj · Y Aajt ≤ FAajt ≤MaxFAaj · Y Aajt, ∀a, j, t (5)

Similarly, for the transported amount of product i from formulation plant j to market k during

time period t, FPijkt, the following constraints are proposed:

MinFPijk · Y Pijkt ≤ FPijkt ≤MaxFPijk · Y Pijkt, ∀j, k, g ∈ Gj , i ∈ Īg ∩ Ik, t (6)

where binary variable Y Pijkt is 1 if product i is shipped from formulation plant j to market k

during time period t; MaxFPijk and MinFPijk are corresponding maximum and minimum limits,

respectively; and Ik represents the set of products sold in market k.

3.4. Inventory Constraints175

The inventory considered in this problem includes AI inventory at both AI plants and formula-

tion plants, and product inventory at both formulation plants and markets, as illustrated in Figure

(2)

Figure 2: Illustration of the inventory of the AI and products.
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The AI inventory at AI plant a in time period t (IV AAat ) is equal to the inventory in the previous

time period (IV AAa,t−1), plus local AI production amount (PAat), minus total outgoing AI flows to

formulation plants (FAajt):

IV AAat = IV AAa,t−1 + PAat −
∑

j

FAajt, ∀a, t (7)

The AI inventory at formulation plant j at the end of each time period (IV AFjt ) equals the AI

inventory at the end of the previous time period (IV AFj,t−1), plus arriving AI flows from AI plants

(FAaj,t−τ̄aj
), minus AI consumption for product production (PPijkt):

IV AFjt = IV AFj,t−1 +
∑

a

FAaj,t−τ̄aj
−

∑

i∈Īg

∑

g∈Gj

βij · PPijt, ∀j, t (8)

where τ̄aj refers to the transportation time from AI plant a to formulation plant j

The inventory of product i at formulation plant j by the end of each time period (IV PFijt ) is

calculated by its inventory at the end of the previous time period (IV PFij,t−1), product production

(PPijt) and the total outgoing flows to the markets (FPijkt) in that time period:

IV PFijt = IV PFij,t−1 + PPijt −
∑

k∈Ki

FPijkt, ∀j, g ∈ Gj , i ∈ Īg, t (9)

where Ki indicates the set of markets that sell product i.180

Similarly, the inventory of product i at market k in time period t (IV PMijt ) is equal to the product

inventory in the previous time period (IV PMij,t−1), plus any incoming flows from formulation plants

(FPijk,t−τjk), minus local sales in the same time period (Sikt) :

IV PMikt = IV PMik,t−1 +
∑

j∈Jg

∑

g∈Ḡi

FPijk,t−τjk − Sikt, ∀k, i ∈ Ik, t (10)

where τjk refers to the transportation time between formulation plant j and market k; Ḡi indicates

the set of product groups including product i; Jg expresses the set of formulation plants capable

12
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for the production of product group g.

The above inventory is limited by corresponding lower and upper bounds, where upper bounds

are often resulted from storage capacities, and lower bounds are usually considered as safety stocks

for demand uncertainty.

MinIV AAa ≤ IV AAat ≤MaxIV AAa , ∀a, t (11)

MinIV AFj ≤ IV AFjt ≤MaxIV AFj , ∀j, t (12)

MinIV PFij ≤ IV PFijt ≤MaxIV PFij , ∀j, g ∈ Gj , i ∈ Īg, t (13)

MinIV PMik ≤ IV PMikt ≤MaxIV PMik , ∀k, i ∈ Ik, t (14)

3.5. Transfer Price Constraints

Transfer prices of the AI between AI plants and formulation plants (TPAa ), as well as those of

products between formulation plants and markets (TPPij ), are considered as decision variables. It

is assumed that each AI plant charges the same transfer price to all formulation plants. Similarly,

for each product, each formulation plant sets a single transfer price to all markets. In addition, the

determined transfer prices do not change throughout the considered planning horizon. Following

the work of Gjerdrum et al. (2001), a set of candidate transfer price levels of the AI and products

are set by each member within the range allowed by the rules and regulations of authorities, which

is reasonable in real practice. Here, only one transfer price level of the AI (TPLAal) can be chosen

by each AI plant, if the production occurs there. Similarly, only one transfer price level of each

product (TPLPijl) is selected by each formulation plant producing it. In the following constraints,

binary variables OAal and OPijl indicate whether price level l is selected or not, and EAal and EPijl are

13
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for the production allocation of the AI and products, respectively.

TPAa =
∑

l

TPLAal ·OAal, ∀a (15)

TPPij =
∑

l

TPLPijl ·OPijl, ∀j, g ∈ Gj , i ∈ Īg (16)

∑

l

OAal = EAa , ∀a (17)

∑

l

OPijl = EPij , ∀j, g ∈ Gj , i ∈ Īg (18)

3.6. Lost Sales Constraints185

The lost sales (LSikt) of product i in market k in each time period is the difference between

corresponding demand (Dikt) and sales amount (Sikt):

LSikt = Dikt − Sikt, ∀k, i ∈ Ik, t (19)

3.7. Logical Constraints

If AI plant a is not chosen for AI production, its production amount is always zero.

∑

t

WA
at ≤| t | ·EAa , ∀a (20)

Similarly, if a link from AI plant a to formulation plant j is not allocated for AI shipment, there

is no AI flow on this link in all time periods.

∑

t

Y Aajt ≤| t | ·XA
aj , ∀a, j (21)

When AI plant a is not allocated for AI production, the link from AI plant a to any formulation

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

plant j is not used for AI shipment.

∑

j

XA
aj ≤| j | ·EAa , ∀a (22)

If formulation plant j is not allocated for the production of product i, there is no production of

product i at formulation plant j.

∑

t

WP
ijt ≤| t | ·EPij , ∀j, g ∈ Gj , i ∈ Īg (23)

When a link from formulation plant j to market k is not allocated for the shipment of product

i , the flow of product i on this link is zero in all time period t.

∑

t

Y Pijkt ≤| t | ·XP
ijk, ∀j, k, g ∈ Gj , i ∈ Īg ∩ Ik (24)

If formulation plant j is not used to produce product i, then there is no flow of product i from

formulation plant j to any market k.

∑

k∈Ki

XP
ijk ≤| k | ·EPij , ∀j, g ∈ Gj , i ∈ Īg (25)

3.8. Profit Constraints

The total profit of the supply chain network is the sum of the profits of AI plants (PrAa ),

formulation plants (PrFj ) and markets (PrMk ).

TotalPr =
∑

a

PrAa +
∑

j

PrFj +
∑

k

PrMk (26)

Next, the profit of each supply chain member is formulated in the following subsections.

15
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3.8.1. AI plants

At an AI plant, its revenue (ReAa ) is the total transfer payment from formulation plants, i.e., the

AI transfer prices multiplied by corresponding flows between the AI plant and formulation plants:

ReAa =
∑

t

∑

j

TPAa · FAajt, ∀a (27)

Note that Eq. (27) is a nonlinear equation, which is reformulated to be linear below using

auxiliary variables and constraints and Eq. (15):

OF
A

ajlt ≤MaxFAaj ·OAal, ∀a, j, l, t (28)

∑

l

OF
A

ajlt = FAajt, ∀a, j, t (29)

ReAa =
∑

t

∑

j

∑

l

TPLAal ·OF
A

ajlt, ∀a (30)

The costs of AI plants include raw materials cost (RMCAa ), production cost (PCAa ), inventory

cost (IV CAa ), and capital investment cost (CICAa ):

RMCAa =
∑

t

MCAa · PAat, ∀a (31)

PCAa = FPCAa · EAa +
∑

t

V PCAa · PAat, ∀a (32)

IV CAa =
∑

t

ICAAa · IV AAat , ∀a (33)

CICAa = crf · CCAa ·∆CapAa , ∀a (34)

16
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The profit of an AI plant (PrAa ) is equal to its revenue minus all above costs.

PrAa = ReAa −RMCAa − PCAa − IV CAa − CICAa , ∀a (35)

3.8.2. Formulation plants190

The revenue of a formulation plant (ReFj ) include all transfer payments from markets, deter-

mined by product transfer prices and corresponding flows from this formulation plant to markets:

ReFj =
∑

t

∑

g∈Gj

∑

k

∑

i∈Īg∩Ik

TPPijk · FPijkt, ∀j (36)

Similar to Eq. (27), the nonlinear Eq. (36) can be linearised as follows:

OF
P

ijklt ≤MaxFPijk ·OPijl, ∀j, k, g ∈ Gj , i ∈ Īg ∩ Ik, l, t (37)

∑

l

OF
P

ijklt = FPijkt, ∀j, k, g ∈ Gj , i ∈ Īg ∩ Ik, t (38)

ReFj =
∑

t

∑

k

∑

g∈Gj

∑

i∈Īg∩Ik

∑

l

TPLPijl ·OF
P

ijklt, ∀j (39)

The costs incurred at formulation plants include transfer payment cost to AI plants (TPCFj ),

raw materials cost (RMCFj ), formulation cost (FOCFj ), inventory cost (IV CFj ), AI transportation

cost (TRCFj ), capital investment cost (CICFj ) and duties (DUCFj ).

TPCFj =
∑

t

∑

a

∑

l

TPLAal ·OF
A

ajlt, ∀j (40)

RMCFj =
∑

t

∑

g∈Gj

∑

i∈Īg

MCPij · PPijt, ∀j (41)
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FOCFj =
∑

g∈Gj

∑

i∈Īg

FFCPij · EPij +
∑

t

∑

g∈Gj

∑

i∈Īg

V FCPij · PPijt, ∀j (42)

IV CFj =
∑

t

ICAFj · IV AFjt +
∑

t

∑

g∈Gj

∑

i∈Īg

ICPFij · IV PFijt , ∀j (43)

TRCFj =
∑

a

FTCAaj ·XA
aj +

∑

t

∑

a

V TCAaj · FAajt, ∀j (44)

CICFj = crf · CCFj ·∆CapFj , ∀j (45)

DUCFj =
∑

t

∑

a

∑

l

DCAaj · TPLAal ·OF
A

ajlt, ∀j (46)

Then, the profit of a formulation plant (PrFj ) is as follows:

PrFj = ReFj − TPCFj −RMCFj − FOCFj − IV CFj − TRCFj − CICFj −DUCFj , ∀j (47)

3.8.3. Markets

The revenue of each market (ReMk ) is given by the selling prices of product i in market k (Vik)

and corresponding sales amounts:

ReMk =
∑

t

∑

i∈Ik
Vik · Sikt, ∀k (48)

The costs incurred at each market include transfer payment cost to formulation plants (TPCMk ),

inventory cost (IV CMk ), product transportation cost (TRCMk ), duties (DUCMk ) and lost sales cost

(LSCMk ).

TPCMk =
∑

t

∑

j

∑

g∈Gj

∑

i∈Īg∩Ik

∑

l

TPLPijl ·OF
P

ijklt, ∀k (49)
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IV CMk =
∑

t

∑

i∈Ik
ICPMik · IV PMikt , ∀k (50)

TRCMk =
∑

j

∑

g∈Gj

∑

i∈Īg∩Ik

FTCPijk ·XP
ijk +

∑

t

∑

j

∑

g∈Gj

∑

i∈Īg∩Ik

V TCPijk · FPijkt, ∀k (51)

DUCMk =
∑

t

∑

j

∑

g∈Gj

∑

i∈Īg∩Ik

∑

l

DCPijk · TPLPijl ·OF
P

ijklt, ∀k (52)

LSCMk =
∑

t

∑

i∈Ik
PCik · LSikt, ∀k (53)

Then, the profit of each market (PrMk ) is given by Eq. (54):

PrMk = ReMk − TPCMk − IV CMk − TRCMk −DUCMk − LSCMk , ∀k (54)

Considering the maximisation of the total supply chain profit, the MILP model (denoted as

MaxTotProf), consisting of Eq. (26) as objective function and Eqs. (1)–(25), (28)–(35), (37)–(54)

as constraints, is to be solved. To achieve a fair profit distribution strategy with the maximum

total profit, some solution approaches are developed in the next section.195

4. Fair Solution Approaches

In this section, we first discuss the two fairness criteria considered in this work, based on

literature fairness schemes. Then, game theoretical solution approaches are developed for fair

solutions under the two fairness criteria.

4.1. Fairness Criteria200

There exists extensive literature work on the fairness of allocation problems, mostly in the

fields of economics, social science, and engineering. Although there is no unique fairness criterion

wholly recognised, due to widely distinctive problem characteristics and interpretation of fairness,
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most fairness criteria are based on some general theories of justice and equity, including, but not

limited to, Aristotles equity principle, classical utilitarianism, and Rawlsian justice (Sen, 1973;205

Young, 1995). In this work, we focus on two widely accepted and extensive studied fairness criteria:

proportional fairness and max-min fairness (Kelly et al., 1998; Bonald et al., 2006; Bertsimas et al.,

2011).

Proportional fairness considers an allocation between multiple players to be fair, if the total

proportional change of utility is no greater than zero when compared to any other feasible alloca-

tions. This criterion was firstly proposed by Kelly (1997) based on changing rate control for elastic

traffic in computer network services, and was widely studied afterwards. It can be regarded as an

extension of Nash solution for a two-person bargaining game (Nash, 1950), simultaneously satis-

fying four axioms for fairness criterion, including Pareto optimality, symmetry, affine invariance,

and independence of irrelevant alternatives (Conley & Wilkie, 1996). Considering a proportionally

fair profit distribution in this problem, we take into account the excess profit, i.e. the profit higher

than a specific minimum acceptable profit level, defined by Prn−MinPrn, where Prn is the profit

earned by supply chain member n (= PrAa , PrFj and PrMk when n = a, j and k, respectively),

and MinPrn is the minimum acceptable profit of supply chain member n. A proportionally fair

profit distribution is defined as a profit distribution that any profit transfer does not benefit total

proportional change of excess profit, i.e.:

∑

n

Prn − Prpfn
Prpfn −MinPrn

≤ 0 (55)

where Prpfn is the optimal profit of member n in a proportionally fair profit distribution. A propor-

tionally fair solution can be achieved using the Nash bargaining approach, which will be described210

later in this section.

Max-min fairness is based on the work of Rawlsian justice (Rawls, 1971) and Kalai-Smorodinsky

bargaining solution (Kalai & Smorodinsky, 1975). An allocation among multiple players is regarded

to be max-min fair, if any increase in the allocation of one player can result in the allocation decrease

of another player with an equal or less allocation. Max-min fairness satisfies the axioms of Pareto
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optimality, symmetry, affine invariance, and monotonicity. Originally proposed for a two-person

game, it is usually operated in a normalised system in which all players have the same maximum

achievable utility. Under max-min fairness, a fair allocation solution is achieved by maximising

the lowest utility first, then the second lowest utility, and so on. The max-min fairness has a

broad and extensive application in the area of networking and telecommunications (Bertsekas &

Gallager, 1987; Luss, 1999). In this work, the scaled profit of each member is considered under

max-min fairness, which is obtained by considering the maximum and minimum profit bounds of

each member:

Prn =
Prn −MinPrn

MaxPrn −MinPrn
, ∀n (56)

where MaxPrn is the maximum profit of supply chain member n. A max-min fair profit distribution

is the one that any scaled profit increase of one member cause the scaled profit decrease of another

member with the same or less scaled profit. Lexicographic maximin approach can be used to obtain

such max-min fair solution, whose details can be found later.215

Next, we developed solutions approaches for this fair profit distribution problem, using Nash

bargaining and lexicographic maximin principles, under proportional and max-min fairness criteria,

respectively.

4.2. Nash Bargaining Approach

The Nash bargaining approach is applied to obtain the proportionally fair solutions. Originated

from the two-player bargaining game, the Nash bargaining solution is defined as the maximiser

of Nash product, i.e. the product of the two players’ payoffs (Nash, 1950). The Nash bargaining

approach has been used to achieve fair solutions in various areas (Gjerdrum et al., 2001, 2002;

Chéron, 2002; Han et al., 2005; Hanany & Gerchak, 2008; Zhang et al., 2009; Ma et al., 2012; Yu

et al., 2012; Zhang et al., 2013, 2017a). In our supply chain optimisation problem, a fair Nash

bargaining solution can be obtained by maximising the product of each member’s excess profit.

Thus, taking into account the bargaining powers of the supply chain members, the Nash bargaining
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solution can be obtained by optimising the following objective function:

Ψ =
∏

n

(Prn −MinPrn)αn (57)

where αn is the indicator of the bargaining power of member n.220

By applying the logarithmic operation, the above nonlinear objective function (Eq. 57) can be

rewritten as the following one:

ln Ψ =
∑

n

αn · ln(Prn −MinPrn) (58)

Eq. (58) is still a nonlinear function. To linearise it, the separable programming technique

(Gjerdrum et al., 2001) was applied. Then, the continuous strictly convex function ln Ψ can be

approximated by a piecewise linear function ln Ψ with Q grid points, as follows:

ln Ψ =
∑

n

Q∑

q=1

αn · µq · ln(Prnq −MinPrn) (59)

where Prnq expresses the profit of supply chain member n at grid point q, and variables µq ≥ 0 is

a SOS2 variable, allowing vales at only two adjacent grid points to be non-zero, and satisfying the

following constraint:
Q∑

q=1

µq = 1 (60)

Thus, Prn can be expressed as below:

Prn =

Q∑

q=1

µq · Prnq, ∀n (61)

Overall, the developed MILP model, denoted as Nash, includes Eq. (59) as objective function,

and Eqs. (1)–(25), (28)–(35), (37)–(54), (60) and (61) as constraints. The solution of the above

MILP model can be regarded as a close approximation to the optimal Nash bargaining solution

(Gjerdrum et al., 2001), as well as a proportionally fair solution.
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4.3. Lexicographic Maximin Approach225

Lexicographic maximin (or minimax) approach is a game theoretic approach for max-min fair

solutions with wide applications (Klein et al., 1992; Ogryczak, 1997; Ogryczak et al., 2003; Erkut

et al., 2008; Wang et al., 2008; Luss, 2010; Liu & Papageorgiou, 2013; Sawik, 2014; Zhang et al.,

2014, 2017b). A lexicographic maximin problem can be defined as follows:

Leximaxx∈ΩΘ(f (x )) (62)

where f (x ) = {f1(x ), f2(x ), . . . , fN (x )} is a vector function on the decision space x ∈ Ω, and

Θ : RN → RN is a mapping function that re-rank the components of vector in a nondecreasing

order, such that Θ(f (x )) = (θ1(f (x )), θ2(f (x )), . . . , θN (f (x ))), where θ1(f (x )) ≤ θ2(f (x )) ≤ · · · ≤

θN (f (x )), and there exists an permutation π of set {1, . . . , N} such that θn(f (x )) = fπ(n)(x ).

Taking bargaining powers into account, the ratio of scaled profit to bargain power of each

member is maximised for this problem. Thus, the lexicographic maximin problem for max-min fair

profit distribution can be described as follows:

Leximax Θ(Prn/αn)

s.t. Eqs. (1)− (25), (28)− (35), (37)− (54) and (56)

(63)

4.3.1. Lexicographic Maximisation Model230

According to Ogryczak et al. (2005), the lexicographic maximin optimisation problem (Eq. 63)

can be transformed into a lexicographic maximisation problem, denoted by LexiMax in this paper,
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whose solution process involves solving a series of MILP models iteratively:

Leximax {λ1 −
∑

n

d1n, . . . , λN −
1

N
·
∑

n

dNn}

s.t. λp − dpn ≤ Prn/αn, ∀p = 1, . . . , N, n

λp ∈ R, ∀p = 1, . . . , N

dpn ≥ 0, ∀p = 1, . . . , N, n

Eqs. (1)− (25), (28)− (35), (37)− (54) and (56)

(64)

4.3.2. An Alternative Hierarchical Approach

Due to the involvement of multiple iterations and increasing model sizes, the above lexicographic

maximisation approach for large supply chain networks requires high computational expense to

solve. To overcome the computational difficulties, an efficient tailored hierarchical approach is

developed to obtain an approximate optimal fair solution, which denoted as hLexi. In the proposed235

hLexi approach, an aggregated static lexicographic maximin problem is solved first as a lexicographic

maximisation problem for fair profit distribution to obtain the optimal scaled profit of member n,

Pr
∗
n. This aggregated model ignores the time discretisation and only considers the aggregated

decisions of total productions, flows and sales in the planning horizon. The details of the developed

aggregated model are presented in the Appendix.240

Next, a detailed dynamic optimisation model is solved by maximising total profit. This model

is extended from MaxTotProf model by including two additional constraints: Eq. (56) and a

profit ratio limit constraint, in which the profit distributions obtained by the aggregated model are

considered as the limits, i.e. the relative ratio of the scaled profits of a pair of members, n and n′, is

restricted by their ratio obtained in the aggregated model, with an allowed deviation δ, as follows:

(1− δ) · Pr
∗
n

Pr
∗
n′
· Prn′ ≤ Prn ≤ (1 + δ) · Pr

∗
n

Pr
∗
n′
· Prn′ , ∀n, n′ > n (65)

The solution procedure of the hierarchical approach hLexi is given below:

Step 1: Solve the proposed aggregated model using lexicographic maximin approach, and
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obtain the optimal scaled profit earned by each member, Pr
∗
n;

Step 2: Solve a detailed MILP model for total profit maximisation with the fixed values of

Pr
∗
n.245

Overall, the above three game theoretic approaches were used for the optimal profit distribution

problem. The Nash bargaining approach using separable programming (Nash) is implemented for

a proportionally fair profit distribution, and the lexicographic maximin approach through lexico-

graphic maximisation model (LexiMax) and the proposed hierarchical approach (hLexi) are used

for a max-min fair profit distribution.250

5. Examples

In this section, two examples are presented to demonstrate the applicability of the developed fair

decision framework. Example 1 is a small illustrative example to justify the fair profit distributions

obtained by the proposed approaches and the roles of transfer prices. Example 2 is based on a real

world case study in agrochemical industry to demonstrate applicability of the proposed approaches255

at real practice. Here, cu is used as the currency unit and mu as the mass unit.

5.1. Example 1

Example 1 is a supply chain network consisting of one AI plant (A1), two formulation plants

(F1–F2), and four market regions (M1–M4), as shown in Figure 1. This example considers eight

products (P1–P8), with the first four in one product group (G1) produced by formulation plant F1260

and the last four in another product group (G2) produced by formulation plant F2. The planning

horizon is divided into 6 time periods (T1–T6), with each lasting for 2 months. The unit AI

consumptions of product production are given in Table 1.

Table 1: Unit consumption of the AI in product formulation of Example 1

P1 P2 P3 P4 P5 P6 P7 P8

F1 0.23 0.25 0.22 0.20 - - - -

F2 - - - - 0.18 0.27 0.28 0.13
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In this example, there are 10 discrete potential transfer price levels (L1–L10) of the AI and

each product. The given discrete potential transfer price levels of each product are the same at all265

formulation plants. The selling prices of final products at markets are assumed to be constant in

the planning horizon, which are shown in Table 2.

Table 2: Product selling prices (cu/mu) in Example 1.

M1 M2 M3 M4

P1 180 160 170 180

P2 200 180 220 190

P3 240 230 200 210

P4 190 200 170 190

P5 180 210 190 200

P6 220 240 210 210

P7 150 180 200 190

P8 220 200 210 200

5.2. Example 2

Example 2 considers a real world supply chain network in the agrochemical industry, based on

the example in (Liu & Papageorgiou, 2013). It consists of one AI plant (A1), eight formulation270

plants (F1–F8) and ten market regions (M1–M10). There are 32 products (P1–P32) in 10 product

groups (G1–G10). The planning horizon is divided into 52 weekly time periods (T1–T52). The

capabilities of the formulation plants are shown in Table 3.
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Table 3: Capabilities and capacities (mu) of the formulation plants in Example 2.

Product group (product)
Formulation plant

F1 F2 F3 F4 F5 F6 F7 F8

G1 (P1–P4) - - - X* - X - X
G2 (P5–P6) X X - - - - X -

G3 (P7–P10) - X X X X - X X
G4 (P11–P14) X - - - X X - -

G5 (P15–P20) - X - - - X - -

G6 (P21–P22) - X - - X - - -

G7 (P23–P25) X - X X - - - X
G8 (P26–P27) - - - - - X X -

G9 (P28–P30) - - X - X - - -

G10 (P31–P32) X - - - - X - X
*The formlation plant is able to produce corresponding product groups.

Similar to Example 1, there exit 10 transfer price levels (L1–L10) for the AI and each product.

Note each product is sold only in some markets with different selling prices. The annual demand and275

selling price of each product in each market is given in Figures 3 and 4, where the most demanded

products are P2 and P3, while markets M2 and M4 have the most potential sales.

Figure 3: Product demands at each market in Example 2.
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Figure 4: Selling prices of the products at each market in Example 2.

In both Examples 1 and 2, the maximum profit limit of each member was achieved by optimising

its own profit only, while the minimum acceptable profit was set to a certain percentage of the

maximum profit (30% in Example 1 and 10% in Example 2).280

6. Computational Results and Discussion

In this section, three game theoretic approaches are applied to the two examples presented

above, including the MILP model for Nash bargaining solution (Nash), lexicographic maximisation

model (LexiMax) and hierarchical lexicographic approach (hLexi). The obtained fair solutions are

compared with the solution of MaxTotProf model for total profit maximisation to demonstrate their285

advantages.

All implementations in this paper were done in GAMS 24.5 (GAMS Development Corporation,

2015) on a 64-bit Windows 7 based machine with 3.00 GHz Intel Core i5-3330 processor and 8.0

GB RAM, using CPLEX MILP solver with four threads. The optimality gap was set to 1%. A

CPU limit of 10000s was used for each single MILP model run. The value of δ used in the hLexi290

approach is 20%, unless specified otherwise.
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6.1. Example 1

In Example 1, two scenarios with different bargaining powers are investigated to examine the

impact of bargaining powers. The model statistics of different approaches for Example 1 are pre-

sented in Table 4. All approaches have similar numbers of equations and variables, except the295

aggregated model at Step 1 of hLexi approach, which has one order of magnitude fewer equations

and variables, and results in much shorter computational time.

Table 4: Model statistics in Example 1

MaxTotProf Nash LexiMax hLexi

No. of equations 2326 2341 2410* 500**/2382***

No. of continuous variables 1740 1811 1881* 504**/1754***

No. of discrete variables 307 307 307* 143**/307***

*Last iteration; **Aggregated model at the last iteration of Step 1; ***Detailed model at Step 2.

6.1.1. Scenario 1

In Scenario 1, it is assumed that all supply chain members have the same bargaining power.

Without loss of generality, we let αn = 1. The obtained profits of all members are shown in300

Table 5, which also demonstrates the effect of fairness criterion on profit distribution. The total

profit achieved by MaxTotProf model is the highest. However, the profits of formulation plants are

negative, and the profits of markets reach the maximum limits, implying that the profit distribution

is very uneven. Meanwhile, for other game theoretic solution approaches, the obtained total profit

is only 3-4% less than the maximum total profit, while the profits of all supply chain members305

are within the same scale, varying between 23.0 and 55.0 thousand cu. Comparing the optimal

solutions of Nash and LexiMax approaches, only formulation plant F2 earns more profit in the

lexicographic maximin optimum, than in the Nash optimum, due to its higher maximum profit

bound than others, which is taken into account in scaled profits.
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Table 5: Optimal profits of supply chain members in Scenario 1 of Example 1, in cu.

MaxTotProf Nash LexiMax hLexi

A1 20.9 25.2 23.0 23.0

F1 -4.7 43.0 39.9 39.9

F2 -3.5 38.6 54.2 55.0

M1 59.6 35.0 33.0 33.0

M2 88.2 52.9 48.9 46.2

M3 61.9 37.1 34.7 35.9

M4 44.5 26.7 24.8 24.7

Total profit (thousand cu) 266.8 258.6 258.6 257.7

CPU (s) 0.3 3.9 78.7 2.7 (1.2*/1.5**)

*Step 1; **Step 2.

To further demonstrate the fairness of the obtained profit distributions, they are compared310

under two fairness criteria: proportional fairness and max-min fairness. The proportional fairness

is demonstrated by excess profit (Prn −MinPrn) in Figure 5, showing that the fluctuations of

excess profits by Nash approach are much smaller than those by MaxTotProf model. The max-min

fairness is illustrated using scaled profit (Prn) in Figure 6, which demonstrates more fluctuations

of scaled profit by MaxTotProf model. Especially, the minimum scaled profits of all members in315

the solutions of LexiMax and hLexi approaches are significantly higher than that of MaxTotProf

model, and therefore their profit distributions much max-min fairer.
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Figure 5: Proportional fairness: excess profits, Prn −MinPrn, by MaxTotProf and Nash approaches in Example 1,

in thousand cu.

Figure 6: Max-min fairness: scaled profits, Prn, by MaxTotProf, LexiMax and hLexi approaches in Example 1.

In order to measure the fairness of the obtained profit distributions, we introduce the coefficient

of variation as a fairness index (FI) of profit distribution. The coefficient of variation is the ratio of

standard deviation to mean, expressed as a percentage, which has been widely used in the literature320

as a fairness measure. Here, a lower value of FI indicates a fairer profit distribution. Table 6 shows

the values of FI of the obtained profit distributions by different approaches. Under proportional
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fairness, FI indicates the coefficient of variation of excess profits, while under max-min fairness,

FI represents the coefficient of variation of scaled profits. In terms of proportional fairness, Nash

approach reduces the FI values to 31.4%, from 185.0% obtained by MaxTotProf model. Meanwhile,325

the FI value under max-min fairness obtained by LexiMax approach is two orders of magnitude

lower than that maximising total profit. Such result shows that Nash and LexiMax approaches

can effectively achieve proportionally and max-min fairer solutions, respectively. Comparing the

profit distributions of LexiMax and hLexi approaches, it can be observed that hLexi approach can

provide a close approximation to the max-min fair solution with one order of magnitude saving in330

computational time.

Table 6: FI of profit distributions in Scenario 1 of Example 1

Proportional fairness Max-min fairness

MaxTotProf Nash MaxTotProf LexiMax hLexi

185.0% 31.4% 139.6% 1.6% 6.2%

The optimal transfer price levels in the fair solutions are shown in Figure 7. When maximising

total profit, lower transfer prices are preferred in order to minimise cost of duties. Thus, transfer

price level M1 is selected for the AI and all products, causing low or negative profits to plant A1

and all formulation plants, and high profits to all markets. In the solutions of three game theoretic335

approaches, the selected AI transfer price levels becomes higher to increase the profit of A1. In

addition, the product transfer prices are also increased, even to the highest level M10 for some

products, which results in higher profits of formulation plants and lower profits of markets. It

can be noticed that different solution approaches might choose different transfer prices for some

products. The results demonstrate that the transfer pricing decisions have an important role in340

balancing profits of supply chain members and achieving a fair profit distribution.
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Figure 7: Optimal transfer price levels selected by different approaches in Scenario 1 of Example 1.

6.1.2. Scenario 2

In Scenario 2, the supply chain members do not have the same bargaining power. In order to

focus on the effect of bargaining powers, the AI plant is assumed to have a lower bargaining power

(αA1 = 0.5) than others (αn 6=A1 = 1). Similarly, the profit of each member is given in Table 7, in345

which all three game theoretic approaches obtain quite even profit distributions with up to 5% total

profit loss. Comparing Tables 7 with 5, A1 earns 9–22% less actual profit in Scenario 2 than in

Scenarios 1, due to its lower bargaining power, while most other members benefit from their relative

higher bargaining powers, receiving up to 11% higher profit. The hLexi approach still provides a

close approximation to the optimal max-min fair solution, taking significantly less computational350

time, compared to LexiMax approach.
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Table 7: Optimal fair profits of supply chain members in Scenario 2 of Example 1, in cu.

Nash LexiMax hLexi

A1 20.9 20.8 18.0

F1 43.3 40.5 38.5

F2 42.4 54.8 53.2

M1 35.7 33.4 35.2

M2 52.9 49.5 51.3

M3 37.1 34.7 35.2

M4 26.7 25.0 24.3

Total profit (cu) 259.1 258.7 255.6

CPU (s) 2.4 163.8 2.6 (1.4*/1.2**)

*Step 1; **Step 2.

The main driver of the obtained fair profit distribution is transfer pricing strategy, as shown in

Figure 8. Due to lower bargaining power of A1, AI transfer price to formulation plants is reduced to

the lowest level, M1, from levels M2 and M3 in Scenario 1. Thus, A1 receives less transfer payments

from formulation plants, and therefore earns a lower profit. Moreover, although Nash approach and355

the other two lexicographic optimisation-based approaches are under different fairness criteria, all

of them reduce the AI transfer price as a result of A1’s lower bargaining power.

Figure 8: Optimal transfer price levels selected by different approaches in Scenario 2 of Example 1.
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6.2. Example 2

In Example 2, all members are assumed to have the same bargaining power (αn = 1). The

model statistics of Example 2 are presented in Table 8. Compared to Example 1, the model sizes360

in Example 2 are tens of times larger, and therefore the models are much more computationally

difficult.

Table 8: Model statistics in Example 2

MaxTotProf Nash LexiMax hLexi

No of equations 152439 152478 152895* 3507**/152819***

No of continuous variables 114975 115166 137224* 3056**/115013***

No of discrete variables 15671 15671 15671* 1445**/15671***

*Last iteration; **Aggregated model at the last iteration of Step 1; ***Detailed model at Step 2.

6.2.1. Optimal Solutions

The computational results of Example 2 using the game theoretic approaches are presented in

Table 9. The obtained excess profits and scaled profits are demonstrated and compared in Figures 9365

and 10, respectively, and the FI values of profit distributions are given in Table 10. As the same as

Example 1, MaxTotProf model cannot achieve a fair profit distribution, in which all markets earn

negative profits, while only plants have positive profits. Meanwhile, the solution of hLexi approach

is much max-min fairer, as the obtained scaled profits are all positive. Nash approach obtains the

optimal solution within 1.3 hours, which has a much proportionally fairer profit distribution, with370

one order of magnitude reduction of FI than MaxTotProf model. Meanwhile, LexiMax approach

fails to find a feasible solution at the 4th iteration of lexicographic loop within the given CPU

limit, and therefore terminates without any solution returned after over 11-hour computation.

However, the proposed hierarchical approach, hLexi, finds a solution within about 1.5 hours, taking

a computational effort similar to Nash approach. The obtained solution also significantly reduces375

FI value by one order of magnitude from that by MaxTotProf model. Moreover, total profit of

the two fair solutions are within 3% of the maximum total profit obtained. Thus, the proposed

hierarchical approach successfully obtains a fair solution, regarded as a close approximation to the

optimal lexicographic maximin and max-min fair solution, with high total profit and computational
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efficiency.380

Table 9: Optimal profits of supply chain members in Example 2, in cu.

MaxTotProf Nash LexiMax hLexi

A1 -408.1 590.9 - 217.4

F1 599.3 780.6 - 1016.2

F2 1178.5 1430.6 - 1691.8

F3 1377.4 987.5 - 1269.6

F4 2175.8 2121.4 - 2711.9

F5 80.0 1018.4 - 1176.0

F6 1355.7 2263.9 - 2572.1

F7 644.8 971.7 - 1249.6

F8 340.3 1840.0 - 2113.5

M1 766.4 560.4 - 254.6

M2 3153.1 1072.3 - 930.5

M3 753.3 530.5 - 207.3

M4 1649.9 746.7 - 817.7

M5 295.2 393.6 - 136.4

M6 1228.4 625.7 - 498.9

M7 1231.8 480.3 - 358.9

M8 -33.1 481.1 - 145.5

M9 577.7 553.2 - 156.9

M10 1359.5 487.0 - 407.9

Total profit (cu) 18325.3 17935.9 -* 17932.8

CPU (s) 27.4 4446.5 40000.0 5447.6 (36.9**/5410.7***)

*No solution returned; **Step 1; ***Step 2.
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Figure 9: Excess profits, Prn −MinPrn, obtained by MaxTotProf and Nash approaches in Example 2, in thousand

cu.

Figure 10: Scaled profits, Prn, obtained by MaxTotProf and hLexi approaches in Example 2.
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Table 10: FI of profit distributions in Example 2

Proportional fairness Max-min fairness

MaxTotProf Nash MaxTotProf hLexi

132.4% 41.3% 140.1% 11.2%

Similar to Example 1, transfer price plays an important role in distributing profit more fairly.

Different from MaxTotProf model, which chooses the lowest transfer price level for the AI and all

the products, the obtained fair solutions use higher transfer prices. For example, in the max-min

fair solution by hLexi approach, level M6 is selected as AI transfer price, which makes A1 earn a

positive profit. Also, higher transfer prices of some products are chosen at formulation plants, e.g.,385

P1 and P31, whose transfer prices are set to level M10 at all three formulation plants where they

are produced. To earn a higher profit, F5, F6 and F8 assign transfer price level M10 to over three

quarters of the products they produced, resulting in the most significant profit increases, compared

to MaxTotProf solution. At the same time, the profit of F3 decreases, because it charged the lowest

average transfer price, and paid a higher AI transfer price.390

The optimal max-min fair transfer payments between supply chain members by hLexi approach

are visualised using Circos in Figure 11. In this figure, all 19 members of the supply chain network

are arranged circularly, and each one is represented by a colour and the label outside. The coloured

links connect two members and illustrate the transfer payments between them. The links are in

colour of the members who make the payments, and the width of each link is proportional to395

the transfer payment amount. On the outside of the ideogram, the cost and revenue from transfer

payments of each member and their total amount are represented by three tracks, respectively, with

percentage labels. In Figure 11, it can be observed that there are payments from all formulations

to the AI plant, and the largest payment comes from F4, around a quarter of the total revenue

of A1. As to the payments between formulation plants and markets, not every formulation plant400

is paid by all markets, and only four markets (M1, M2, M6 and M7) purchase products from all

formulation plants. The links with the largest payment include M4→F6, M6→F8, and M2→F4.
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Figure 11: Optimal transfer payments by hLexi approach in Example 2, in thousand cu.

Figure 12 illustrates the optimal production and flows by hLexi approach using Sankey diagram.

In this Sankey diagram, the four layers represent AI plants, formulation plants, products and mar-

kets. Each supply chain member and each product is represented by a block and a colour, and is405

labelled outside the block. The number after label represents the total production (for AI and for-

mulation plant) or sales (for market) of each member, or the total shipped amount of each product.

The links between AI plants between formulation plants represent AI flows, while the links between

formulation plants and products, as well as between products and markets, illustrate product flows

between formulation plants and markets, in colour of corresponding products. Comparing Figures410
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11 and 12, there are some interesting findings to link the optimal transfer payments and flows. In

Figure 12, there is large AI flow to F4, which is consistent with the high transfer payments from F4

to A1 in Figure 11. There are also large product flows between F6 and M4, especially for products

P13, P14, P18 and P20. Such fact explains over 70% of the revenue of F6 from M4, as illustrated in

Figure 11. Similar cases can be found at markets M8 and M9, whose most payments and flows are415

to a single formulation plant. In all formulation plants, F4 and F6 earn the highest total revenues

(Figure 11), as a result of their high productions than others (Figure 12), which lead to their relative

higher profits (Table 9). Meanwhile, M2 and M4 make the largest payments to formulation plants

(Figure 11), mainly because of their higher demands and sales (Figure 12). Similar results can also

be observed in the optimal proportionally fair solution by Nash approach.420

Figure 12: Optimal production and flows by hLexi approach in Example 2, in mu.
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6.2.2. Sensitivity Analysis

Next, we further investigated the proposed hLexi approach, by analysing the effects of the value

of parameter δ, the allowed deviation of pairwise relative profit ratios at Step 2 from those obtained

at Step 1, on profit distribution and computational time. Here, we tested three values of δ: 10%,

20% and 30%. Table 11 summarises the max-min fair solutions of Example 2 by hLexi approach425

using these three values of δ. It is obvious that with a decreasing value of δ, the obtained profit

distribution tends to be max-min fairer with smaller FI values. On the one side, for smaller value

of δ (10%), due to the constraint (Eq. 65) is tighter, it is more computationally difficult to find

the optimal solution at Step 2. On the other side, when the value of δ is higher (30%), as larger

feasible region is generated by Eq. (65), more computational time is needed to search for the430

optimal solution at Step 2. Total profits become higher with increasing values of δ in Table 11.

However, for a even higher value of δ > 30%, the model at Step 2 might not be able to find the

optimal solution within given CPU time limit, and then the achieved solution could have a lower

total profit and provide less proportionally fair distribution. It can be seen that 20% is able to

achieve a good balance between fairness and computational expense. Note that similar results can435

be found in Example 1 as well.

Table 11: Sensitivity analysis on the value of δ in Example 2

δ 10% 20% 30%

Total profit (thousand cu) 17917.9 17932.8 17941.7

FI of max-min fairness 8.9% 11.2% 13.5%

CPU at Step 2 (s) 10476.5 5410.7 6981.7

7. Conclusions

This work addressed the fair profit distribution problem within a three-echelon supply chain

network in the process industry, consisting of AI plants, formulation plants and markets with dif-

ferent bargaining powers. An MILP-based decision framework has been developed for production,440

distribution and capacity planning of the supply chain network. To achieve a fair profit distribution

among all supply chain members involved, game theoretic approaches using Nash bargaining and
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lexicographic maximin principles were adopted under two different fairness criteria, proportional

and max-min fairness. Especially, a tailored computationally efficient hierarchical approach has

been proposed for max-min fair solutions. Two examples were examined, and computational re-445

sults showed that both Nash bargaining and lexicographic maximin approachs can achieve fairer

profit distribution, compared to what obtained by maximising total profit, in terms of proportional

and max-min fairness, respectively. The effects of bargaining powers of supply chain members

on profit distribution were studied. For large instances where the classic iterative lexicographic

maximisation approach is highly time consuming, the proposed hierarchical approach is able to450

find good approximate optimal max-min fair profit distributions with much less computational ef-

forts. At last, through sensitivity analysis, the values of an important parameter in the proposed

hierarchical approach was investigated.

As to the future research directions, uncertainties of product demands can be considered and

incorporated into the optimisation. In addition, the competition between products in the same455

group at markets can be studied. More detailed planning and scheduling decisions at plants can

also be considered (Liu et al., 2008, 2010a,b, 2012). This work can be further extended to global

supply chain networks, considering additional features, e.g., different tax rates and exchange rates.
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Appendix

The aggregated model solved at Step 1 of the proposed hierarchical approach, hLexi, is presented

here. The static aggregated model determines the aggregated decisions of total production, flow

and sales without considering time discretisation. As only the total mass balance is considered, all465

inventory-related equations and variables are not included in this model. The constraints of the
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aggregated model are as follows:

APAa ≤ ACapAa + ∆ACapAa , ∀a, t (A.1)

∑

g∈Gj

∑

i∈Īg

APPij ≤ ACapFj + ∆ACapFj , ∀j (A.2)

MinAFAaj ·XA
aj ≤ AFAajt ≤MaxAFAaj ·XA

aj , ∀a, j (A.3)

MinAFPijk ·XP
ijk ≤ AFPijkt ≤MaxAFPijk ·XP

ijk, ∀j, k, g ∈ Gj , i ∈ Īg ∩ Ik (A.4)

APAa =
∑

j

AFAaj , ∀a (A.5)

∑

a

AFAaj =
∑

i∈Īg

∑

g∈Gj

βij ·APPij , ∀j (A.6)

APPij =
∑

k∈Ki

AFPijk, ∀j, g ∈ Gj , i ∈ Īg (A.7)

∑

j∈Jg

∑

g∈Ḡi

AFPijk = ASik, ∀k, i ∈ Ik (A.8)

TPAa =
∑

l

TPLAal ·OAal, ∀a (A.9)

TPPij =
∑

l

TPLPijl ·OPijl, ∀j, g ∈ Gj , i ∈ Īg (A.10)
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∑

l

OAal = 1, ∀a (A.11)

∑

l

OPijl = 1, ∀j, g ∈ Gj , i ∈ Īg (A.12)

ALSik = ADik −ASik, ∀k, i ∈ Ik (A.13)

∑

j

XA
aj ≤| j | ·EAa , ∀a (A.14)

∑

k∈Ki

XP
ijk ≤| k | ·EPij , ∀j, g ∈ Gj , i ∈ Īg (A.15)

OAF
A

ajl ≤MaxAFAaj ·OAal, ∀a, j, l (A.16)

∑

l

OAF
A

ajl = AFAaj , ∀a, j (A.17)

ReAa =
∑

j

∑

l

TPLAal ·OAF
A

ajl, ∀a (A.18)

RMCAa = MCAa ·APAat, ∀a (A.19)

PCAa = FPCAa · EAa + V PCAa ·APAa , ∀a (A.20)

CICAa = crf · CCAa ·∆ACapAa , ∀a (A.21)
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PrAa = ReAa −RMCAa − PCAa − CICAa , ∀a (A.22)

OAF
P

ijkl ≤MaxAFPijk ·OPijl, ∀j, k, g ∈ Gj , i ∈ Īg ∩ Ik, l (A.23)

∑

l

OAF
P

ijkl = AFPijk, ∀j, k, g ∈ Gj , i ∈ Īg ∩ Ik (A.24)

ReFj =
∑

k

∑

g∈Gj

∑

i∈Īg∩Ik

∑

l

TPLPijl ·OAF
P

ijkl, ∀j (A.25)

PUCFj =
∑

a

∑

l

TPLAal ·OAF
A

ajl, ∀j (A.26)

RMCFj =
∑

g∈Gj

∑

i∈Īg

MCPij ·APPij , ∀j (A.27)

FOCFj =
∑

g∈Gj

∑

i∈Īg

FFCPij · EPij +
∑

g∈Gj

∑

i∈Īg

V FCPij ·APPijt, ∀j (A.28)

TRCFj =
∑

a

FTCAaj ·XA
aj +

∑

a

V TCAaj ·AFAaj , ∀j (A.29)

CICFj = crf · CCFj ·∆ACapFj , ∀j (A.30)

DUCFj =
∑

a

∑

l

DCAaj · TPLAal ·OAF
A

ajl, ∀j (A.31)

PrFj = ReFj − PUCFj −RMCFj − FOCFj − TRCFj − CICFj −DUCFj , ∀j (A.32)
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ReMk =
∑

i∈Ik
Vik ·ASik, ∀k (A.33)

PUCMk =
∑

j

∑

g∈Gj

∑

i∈Īg∩Ik

∑

l

TPLPijl ·OAF
A
Pijkl, ∀k (A.34)

TRCMk =
∑

j

∑

g∈Gj

∑

i∈Īg∩Ik

FTCPijk ·XP
ijk +

∑

j

∑

g∈Gj

∑

i∈Īg∩Ik

V TCPijk ·AFPijk, ∀k (A.35)

DUCMk =
∑

j

∑

g∈Gj

∑

i∈Īg∩Ik

∑

l

DCPijk · TPLPijl ·OF
A
Pijkl, ∀k (A.36)

LSCMk =
∑

i∈Ik
PCik ·ALSik, ∀k (A.37)

PrMk = ReMk − PUCMk − TRCMk −DUCMk − LSCMk , ∀k (A.38)

Given the above constraints, the following lexicographic maixmisation problem is solved at Step

1 of hLexi approach:

Leximax {λ1 −
∑

n

d1n, . . . , λN −
1

N
·
∑

n

dNn}

s.t. λp − dpn ≤ Prn/αn, ∀p = 1, . . . , N, n

λp ∈ R, ∀p = 1, . . . , N

dpn ≥ 0, ∀p = 1, . . . , N, n

Eqs. (A.1)− (A.38) and (56)

(A.39)

Nomenclature

Indices

a AI plant

46



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

g product group

i product

j formulation plant

k market region

l transfer price level

n, n′ supply chain member, including a, j and k

p index used in the dual model

t time period

Sets

Ḡi set of the product group that product i belongs to

Gj set of product groups suitable for formulation plant j

Īg set of products belong to group g

Ik set of products sold in market k

Ki set of markets selling product i

Parameters

ACapAa aggregated capacity of AI plant a

ACapFj aggregated capacity of formulation plant j

ADjk aggregated demand of product i at market k in time period j

CapAa capacity of AI plant a

CapFj capacity of formulation plant j

CCAa unit capital cost for capacity expansion at AI plant a

CCFj unit capital cost for capacity expansion at formulation plant j

crf capital recovery factor

Djkt demand of product i at market k in time period j

DCAaj unit duties of the AI from AI plant a to formulation plant j

DCPijk unit duties of product i from formulation plant j to market k
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FFCPij fixed formulation cost of product i at formulation plant j

FPCAa fixed production cost of AI at AI plant a

FTCAaj fixed transportation cost of AI from AI plant a to formulation plant j

FTCPijk fixed transportation cost of product i from formulation plant j to market k

ICAAa unit inventory cost of the AI at AI plant a

ICAFij unit inventory cost of the AI at formulation plant j

ICPFij unit inventory cost of product i at formulation plant j

ICPMik unit inventory cost of product i at market k

MaxAFAaj maximum aggregated AI flow from AI plant a to formulation plant j

MaxAFFijk maximum aggregated flow of product i from formulation plant j to in k

MaxAPAa maximum aggregated AI production at AI plant a

MaxAPFij maximum aggregated production of product i at formulation plant j

MaxFAaj maximum AI flow from AI plant a to formulation plant j in each time period

MaxFFijk maximum flow of product i from formulation plant j to in k in each time

period

MaxIV AAa maximum inventory of the AI at AI plant a in each time period

MaxIV AFj maximum inventory of the AI at formulation plant j in each time period

MaxIV PFij maximum inventory of product i at formulation plant j in each time period

MaxIV PMik maximum inventory of product i at market k in each time period

MaxPAa maximum AI production at AI plant a in each time period

MaxPFij maximum production of product i at formulation plant j in each time period

MaxPrn maximum profit of supply chain member n

MinAFAaj minimum aggregated AI flow from AI plant a to formulation plant j

MinAFFijk minimum aggregated flow of product i from formulation plant j to in k

MinAPAa minimum aggregated AI production at AI plant a

MinAPFij minimum aggregated production of product i at formulation plant j

MinFAaj minimum AI flow from AI plant a to formulation plant j in each time period
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MinFFijk minimum flow of product i from formulation plant j to in k in each time

period

MinIV AAa minimum inventory of the AI at AI plant a in each time period

MinIV AFj minimum inventory of the AI at formulation plant j in each time period

MinIV PFij minimum inventory of product i at formulation plant j in each time period

MinIV PMik minimum inventory of product i at market k in each time period

MinPAa minimum AI production at AI plant a in each time period

MinPFij minimum production of product i at formulation plant j in each time period

MinPrn minimum profit of supply chain member n

MCAa unit material cost of AI at AI plant a

MCPij unit material cost of product i at formulation plant j

PCik lost sale penalty of product i at market k

TPLAal transfer price level l of AI at AI plant a

TPLPijl transfer price level l of product i at formulation plant j

Vik selling price of product i at market k

V FCPij unit variable formulation cost of product i at formulation plant j

V PCAa unit variable production cost of the AI at AI plant a

V TCAaj unit variable transportation cost of the AI from AI plant a to formulation

plant j

V TCPijk unit variable transportation cost of product i from formulation plant j to

market k

αn bargaining power of supply chain member n

βij unit AI consumption of product i formulation in formulation plant j

δ allowed deviation of the relative profit ratio in hLeix approach

τjk transportation time from formulation plant j to market k

τ̄aj transportation time from AI plant a to formulation plant j

Continuous Variables

AFAaj aggregated flow of AI from AI plant a to formulation plant j
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AFPijk aggregated flow of product i from formulation plant j to market k

ALSik aggregated lost sales of product i at market k

APAa aggregated production of the AI at AI plant a

APPij aggregated production of product i at formulation plant j

ASik aggregated sales of product i at market k in time period t

CICAa capital investment cost of AI plant a

CICFj capital investment cost of formulation plant j

DUCFj duties of AI paid by formulation plant j

DUCMk duties of products paid by market k

FAajt flow of AI sent from AI plant a to formulation plant j in time period t

FPijkt flow of product i sent from formulation plant j to market k in time period t

FOCFj formulation cost of formulation plant j

IV AAat inventory of the AI at AI plant a in time period t

IV AFjt inventory of the AI at formulation plant j in time period t

IV PFijt inventory of product i at formulation plant j in time period t

IV PMikt inventory of product i at market k in time period t

IV CAa inventory cost of AI plant a

IV CFj inventory cost of formulation plant j

IV CMk inventory cost of market k

LSikt lost sales of product i at market k in time period t

LSCMk lost sales cost of products at market k

OAF
A

ajl auxiliary variable, ≡ OAal ·AFAaj
OAF

P

ijkl auxiliary variable, ≡ OPijl ·AFPijk
OF

A

ajlt auxiliary variable, ≡ OAal · FAajt
OF

P

ijklt auxiliary variable, ≡ OPijl · FPijkt
PAat production of the AI at AI plant a in time period t

PPijt production of product i at formulation plant j in time period t

PCAa production cost of AI plant a
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Prn profit of supply chain member n

PrAa profit of AI plant a

PrFj profit of formulation plant j

PrMk profit of market k

ReAa revenue of AI plant a

ReFj revenue of formulation plant j

ReMk revenue of market k

RMCAa raw materials cost of AI plant a

RMCFj raw materials cost of formulation plant j

Sikt sales of product i at market k in time period t

TPAa transfer price of the AI from AI plant a

TPPij transfer price of product i from formulation plant j

TPCFj transfer payment cost of formulation plant j

TPCMk transfer payment cost of market k

TRCFj transportation cost paid by formulation plant j

TRCMk transportation cost paid by market k

TotalPr total profit of the supply chain

∆ACapAa aggregated capacity increment of AI plant a

∆ACapFj aggregated capacity increment of formulation plant j

∆CapAa capacity increment of AI plant a

∆CapFj capacity increment of formulation plant j

λp, dpn variables in the dual model

Binary Variables

EAa 1 if the AI is produced at AI plant a; 0 otherwise

EPij 1 if product i is produced at formulation plant j; 0 otherwise

OAal 1 if transfer price level l is selected for the AI formulated at AI plant a; 0

otherwise
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OPijl 1 if transfer price level l is selected for product i formulated at formulation

plant j; 0 otherwise

WA
at 1 if the AI is produced at AI plant a in time period t; 0 otherwise

WP
ijt 1 if product i is produced at formulation plant j in time period t; 0 otherwise

XA
aj 1 if the AI is shipped from AI plant a to formulation plant j; 0 otherwise

XP
ijk 1 if product i is shipped from formulation plant j to market k; 0 otherwise

Y Aajt 1 if the AI is shipped from AI plant a to formulation plant j in time period

t; 0 otherwise

Y Pijkt 1 if product i is shipped from formulation plant j to market k in time period

t; 0 otherwise
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Muñoz, E., Capón-Garćıa, E., Láınez-Aguirre, J. M., Espuña, A., & Puigjaner, L. (2015). Sup-
ply chain planning and scheduling integration using Lagrangian decomposition in a knowledge590

management environment. Computers & Chemical Engineering , 72 , 52 – 67. doi:10.1016/j.
compchemeng.2014.06.002.

Nash, J. F. (1950). The bargaining problem. Econometrica, 18 , 155–162.

O’Connor, W. (1997). International transfer pricing. In International Accounting and Finance
Handbook . New York: Wiley. (2nd ed.).595

Ogryczak, W. (1997). On the lexicographic minimax approach to location problems. European
Journal of Operational Research, 100 , 566–585. doi:10.1016/S0377-2217(96)00154-3.
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Ogryczak, W., Śliwiński, T., & Wierzbicki, A. (2003). Fair resource allocation schemes and network
dimensioning problems. Journal of Telecommunications and Information Technology , 3 , 34–42.

Papageorgiou, L. G. (2009). Supply chain optimisation for the process industries: Advances and op-
portunities. Computers & Chemical Engineering , 33 , 1931–1938. doi:10.1016/j.compchemeng.
2009.06.014.605

Pfeiffer, T. (1999). Transfer pricing and decentralized dynamic lot-sizing in multistage, multiproduct
production processes. European Journal of Operational Research, 116 , 319–330. doi:10.1016/
S0377-2217(98)00095-2.

Rawls, J. (1971). A Theory of Justice. Cambridge, MA: Harvard University Press.

Rosenthal, E. C. (2008). A game-theoretic approach to transfer pricing in a vertically integrated610

supply chain. International Journal of Production Economics, 115 , 542–552. doi:10.1016/j.
ijpe.2008.05.018.

Sawik, T. (2014). On the robust decision-making in a supply chain under disruption risks. Inter-
national Journal of Production Research, 52 , 6760–6781. doi:10.1080/00207543.2014.916829.

Sen, A. (1973). On Economic Inequality . Oxford, UK: Claredon Press.615

Shah, N. (2005). Process industry supply chains: Advances and challenges. Computers & Chemical
Engineering , 29 , 1225–1235. doi:10.1016/j.compchemeng.2005.02.023.

Shunko, M., Debo, L., & Gavirneni, S. (2014). Transfer pricing and sourcing strategies for multina-
tional firms. Production and Operations Management , 23 , 2043–2057. doi:10.1111/poms.12175.

Shunko, M., & Gavirneni, S. (2007). Role of transfer prices in global supply chains with random620

demands. Journal of Industrial and Management Optimization, 3 , 99. doi:10.3934/jimo.2007.
3.99.

Sousa, R. T., Liu, S., Papageorgiou, L. G., & Shah, N. (2011). Global supply chain planning for
pharmaceuticals. Chemical Engineering Research and Design, 89 , 2396–2409. doi:10.1016/j.
cherd.2011.04.005.625

Tsiakis, P., & Papageorgiou, L. G. (2008). Optimal production allocation and distribution supply
chain networks. International Journal of Production Economics, 111 , 468–483. doi:10.1016/j.
ijpe.2007.02.035.

Varian, H. R. (1975). Distributive justice, welfare economics, and the theory of fairness. Philosophy
& Public Affairs, 4 , 223–247.630

Vidal, C. J., & Goetschalckx, M. (2001). A global supply chain model with transfer pricing and
transportation cost allocation. European Journal of Operational Research, 129 , 134–158. doi:10.
1016/S0377-2217(99)00431-2.

Wang, L., Fang, L., & Hipel, K. W. (2008). Basin-wide cooperative water resources allocation.
European Journal of Operational Research, 190 , 798–817. doi:10.1016/j.ejor.2007.06.045.635

Young, H. P. (1995). Equity: In Theory and Practice. Princeton, NJ.: Princeton University Press.

56



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Yu, N., Tesfatsion, L., & Liu, C.-C. (2012). Financial bilateral contract negotiation in wholesale
electricity markets using Nash bargaining theory. IEEE Transactions on Power Systems, 27 ,
251–267. doi:10.1109/TPWRS.2011.2162637.

Yue, D., & You, F. (2014). Fair profit allocation in supply chain optimization with transfer price640

and revenue sharing: MINLP model and algorithm for cellulosic biofuel supply chains. AIChE
Journal , 60 , 3211–3229. doi:10.1002/aic.14511.

Zhang, D., Alhorr, Y., Elsarrag, E., Marafia, A. H., Lettieri, P., & Papageorgiou, L. G. (2017a). Fair
design of CCS infrastructure for power plants in qatar under carbon trading scheme. International
Journal of Greenhouse Gas Control , 56 , 43 – 54. doi:10.1016/j.ijggc.2016.11.014.645

Zhang, D., Liu, S., & Papageorgiou, L. G. (2014). Fair cost distribution among smart homes with
microgrid. Energy Conversion and Management , 80 , 498–508. doi:10.1016/j.enconman.2014.
01.012.

Zhang, D., Liu, S., & Papageorgiou, L. G. (2017b). Energy management of smart homes with micro-
grid. In G. M. Kopanos, P. Liu, & M. C. Georgiadis (Eds.), Advances in Energy Systems Engineer-650

ing (pp. 507–533). Cham: Springer International Publishing. doi:10.1007/978-3-319-42803-1_
17.

Zhang, D., Samsatli, N. J., Hawkes, A. D., Brett, D. J., Shah, N., & Papageorgiou, L. G. (2013).
Fair electricity transfer price and unit capacity selection for microgrids. Energy Economics, 36 ,
581–593. doi:10.1016/j.eneco.2012.11.005.655

Zhang, G., Zhang, H., Zhao, L., Wang, W., & Cong, L. (2009). Fair resource sharing for cooperative
relay networks using Nash bargaining solutions. IEEE Communications Letters, 13 , 381–383.
doi:10.1109/LCOMM.2009.081822.

57


