
Contents lists available at ScienceDirect

Energy Policy

journal homepage: www.elsevier.com/locate/enpol

Worldwide carbon shadow prices during 1990–2011

Jean-Philippe Boussemarta, Hervé Leleub, Zhiyang Shenc,⁎

a Univ. Lille, CNRS, IÉSEG School of Management, UMR 9221 – LEM, F-59000 Lille, France
b CNRS, IÉSEG School of Management, Univ. Lille, UMR 9221 – LEM, F-59000 Lille, France
c IÉSEG School of Management, CNRS, Univ. Lille, UMR 9221 – LEM, F-59000 Lille, France

A R T I C L E I N F O

JEL classification:
D24
Q56

Keywords:
Undesirable output
Carbon shadow price
Robust frontier
Weak disposability

A B S T R A C T

Unlike most previous research, which has focused on estimating carbon shadow prices at regional or sectoral
levels, this paper attempts to estimate carbon shadow prices at a worldwide level. A non-parametric robust
framework estimates carbon shadow prices for 119 countries from all continents in 12 large groups. Our
empirical results reveal that the global carbon shadow price is increasing by around 2.24% per annum and
reached 2845 US dollars per ton in 2011. Regional carbon shadow prices present significant disparities over the
analyzed period. We find a substantial sigma convergence process of carbon shadow prices among countries
during 1990–2007 while divergence appears after the global financial crisis. We then analyze the relationship
between carbon shadow prices and the implementation of the Kyoto Protocol.

1. Introduction

According to record of the U.S. National Centers for Environmental
Information, 2016 was the warmest year ever, globally. Global warming
threatens the survival of people all over the world, and scientists
attribute climate change to emissions of greenhouse gases, such as
carbon dioxide emissions. Carbon emissions have no market prices, but
the opportunity costs for producers can be revealed by carbon shadow
prices—the amount of revenue that producers have to give up for a
certain amount of carbon emission abatement—which provides useful
information for environmental regulators. Nowadays, governments
make great efforts to reduce or at least control carbon emission growth
and carry out different pricing approaches for carbon taxes. A popular
approach is to set a gradually decreasing upper limit on carbon
emissions and to allow exchanges of emissions permits in the market
(Kossoy et al., 2015). Thus, the right to emit carbon dioxide changes
from being a public good that is neither rivalrous nor excludable to a
private good that is both rivalrous and excludable. When an amount of
carbon emissions has a real price, is the price reasonable or fair to each
producer? Molinos-Senante et al. (2015) argue that the estimation of
the carbon shadow price for non-power enterprises can provide
incentives for reducing greenhouse gas emissions. The objective of this
paper is to investigate the carbon shadow price at the worldwide level
for its economic implications and references for global carbon pricing.

To estimate the shadow prices of undesirable outputs, both para-
metric and non-parametric methods, such as translog and quadratic
functional forms or data envelopment analysis (DEA), tend to be used

in the literature. Zhou et al. (2015) compare carbon abatement costs
among Shanghai industrial sectors using the parametric and non-
parametric approaches, with both the Shephard input/output and
directional distance functions. Their results indicate that the type of
distance functions plays a tiny role in estimating carbon shadow prices.
However, the choice between parametric and non-parametric ap-
proaches affects the final prices significantly.

Compared to the parametric approach, a non-parametric frame-
work based on activity analysis modeling makes it possible to explore
the entire production technology, incorporating environmental ele-
ments without any particular specifications of functional forms. Zhou
et al. (2008) classify two groups in modeling pollution-generating
technologies among activity analysis models. One uses data transfor-
mation or treats undesirable outputs as inputs based on free disposa-
bility assumption, for instance, some change values of bad outputs to
their reciprocals (e.g., Lovell et al., 1995; Athanassopoulos and
Thanassoulis, 1995), or add big enough positive numbers to inverse
values of bad outputs (e.g., Seiford and Zhu, 2002; Wu et al., 2013).
While the other uses original data based on a weak disposability
assumption (e.g., Mandal, 2010; Wu et al., 2012; He et al., 2013). Some
comparisons on free and weak disposability assumptions see (e.g.,
Yang and Pollitt, 2010; Oggioni et al., 2011; Sahoo et al., 2011).

The latter approach is introduced by Färe et al. (1989), such that
desirable and undesirable outputs can only be decreased proportio-
nately by a uniform abatement factor. The misspecification issue occurs
in the variable returns to scale (VRS) technology because the VRS
assumption that directly imposes constraints on intensity variable does
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not comprise the weak disposability assumption. Leleu (2013) system-
atically summarizes incorrect VRS linearizations applied in literature.
Kuosmanen (2005) propose an improvement by setting non-uniform
abatement factors for VRS models; Kuosmanen and Matin (2011)
develop the dual formulation for this model. The applications of
Kuosmanen's model is available from Mekaroonreung and Johnson
(2009); Berre et al. (2013); Berre et al. (2014), and Lee and Zhou
(2015).

Recently, several pollution-generating technologies have been pro-
posed in non-parametric models and debates have been generated on
selecting the right way to model undesirable outputs, such as by-
production technology, materials balance principles, and weak G-
disposability, etc. Indeed, the choice of modeling technologies includ-
ing environmental dimensions should be based on different criteria,
according to the research question, the level of analysis (micro versus
macro), and the types of pollution that are included in the production
technology (SO2, CO2, NOX, …).

In detail, weak disposability emphasizes the symbiosis between
good and bad outputs, which suggests that pollution is difficult to
abandon. Some pollutions are easily disposed of by the introduction of
additional equipment. For example, most sulfides and nitrides are
soluble in water, and a simple chemical treatment may deal with them
effortlessly. Even if some of them are difficult to dissolve in water, they
can be removed by inexpensive approaches (e.g., nitric oxide can be
oxidized to nitric dioxide, which is soluble in water). Consequently,
these pollutions can be at a null level in the final production. At this
time, the traditional weak disposability assumption is not relevant, and
results may not provide useful and precise information for environ-
mental regulators. However, some other types of pollution, such as
carbon dioxide, are difficult to dispose of, and therefore the weak
disposability assumption seems more appropriate. Murty and Russell
(2002) introduce the by-production approach, combining two sub-
technologies, namely, intended production technology and residual
generation technology. Their intersection indicates the right trade-offs
in production activities (Murty et al., 2012). On the basis of the laws of
thermodynamics/mass conservation, material balance principles re-
quire the balance of materials' bounds between physical inputs and
outputs using weak G-disposability. These two last approaches (by-
production and material balance) require detailed data, such as
pollution-generating inputs, that may be not available for country-level
analyses, which often retains CO2 as a bad output linked to GDP.
Consequently, the weak disposability assumption still seems an appro-
priate manner to model the production technology at the macro level.

Reviews of environmental modeling technologies in a non-para-
metric framework can be found in Zhou et al. (2008); Song et al.
(2012); Oude-Lansink and Wall (2014), and Zhang and Choi (2014),
etc. Zhou et al. (2014) summarize the literature on shadow price
estimation for undesirable outputs. They note that most of the previous
papers focusing on the shadow prices of undesirable outputs are
conducted at the micro level for energy plants or polluted firms
because of data availability and that there is a lack of studies exploring
this field across different countries at a macro level. Yörük and Zaim
(2005) discover a positive correlation between environmental produc-
tivity and climate protocol among OECD countries. Wei et al. (2013)
argue that carbon shadow prices are positively correlated with the
technology level of thermal power enterprises. However, most papers
ignore the relationship between carbon shadow prices and environ-
mental protocol.

That being so, we intend to propose a theoretical illustration for
carbon shadow prices that related to policy implication and we
investigate the global carbon shadow prices for 119 countries, both
developed and developing, using a robust non-parametric model based
on the weak disposability assumption in the first stage. In the second
stage, we analyze the impact of the Kyoto Protocol on the evolution of
carbon shadow prices. The rest of the paper is structured as follows:
Section 2 offers a theoretical background for shadow prices of

undesirable outputs, then we propose a robust DEA model for
estimating carbon shadow prices; Section 3 introduces the data and
presents the empirical results; Section 4 presents the conclusions.

2. Methodology

2.1. Background for estimating carbon shadow prices

The main goal of carbon pricing mechanism is to regulate polluting
emissions and motivating green technological adoptions. Compared to
a centralized quota system of emission levels per country, a carbon
price could be a more effective way to achieve the same objective. In
line with the “polluter pays principle”, pricing carbon is an efficient way
to put the burden of emissions onto polluters who should pay for them
in terms of either financial costs or pollution reductions. According to
the latest State and Trends of Carbon Pricing report, around forty
countries already use carbon pricing mechanisms (World Bank, 2016).
The carbon prices observed in these instruments vary significantly,
from less than 1 US dollar per ton to 130 US dollar per ton. Two main
tools can be used for carbon pricing: emissions trading systems (ETS)
and carbon taxes (World Bank, 2016).

The ETS fix the total volume of carbon emissions and allows for
trade among countries. Low emitters can sell emission rights to high
emitters, leading to the fixation of a market price for carbon through a
supply and demand mechanism. The estimation of shadow prices
proposed in this paper can be interpreted as the willingness to pay or to
accept for each country. Therefore, these shadow prices define the
range where the trade possibility is allowed. The main benefit of this
tool is that the total volume of emission is fixed ex ante and ensures
that objectives of carbon emission reduction or controlled expansion
can be achieved. The alternative tool is to impose a carbon tax paid for
each ton of carbon emitted. The main question is how to fix the level of
the carbon tax. Here again estimation of carbon shadow prices can be
helpful to determine the implicit value of this tax based on an economic
model.

In order to introduce shadow price estimation, let
x x Rx = ( , ... , ) ∈N

N
1 + denote the vector of inputs (e.g. labor, capital),

y y Ry = ( , ... , ) ∈M
M

1 + the vector of desirable outputs (e.g. GDP) and

z z Rz = ( , ... , ) ∈J
J

1 + the vector of undesirable outputs (e.g. carbon
emission). The production technology and its corresponding output
set are defined by T and P:

T x y z x y z= {( , , ): can produce ( , )} (1)

P Tx y z x y z( ) = {( , ): ( , , ) ∈ } (2)

Following Shephard (1953), it is well known that an equivalent
representation of this technology is given by a distance function. In our
approach we use a directional output distance function with bad output
as introduced by Chung et al. (1997) or Färe et al. (2005). The
equivalency of the representation is given by:

P Dy z x x y z( , ) ∈ ( ) ⇔ ( , , ) ≥ 0 (3)

Starting from the latter representation of the production technol-
ogy, the total differentiation of the distance function for a given level of
inputs leads to:

dD D
y

dy D
z

dz= ∂
∂

+ ∂
∂

= 0
(4)

From (4) we can deduce the marginal rate of transformation
between the outputs and the relative shadow price of carbon emission
in terms of GDP. These shadow prices of outputs ωy and ωz can be
derived from marginal values as the derivative of the distance function
regarding to outputs:

dy
dz

ω
ω

= − =
D
z
D
y

z

y

∂
∂
∂
∂ (5)
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Fig. 1 illustrates the interpretation of carbon shadow prices. Let us
assume that a country is producing levels yA of GDP and zA of CO2 with
a given quantity of input X. From (5), the carbon shadow price is
measured by Slope1 and indicates the marginal rate of transformation
between GDP and CO2 which can be interpreted as the opportunity cost
in terms of GDP of reducing one unit of CO2. With the same level of
input, the country can opt for a lower level of pollution but has also to
decrease her GDP. Moving from A to B, the carbon shadow price clearly
increases (Slope2). At this stage, it is noteworthy to state that along the
transformation curve linking Y to Z, CO2 reductions require some
quantities of inputs that are therefore taken away from the production
of GDP. In that sense, disposability of undesirable outputs is costly in
terms of desirable outputs due to diversion of resources to environ-
mental cleanup activities.

While Fig. 1 presents the interpretation of carbon shadow prices for
a given level of input, we consider in Fig. 2a shift of the technology over
two periods due to a growth in inputs (X X>2 1). Over time, the input
change leads to a growth in GDP and CO2. This is illustrated by the
shift from A to B in the figure. As a result, the increase in carbon
shadow price is a sufficient condition to improve the ratio of Y

Z
meaning

that in B the technology is more environmentally friendly (the ratio of
GDP per unit of CO2 is higher). Consequently, from A to B, the GDP
growth rate ΔY

Y
over time is higher than the relative change of CO2

ΔZ
Z
.

2.2. Model specification

In order to measure the worldwide carbon shadow price through a
model of pollution-generating technology, we start from the Shephard
definition of weakly disposable technology (Färe and Grosskopf, 2003).
Introduced by Shephard (1970) and Shephard and Färe (1974), weak
disposability and the null-joint condition are two classical assumptions
usually used to model a pollution-generating technology. Weak dis-
posability means that good outputs cannot increase without expanding
bad outputs or equivalently that bad outputs cannot decrease without
reducing good outputs. This implies that proportional decreases in
good and bad outputs are achievable by a scaling down of production
activity through the introduction of an abatement factor. From an
economic point of view, desirable and undesirable outputs are joint
outputs. In addition, the null-joint condition means that one cannot
produce the desirable outputs if the undesirable outputs are at the null
level. Weak disposability and null-jointness assumptions are defined
as:

P θ θ θ Py z x y z xIf ( , ) ∈ ( ) and 0 ≤ ≤ 1 then ( , ) ∈ ( ) (6)

Py z x y zIf ( , ) ∈ ( ) and = 0 then = 0 (7)

Alternative modellings are found in the literature based on the weak
disposability assumption. As we also assume a variable returns to scale

technology and convexity of the production possibility set, we follow
Kuosmanen's (2005) approach. The production set, the directional
distance function and shadow prices can be estimated through a linear
programming framework. The operational definition of the production
set is given by:

T R R R θ μ y y

m M θ μ z z j J

μ x x n N μ

μ k K θ
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′
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k
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k k

+ + + =1

=1

=1 =1

(8)

The estimate of the directional distance function follows as:

R
⎧⎨⎩

⎫⎬⎭

D δ

T

x y z g g

x y δ g z δ g

ˆ( , , ; 0, , ) = sup ∈ :

( , + × , − × ) ∈ ˆ

δ
y z

y z

+

(9)

where δ measures the distance between an observed production plan
(country) and the production frontier or the benchmark defined by the
best practices. From (9), the distance function is computed with the
following linear program:
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(LP1)

The nonzero vector g g(0, , )y z suggested by Chung et al. (1997) is
intended to maximize desirable outputs and to minimize undesirable
outputs simultaneously. We employ the direction g g y z(0, , ) = (0, , )y z
to interpret increase or decrease in percentage of the observed output
vectors.

The derivation of shadow prices ωy and ωz comes from the dual of
LP1. Kuosmanen and Matin (2011) develop the dual formulation of
LP1 to derive the shadow prices of bad outputs:
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Fig. 1. Shadow price of undesirable output.
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Fig. 2. Evolution of shadow prices of undesirable output.
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(LP2)

In LP2, the objective function is to minimize the profit inefficiency
of the evaluated country (k′) by minimizing the difference between
optimal shadow profit ϕ and the shadow profit for k′ derived from the
best shadow prices and observed inputs and outputs
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=1 =1 =1 (Berre et al., 2013). However,
LP2 presents a slight variation compared to original Kuosmanen's
model in which the shadow prices of bad outputs are unconstrained,
allowing negative and positive values. Consequently, bad outputs are
allowed to involve benefits or costs in production activity that could
generate ambiguous economic signals. We therefore change the equal-
ity sign to inequality (≤) in the second constraint of LP1, meaning that
bad outputs can only produce costs (negative revenues).

A methodological point deserves discussion at this stage. It is well
known that when linear programs are degenerate, several shadow
prices are obtained and multiple solutions exist. This is generally a
problem because we cannot decide easily which solution must be kept.
Our approach, developed in the next section, circumvents this obstacle
through a sub-sampling approach. While a large number of replications
are computed, we can expect that the average shadow prices calculated
from their empirical distributions are representative.

2.3. Estimation approach: a robust DEA model

The directional distance function defined in (9) makes it possible to
evaluate gaps between the observed production plan and the relevant
production frontier defined by best practices. As the true frontier is
unknown, this distance function in a general multi-output, multi-input
framework is gauged through LP1 or LP2. Owing to their non-
parametric nature, these linear programs permit the avoidance of
eventual bias effects on efficiency scores and shadow prices resulting
from the arbitrary choice of the functional forms of technology
necessary for econometric methods. However, this enveloping techni-
que has a major drawback: it is difficult to incorporate statistical noise
into the empirical estimations. Therefore, estimated shadow prices may
be significantly influenced by potential outliers belonging to the
production set. This issue can be resolved through successive sub-
sampling frontier estimations rather than only one traditional full
frontier. Consequently, in our empirical analysis, the presence of
potential outliers is taken into account by applying an estimation
strategy proposed by Kneip et al. (2008) and Cazals et al. (2002), from
which consistent estimators can be derived. More precisely, partial
frontiers are constructed from a large number of Monte-Carlo replica-
tions (b B= 1, …, ), by selecting different random sub-samples of size I
(I K∈ ) with replacement and based on the initial observed sample.
Their corresponding production sets are now defined as:
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This leads to define the directional distance function relative to each
sub-sample (b) as:
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Finally, robust values of the shadow prices of inputs and good and
bad outputs are obtained from their empirical distributions as:

π
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This robust frontier approach is characterized by the number of
replications (B) and the size (I) of the sub-samples. The number of the
Monte-Carlo replications has to be large enough to check the sensitivity
of the final results. If the sub-sample size reaches infinity, one gets back
to the shadow prices of LP2 because each country of the entire sample
has a high probability of selection into the sub-technology. By contrast,
with too small values for I, the referent production set might be
inappropriate. As a result, through a relevant choice between these two
parameters, the robust frontier approach implies a trade-off between a
pertinent definition of the technology and a control of the outlier bias
effects.

3. Data and results

3.1. Data

In order to estimate global carbon shadow prices, we try to
integrate as large a number as possible of country samples from all
over the world. Our data covers 119 countries in 12 groups for the
period from 1990 to 2011: 20 countries from Africa (Angola, Benin,
Botswana, Cameroon, Côte d′Ivoire, Democratic Republic of the Congo,
Ethiopia, Gabon, Ghana, Kenya, Morocco, Mozambique, Nigeria,
Republic of the Congo, Senegal, Sudan, Togo, Tunisia, Zambia, and
Zimbabwe), 10 countries from Asia (Bangladesh, Brunei Darussalam,
Malaysia, Mongolia, Nepal, Pakistan, Philippines, Singapore, Sri
Lanka, and Thailand), 4 countries from the BRI(C)S (Brazil, India,
Russian Federation, and South Africa), 5 countries from CIVET
(Colombia, Egypt, Indonesia, Turkey, and Viet Nam), 11 countries
from the Middle East (Bahrain, Islamic Republic of Iran, Iraq, Jordan,
Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syrian Arab Republic,
and Yemen), 14 countries from the Non-OECD Americas (Argentina,
Bolivia, Costa Rica, Dominican Republic, Ecuador, El Salvador,
Guatemala, Honduras, Jamaica, Panama, Peru, Trinidad and Tobago,
Uruguay, and Venezuela), 21 countries from Non-OECD Europe and
Eurasia (Albania, Armenia, Azerbaijan, Belarus, Bosnia and
Herzegovina, Bulgaria, Croatia, Cyprus, Georgia, Kazakhstan,
Kyrgyzstan, Latvia, Lithuania, Malta, Republic of Moldova, Romania,
Serbia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan), 3 coun-
tries from the OECD Americas (Canada, Chile, and Mexico), 5 countries
from OECD Asia Oceania (Australia, Israel, Japan, New Zealand, and
Republic of Korea), 24 countries from OECD Europe (Austria, Belgium,
Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway,
Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland, and
the United Kingdom), and the two biggest carbon emitters, China, and
the United States of America (USA), respectively.

We use two inputs, one desirable output, and one undesirable
output: capital stock, labor force, real GDP, and carbon dioxide
emissions, respectively. Capital stock is measured using the perpetual
inventory method at current purchasing power parities in 2005 US
million dollars. The labor force is measured as number of persons
employed, in millions. Real GDP is measured as output-side at current
purchasing power parities in 2005 US million dollars. Carbon emis-
sions are based on sectoral approach in million tons. The first three are
taken from the Penn World Table 8.1 (Feenstra et al., 2015) and the
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last from fuel combustion highlights (International Energy Agency,
2014).

Table 1 shows the average growth rates of inputs and outputs.
China, the Middle East, CIVET, and Asia have the top four growth rates
of capital stock (all higher than 6%), possibly because of their proactive
investment policies and good financing environment. We note that a
negative growth in labor force appears only in Non-OECD Europe and
Eurasia (−0.34%) and that the global trend is increasing, at 1.43%. The
growth rates of real GDP in the Middle East, China, and Africa, the
three highest, respectively, are all above 5%. China has the highest
growth rate of carbon emissions (5.91%) and has been the largest
emitter, rather than the USA, since 2008. Although the USA has a high
level of carbon emissions, it is increasing at only 0.6%. Europe has
negative growth in carbon emissions (−0.15%) thanks to effective and
efficient environmental policies. We also notice that Non-OECD
Europe and Eurasia has a negative trend in carbon emissions
(−1.78%), reflecting the economic downturn after the collapse of the
former Soviet Union.

3.2. Empirical results

Because we may have introduced outliers into production technol-
ogy owing to the disparate scales of national economies and carbon
emissions among countries, a robust frontier approach is implemented.
We simulate B = 1000 replications with a sub-sample size I = 90 out of
the 119 countries in the initial sample. The robust shadow prices are
computed by the mean values of the 1000 replications in the first stage.

In Fig. 3, the evolution in logarithm terms of the carbon shadow
price at a worldwide level is measured by the average on the 12 groups.
The carbon shadow price is significantly increasing, at an annual rate of
2.24% (t-value = 6.81). This first result is in line with Table 1 which
clearly shows growth in inputs, GDP and CO2 but with a variation of
real GDP (3.69%) around twice as high as that for CO2 (2.02%).
Following Fig. 2, even if carbon emissions are still growing, technol-
ogies employed by countries are more and more performant in terms of
GDP per unit of CO2. This can be interpreted from the increase in
carbon shadow price. The price of the latter is evaluated at around
1213 US dollars per ton in 1990 and experiences a steady fifteen-year
growth between 1991 and 2005 to around 2191 US dollars per ton in
2005. A significant decrease in the carbon shadow price is observed
between 2005 and 2009, followed by a substantial rise for 2009–2011;
its mean value is around 2845 US dollars per ton in 2011.

The kernel densities of carbon shadow prices are plotted in Fig. 4.
In most regions, carbon shadow prices are distributed around 600 US
dollars per ton in 1990 and 2400 US dollars per ton in 2011. The right
side shift of the kernel density peaks between these two periods
confirms the positive growth for carbon shadow prices.
Simultaneously, their distribution is significantly more dispersed.

For a specific group of countries, the regional carbon shadow prices
show clustering characteristics. In Fig. 5, three groups of carbon shadow
prices can be easily identified at the beginning of the sample period. The
first group includes Africa, Asia, and the Non-OECD Americas, presenting
the highest carbon shadow prices. The second group contains China and
the USA, which record the lowest carbon shadow prices. These levels
indicate that their marginal abatement costs of carbon emission are very
low. The third group contains the rest of the regions, with shadow prices
between the first and the second groups' levels.

We find that the three groups evolve into five new bunches of
countries at the end of the sample period. First, Africa still has the
highest carbon shadow prices. The new second group is composed of
Asia, the Non-OECD Americas, and Non-OECD Europe and Eurasia.
Their carbon shadow prices are just below the African level. The third
group gathers OECD Europe, the Middle East, and CIVET. These three
groups have relatively high carbon shadow prices and are also countries
with low pollution levels and therefore have less impact on global
warming. The rest of the regions except China comprises the fourth

group. The fourth group and China dominate the lowest carbon shadow
prices.

We note that the carbon shadow prices of the BRI(C)S, OECD Asia
Oceania, and the OECD Americas tend to be of a similar level while OECD
Europe is detached from the other OECD groups during this evolution.
The growth of carbon shadow prices in OECD Europe indicates that
effective and efficient environmental policies has been carried out.

On the whole, developed countries have lower carbon shadow
prices, developing regions show higher carbon marginal abatement
costs, and BRICS countries have a relatively low opportunity cost of
carbon abatement. This result is consistent with Maradan and Vassiliev
(2005), who point out that the marginal carbon abatement cost is
generally higher in developing countries than in developed ones even if
carbon shadow prices in some developing countries are lower than
those in high-income countries.

The growth rates of carbon shadow prices for each region are
displayed in Table 2. Most of the observed regions reveal significantly
increasing trends in carbon shadow prices while the BRICS countries
record negative growths. These results can be summarized as follows:

1) increasing trends in carbon shadow prices indicate that countries
pay more attention to pollution and adopt more environmentally
friendly practices with higher ratios of GDP on CO2;

2) favored emerging economies show rapid economic development,
and their economic growth is essentially dependent on high energy
consumption, implying low levels of GDP per unit of CO2; and

3) shadow price distributions show substantial disparities among
countries.

As shown in Fig. 6, one can observe a sigma convergence of carbon
shadow prices over the period 1990–2007. The decline of variation
coefficient is around −3.6% per year and is statistically significant (t-
value = −14.43). Conversely, a sigma divergence is detected between 2008
and 2011. This phenomenon may be correlated with the global financial
crisis triggered in the USA. Woo et al. (2015) argue that environmental
efficiency is being affected by the global financial crisis. Our results show
that this crisis may potentially affect carbon shadow prices.

Finally, in order to examine the impact of the Kyoto Protocol on the
carbon shadow prices, we conduct a regression analysis. Historically,
the Kyoto Protocol was adopted at the third session of the conference of
the parties (COP 3) in 1997. It was open for signature from 1998 to
1999 and received 84 signatures at that time, but 191 states are now
party to it.1 The effect of the Kyoto Protocol (KP) is tested in a fixed
effect panel model. According to the date of entry into force, a dummy

Table 1
Average growth rates of inputs and outputs 1990–2011.

Regions Capital
stock

Labor
force

Real
GDP

CO2

Africa 4.95% 2.68% 5.65% 3.28%
Asia 6.28% 2.26% 4.18% 4.62%
BRI(C)S 2.78% 1.73% 3.95% 1.43%
CIVET 7.24% 1.77% 3.85% 4.62%
Middle East 7.61% 3.68% 8.49% 4.83%
Non-OECD Americas 5.16% 2.05% 4.61% 3.17%
Non-OECD Europe and

Eurasia
2.03% −0.34% 2.44% −1.78%

OECD Americas 3.20% 1.98% 3.15% 1.78%
OECD Asia Oceania 4.05% 0.41% 2.03% 1.52%
OECD Europe 3.73% 0.75% 2.91% −0.15%
China 11.05% 1.00% 6.72% 5.91%
USA 3.73% 0.93% 2.72% 0.60%
Total 4.68% 1.43% 3.69% 2.02%

1 Sourced from the United Nations Framework Convention on Climate Change: http://
unfccc.int/kyoto_protocol/status_of_ratification/items/2613.php.
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variable is created for each country and year (cf. Appendix). We add
several control variables to the regression equation: the ratio of GDP to
carbon emissions (GDP/CO2), capital stock per capita (K/L) which
captures the capital intensity and a common trend (T and T2)
introducing an autonomous shift of carbon shadow prices over time.
The country fixed effects are denoted by αi while ε is the usual error
term (cf. Eq. (13)). Consistent with the robust approach we used to
compute shadow prices, our estimation strategy is to run one regres-
sion per sub-sampling replication and to build confidence intervals for
parameters of interest from the empirical distribution of the estima-
tors. The within or LSDV (least square with dummy variables)
regression model is defined by Eq. (13), and the results are presented
in Table 3 and Fig. 7.

CSP α β Dummy KP β CO GDP β K L β T

β T ε

ln ( ) = + ( ) + ( 2/ ) + ( / ) +

+ ² +
it i it it it

it

1 2 3 4

5 (13)

According to our findings, we conclude that the implementation of
the Kyoto Protocol has not a very effective impact on the evolution of
carbon shadow prices. The kernel density of β1 displayed in Fig. 7
shows that we cannot reject the finding that zero belongs to this

distribution at the 5% level. Therefore, we have to conclude that the
Kyoto Protocol did not significantly affect the pollution regulations of
engaged states. This emphasizes that further cooperation and efforts at
carbon reduction among countries, such as the Copenhagen Accord of
2009 and the Paris climate conference of 2015, were necessary.
However, we detect significant positive effect for GDP/CO2 and K/L
on carbon shadow prices β β( , > 0)2 3 . Finally, carbon shadow prices
have increased over time β( > 0)4 denoting that most economies might
be more and more concerning with green development.

4. Conclusions and policy implications

Global warming and carbon pricing were the core issues of the last
conference of the parties (COP 21) in Paris in 2015. Most states
support the idea of carbon pricing to bring down emissions or at least
control the CO2 expansion. A remaining question is the best way that
governments can price carbon emissions. Currently, two main types of
mechanism can be used: emissions-trading systems, which essentially
fix the quota for emissions, leading to an ex-post market price for
carbon, and taxes that directly set a price on carbon without constrain-
ing ex-ante the volume of emissions. At the moment, given the
difficulty of fixing a carbon price, governments favor the first option.

Our analysis is more in line with the second mechanism and could
help policy makers to evaluate levels of carbon pricing among different
countries and to fix relevant carbon taxes. Through a non-parametric
robust frontier, we estimate worldwide carbon shadow prices, incor-
porating desirable and undesirable outputs, for a sample of 119
countries. According to our empirical results, the carbon shadow price
is increasing at a rate of 2.24% per annum, reaching 2845 US dollar per
ton in 2011, which suggests that carbon abatement may become
increasingly challenging at the worldwide level. However, significant
disparities are observed among groups of countries and over time. A
significant sigma convergence of carbon shadow prices is observed
among regions between 1990 and 2007, while a divergence is detected
over the period 2007–2011. This means that economic fluctuations and
shocks may affect carbon shadow prices. Furthermore, carbon shadow
price may be also interpreted as marginal abatement cost which could
be used as a criterion for carbon dioxide emissions allocation among
countries or regions (Zhou and Wang, 2016). In the further work, our
research may help to discover this abatement cost criterion for sharing
emission reduction burdens.

CSP: Carbon shadow price ($/ton) 
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Fig. 3. Shadow prices of carbon emissions at worldwide level (in logarithmic terms). CSP: Carbon shadow price ($/ton).

Fig. 4. Kernel density of carbon shadow prices.
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Table 2
Average growth rates of carbon shadow prices 1990–2011.

Regions Coefficient t-value

Africa 1.00% 1.69
Asia 0.79% 2.65
BRI(C)S −0.97% −1.01
CIVET 5.22% 12.55
Middle East 2.28% 3.70
Non-OECD Americas 3.10% 6.80
Non-OECD Europe and Eurasia 3.56% 2.58
OECD Americas 0.74% 0.76
OECD Asia Oceania 4.43% 4.25
OECD Europe 7.01% 14.97
China −4.81% −5.03
USA 2.31% 3.05
Total 2.24% 6.81
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Fig. 6. Variation coefficient of shadow prices.

Table 3
Estimates of the Kyoto Protocol in Eq. (13).

Coefficient Mean
estimation

Lower
bound
(2.5%)

Upper
bound
(97.5%)

Significance at
5% levela

β1 −0,072 −0,421 0,282 No

β2 0,527 0,284 0,770 Yes

β3 0,282 0,106 0,480 Yes

β4 0,076 0,023 0,133 Yes

β5 −0,003 −0,006 0,001 No

a A coefficient is significantly different from 0 if the confidence interval does not
include 0.
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In this paper, we conclude that the Kyoto Protocol has had no
significant impact on carbon shadow prices. Therefore, countries need
to keep engaging in Kyoto resolutions. A new agreement was adopted at
the Paris climate conference, which included more countries and
ambitious targets. While the necessity of carbon pricing is more and
more commonly shared among parties, the main question relates to the
uniqueness of the CO2 tax. Our main conclusion suggests that unique
carbon pricing for countries with different levels of economic develop-
ment and pollution may be unfair or unreasonable. Carbon taxes

should be settled according to the respective social capabilities of
states.
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Appendix. Implementation dates of the Kyoto Protocol

Country Entry into force Country Entry into force Country Entry into force

ALBANIA 30-Jun-05 GEORGIA 16-Feb-05 PERU 16-Feb-05
ANGOLA 6-Aug-07 GERMANY 16-Feb-05 PHILIPPINES 16-Feb-05
ARGENTINA 16-Feb-05 GHANA 16-Feb-05 POLAND 16-Feb-05
ARMENIA 16-Feb-05 GREECE 16-Feb-05 PORTUGAL 16-Feb-05
AUSTRALIA 11-Mar-08 GUATEMALA 16-Feb-05 QATAR 11-Apr-05
AUSTRIA 16-Feb-05 HONDURAS 16-Feb-05 R. KOREA 16-Feb-05
AZERBAIJAN 16-Feb-05 HUNGARY 16-Feb-05 R. MOLDOVA 16-Feb-05
BAHRAIN 1-May-06 ICELAND 16-Feb-05 ROMANIA 16-Feb-05
BANGLADESH 16-Feb-05 INDIA 16-Feb-05 RUSSIAN 16-Feb-05
BELARUS 24-Nov-05 INDONESIA 3-Mar-05 SAUDI ARABIA 1-May-05
BELGIUM 16-Feb-05 IRAN 20-Dec-05 SENEGAL 16-Feb-05
BENIN 16-Feb-05 IRAQ 26-Oct-09 SERBIA 17-Jan-08
BOLIVIA 16-Feb-05 IRELAND 16-Feb-05 SINGAPORE 11-Jul-06
BOSNIA & H. 15-Jul-07 ISRAEL 16-Feb-05 SLOVAKIA 16-Feb-05
BOTSWANA 16-Feb-05 ITALY 16-Feb-05 SLOVENIA 16-Feb-05
BRAZIL 16-Feb-05 JAMAICA 16-Feb-05 SOUTH AFRICA 16-Feb-05
BRUNEI D. 18-Nov-09 JAPAN 16-Feb-05 SPAIN 16-Feb-05
BULGARIA 16-Feb-05 JORDAN 16-Feb-05 SRI LANKA 16-Feb-05
CAMEROON 16-Feb-05 KAZAKHSTAN 17-Sep-09 SUDAN 16-Feb-05

Fig. 7. Kernel density of coefficients in estimation.
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CANADA 16-Feb-05 KENYA 26-May-05 SWEDEN 16-Feb-05
CHILE 16-Feb-05 KUWAIT 9-Jun-05 SWITZERLAND 16-Feb-05
CHINA 16-Feb-05 KYRGYZSTAN 16-Feb-05 SYRIAN A. R. 27-Apr-06
COLOMBIA 16-Feb-05 LATVIA 16-Feb-05 TAJIKISTAN 29-Mar-09
CONGO 13-May-07 LEBANON 11-Feb-07 THAILAND 16-Feb-05
COSTA RICA 16-Feb-05 LITHUANIA 16-Feb-05 TOGO 16-Feb-05
COTE D′IVOIRE 22-Jul-07 LUXEMBOURG 16-Feb-05 TRINIDAD & T. 16-Feb-05
CROATIA 28-Aug-07 MALAYSIA 16-Feb-05 TUNISIA 16-Feb-05
CYPRUS 16-Feb-05 MALTA 16-Feb-05 TURKEY 26-Aug-09
CZECH R. 16-Feb-05 MEXICO 16-Feb-05 TURKMENISTAN 16-Feb-05
D. R. CONGO 21-Jun-05 MONGOLIA 16-Feb-05 UKRAINE 16-Feb-05
DENMARK 16-Feb-05 MOROCCO 16-Feb-05 UK 16-Feb-05
DOMINICAN R. 16-Feb-05 MOZAMBIQUE 18-Apr-05 USA None
ECUADOR 16-Feb-05 NEPAL 15-Dec-05 URUGUAY 16-Feb-05
EGYPT 12-Apr-05 NETHERLANDS 16-Feb-05 UZBEKISTAN 16-Feb-05
EL SALVADOR 16-Feb-05 NEW ZEALAND 16-Feb-05 VENEZUELA 19-May-05
ESTONIA 16-Feb-05 NIGERIA 10-Mar-05 VIET NAM 16-Feb-05
ETHIOPIA 13-Jul-05 NORWAY 16-Feb-05 YEMEN 16-Feb-05
FINLAND 16-Feb-05 OMAN 19-Apr-05 ZAMBIA 5-Oct-06
FRANCE 16-Feb-05 PAKISTAN 11-Apr-05 ZIMBABWE 28-Sep-09
GABON 12-Mar-07 PANAMA 16-Feb-05

Sourced from the United Nations Framework Convention on Climate Change.

References

Athanassopoulos, A.D., Thanassoulis, E., 1995. Separating market efficiency from
profitability and its implications for planning. J. Oper. Res. Soc. 46, 20–34.

Berre, D., Boussemart, J.-P., Leleu, H., Tillard, E., 2013. Economic value of greenhouse
gases and nitrogen surpluses: society vs farmers' valuation. Eur. J. Oper. Res. 226,
325–331.

Berre, D., Blancard, S., Boussemart, J.P., Leleu, H., Tillard, E., 2014. Finding the right
compromise between productivity and environmental efficiency on high input
tropical dairy farms: a case study. J. Environ. Manag. 146, 235–244.

Cazals, C., Florens, F., Simar, L., 2002. Nonparametric frontier estimation: a robust
approach. J. Econ. 106, 1–25.

Chung, Y.H., Färe, R., Grosskopf, S., 1997. Productivity and undesirable outputs: a
directional distance function approach. J. Environ. Manag. 51, 229–240.

Färe, R., Grosskopf, S., 2003. Non-parametric productivity analysis with undesirable
outputs: comment. Am. J. Agric. Econ. 85 (4), 1070–1074.

Färe, R., Grosskopf, S., Lovell, C.A.K., Pasurka, C., 1989. Multilateral productivity
comparisons when some outputs are undesirable: a nonparametric approach. Rev.
Econ. Stat. 7 (1), 90–98.

Färe, R., Grosskopf, S., Lovell, C.A., Noh, D., Weber, W.L., 2005. Characteristics of a
polluting technology: theory and practice. J. Econ. 126, 469–492.

Feenstra, R.C., Robert, I., Marcel, P.T., 2015. The next generation of the Penn World
table. Forthcom. Am. Econ. Rev., Available for download at: 〈www.ggdc.net/pwt〉.

He, F., Zhang, Q., Lei, J., Fu, W., Xu, X., 2013. Energy efficiency and productivity change
of China's iron and steel industry: accounting for undesirable outputs. Energy Policy
54, 204–213.

International Energy Agency, 2014. CO2 Emissions from Fuel Combustion, Paris.
Kneip, A., Simar, L., Wilson, P.W., 2008. Asymptotics and consistent bootstraps for DEA

estimators in non-parametric frontier models. Econom. Theory 24, 1663–1697.
Kossoy, A., Peszko, G., Oppermann, K., Prytz, N., Gilbert, A., Klein, N., Lam, L., Wong, L.,

2015. Carbon Pricing Watch, World Bank. 〈https://dx.doi.org/10.1596/978-1-4648-
0268-3〉.

Kuosmanen, T., 2005. Weak disposability in nonparametric production analysis with
undesirable outputs. Am. J. Agric. Econ. 87 (4), 1077–1082.

Kuosmanen, T., Matin, R.K., 2011. Duality of weakly disposable technology. Omega 87
(4), 504–512.

Lee, C.Y., Zhou, P., 2015. Directional shadow price estimation of CO2, SO2 and NOx in
the United States coal power industry 1990–2010. Energy Econ. 51, 493–502.

Leleu, H., 2013. Shadow pricing of undesirable outputs in nonparametric analysis. Eur.
J. Oper. Res. 231, 474–480.

Lovell, C.A.K., Pastor, J.T., Turner, J.A., 1995. Measuring macroeconomic performance
in the OECD: a comparison of European and non-European countries. Eur. J. Oper.
Res. 87, 507–518.

Mandal, S.K., 2010. Do undesirable output and environmental regulation matter in
energy efficiency analysis? Evidence from Indian cement industry. Energy Policy 38
(10), 6076–6083.

Maradan, D., Vassiliev, A., 2005. Marginal costs of carbon dioxide abatement: empirical
evidence from cross-country analysis. Swiss J. Econ. Stat. 141, 377–410.

Mekaroonreung, M., Johnson, A., 2009. Estimating efficiency of US oil refineries under
varying assumptions regarding disposability of bad outputs. Int. J. Energy Sect.
Manag. 4, 356–398.

Molinos-Senante, M., Hanley, N., Sala-Garrido, R., 2015. Measuring the CO2 shadow
price for wastewater treatment: a directional distance function approach. Appl.

Energy 144, (241–24).
Murty, S., Russell, R.R., Levkoff, S.B., 2012. On modeling pollution-generating

technologies. J. Environ. Econ. Manag. 64, 117–135.
Murty, S., Russell, R.R., 2002. On modeling pollution generating technologies. In:

Discussion Papers Series. Riverside: Department of Economics, University of
California, pp. 1–18.

Oggioni, G., Riccardi, R., Toninelli, R., 2011. Eco-efficiency of the world cement industry:
a data envelopment analysis. Energy Policy 39 (5), 2842–2854.

Oude-Lansink, A., Wall, A., 2014. Frontier models for evaluating environmental
efficiency: an overview. Econ. Bus. Lett. 3 (1), 43–50.

Sahoo, B.K., Luptacik, M., Mahlberg, B., 2011. Alternative measures of environmental
technology structure in DEA: an application. Eur. J. Oper. Res. 215, 750–762.

Seiford, L.M., Zhu, J., 2002. Modelling undesirable outputs in efficiency evaluation. Eur.
J. Oper. Res. 142, 16–20.

Shephard, R.W., 1953. Cost and Production Functions. Princeton University Press,
Princeton.

Shephard, R.W., 1970. Theory of Cost and Production Functions. Princeton University
Press, Princeton.

Shephard, R.W., Färe, R., 1974. The law of diminishing returns. Z. Natl. Ökonomie 34,
60–90.

Song, M., An, Q., Zhang, W., Wang, Z., Wu, J., 2012. Environmental efficiency evaluation
based on data envelopment analysis: a review. Renew. Sustain. Energy Rev. 16 (7),
4465–4469.

Wei, C., Löschel, A., Liu, B., 2013. An empirical analysis of the CO2 shadow price in
Chinese thermal power enterprises. Energy Econ. 40, 22–31.

Woo, C., Chung, Y., Chun, D., Seo, H., Hong, S., 2015. The static and dynamic
environmental efficiency of renewable energy: a Malmquist index analysis of OECD
countries. Renew. Sustain. Energy Rev. 47, 367–376.

World Bank, 2016. State and Trends of Carbon Pricing, Washington, DC. 〈https://
openknowledge.worldbank.org/handle/10986/25160〉.

Wu, F., Fan, L.W., Zhou, P., Zhou, D.Q., 2012. Industrial energy efficiency with CO2

emissions in China: a nonparametric analysis. Energy Policy 49, 164–172.
Wu, J., An, Q., Xiong, B., Chen, Y., 2013. Congestion measurement for regional

industries in China: a data envelopment analysis approach with undesirable outputs.
Energy Policy 57, 7–13.

Yang, H., Pollitt, M., 2010. The necessity of distinguishing weak and strong disposability
among undesirable outputs in DEA: environmental performance of Chinese coal-
fired power plants. Energy Policy 38 (8), 4440–4444.

Yörük, B.K., Zaim, O., 2005. Productivity growth in OECD countries: a comparison with
Malmquist indices. J. Comp. Econ. 33 (2), 401–420.

Zhang, N., Choi, Y., 2014. A note on the evolution of directional distance function and its
development in energy and environmental studies 1997–2013. Renew. Sustain.
Energy Rev. 33, 50–59.

Zhou, P., Wang, M., 2016. Carbon dioxide emissions allocation: a review. Ecol. Econ.
125, 47–59.

Zhou, P., Ang, B.W., Poh, K.L., 2008. A survey of data envelopment analysis in energy
and environmental studies. Eur. J. Oper. Res. 189, 1–18.

Zhou, P., Zhou, X., Fan, L.W., 2014. On estimating shadow prices of undesirable outputs
with efficiency models: a literature review. Appl. Energy 130, 799–806.

Zhou, X., Fan, L.W., Zhou, P., 2015. Marginal CO2 abatement costs: findings from
alternative shadow price estimates for Shanghai industrial sectors. Energy Policy 77,
109–117.

J.-P. Boussemart et al. Energy Policy 109 (2017) 288–296

296

http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref1
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref1
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref2
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref2
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref2
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref3
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref3
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref3
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref4
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref4
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref5
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref5
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref6
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref6
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref7
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref7
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref7
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref8
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref8
http://www.ggdc.net/pwt
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref10
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref10
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref10
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref11
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref11
https://dx.doi.org/10.1596/978-1-4648-0268-3
https://dx.doi.org/10.1596/978-1-4648-0268-3
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref12
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref12
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref13
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref13
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref14
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref14
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref15
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref15
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref16
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref16
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref16
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref17
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref17
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref17
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref18
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref18
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref19
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref19
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref19
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref20
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref20
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref20
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref21
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref21
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref22
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref22
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref23
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref23
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref24
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref24
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref25
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref25
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref26
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref26
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref27
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref27
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref28
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref28
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref29
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref29
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref29
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref30
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref30
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref31
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref31
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref31
https://openknowledge.worldbank.org/handle/10986/25160
https://openknowledge.worldbank.org/handle/10986/25160
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref32
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref32
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref33
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref33
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref33
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref34
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref34
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref34
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref35
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref35
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref36
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref36
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref36
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref37
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref37
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref38
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref38
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref39
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref39
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref40
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref40
http://refhub.elsevier.com/S0301-4215(17)30443-3/sbref40

	Worldwide carbon shadow prices during 1990–2011
	Introduction
	Methodology
	Background for estimating carbon shadow prices
	Model specification
	Estimation approach: a robust DEA model

	Data and results
	Data
	Empirical results

	Conclusions and policy implications
	Acknowledgements
	Implementation dates of the Kyoto Protocol
	References




