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Abstract

Smart metering in electricity markets offers an opportunity to explore more diverse
tariff structures. In this article a Genetic Algorithm (GA) is used to design Time of
Use tariffs that minimise the wholesale risk to the supplier in residential markets.
Residential demand and the System Marginal Price of Ireland’s Single Electricity
Market are simulated to estimate the wholesale risk associated with each tariff.

Keywords: Smart Grid tariff design, Genetic Algorithm, Stochastic Fitness
function.

1 Introduction

Yield Management (YM) in the telecommunications sector is described in [1]
as the application of information systems and pricing strategies to allocate
capacity to customers at a price and time that maximises revenue. In this
paper, we describe a variant of YM where the objective is to minimise risk
for the wholesale operator in setting the price for residential electricity in a
Smart Grid (SG).
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2 Electricity Market Operations

The Single Electricity Market (SEM) is the wholesale electricity market for
generators and suppliers in the island of Ireland. All electricity suppliers
participate in the market. Wholesale electricity prices are calculated in each
half hour based on bids submitted by generators. Each generator is dispatched
by the Market Operator so as to minimise prices and to meet market demand.
As each generator is dispatched, its bid affects the price. The generator with
the least competitive bid sets the price i.e., the marginal cost of power. For
this reason, electricity prices are referred to as the System Marginal Price
(SMP). SMP data for the SEM is available from the SEM Operator (SEMO).

A Smart Metering (SM) system combines an electronic meter with a com-
munication layer for sending consumption data to the network operator. The
Irish Commission for Energy Regulation (CER) conducted SM Customer Be-
haviour Trials (CBTs) [3] with a view to an SM rollout by 2019. Consumption
was recorded at half hourly granularity to align with the SEM.

2.1 Smart Grid Tariff Design Problem

Much of the research in the SM sphere focuses on the benefits to the elec-
tricity market as a whole - in particular demand side management and on
improved forecasting techniques to estimate that demand. We focus however
on minimising the risk specific to suppliers in the market. [2] give an account
of the financial risks faced by electricity suppliers. These include credit risk,
operational risk and also (wholesale) volume risk.

Suppliers enter into financial arrangements to fix the wholesale price of
power as shown in Fig.1. Typically this is in the form of a Contract for
Difference with a Generator. The supplier quantifies a forward price Hij for
expected demand fij where i is the day and j is the half hour within the
day. The combination of purchasing from the SEM pool and the financial
arrangement provides a hedge of the wholesale price for the supplier.

A single tariff unit rate is given by T =
∑

ij fijHij
∑

ij fij
+ M where M is the

margin applied. However, SM customers could be charged a Time of Use
(ToU) price Tij in time slot ij. In addition, the actual amount of electricity
used, aij, may differ from the forecast. Additional (excess) electricity must be
purchased (sold) from the SEM pool at the outturn SMP price Sij.
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Fig. 1. Hedge of forward electricity prices

2.2 Problem definition

Thus for the period of the contract the supplier will realize a Profit or Loss of

P (T ) =
∑

ij

(Tijaij −Hijfij + (fij − aij)Sij) (1)

Since the values of Sij and aij are stochastic, the Profit or Loss is also
stochastic. We define theWholesale Risk associated with a tariff T as: V ar(P (T )).

We wish to determine a ToU tariff that minimises wholesale risk:

min V ar(P (T )) (2)

3 Methodology

3.1 Tariff Structure

Let the set of n days of the contract period be I = {1 . . . n}. Let the set of
half hours in a day be J = {1 . . . 48}. We define χ := {{i, j} ∀i ∈ I, j ∈ J }
and a tariff T as a partition over χ with |T | ToU blocks Tb such that χ =⋃

b∈{1...|T |} Tb. Every tariff T is uniquely determined by a partition over χ so
we refer to both the tariff and the partition as T for brevity.

Although the flexibility of this set up is desirable, it leads to a large num-
ber of possible tariffs. As noted in [4], the number of partitions should not
overwhelm customers. The authors note the differences between ToU pricing
schemes and Dynamic (real-time) Pricing (DP). A weekday/weekend mech-
anism allows for separate prices to be applied on the weekend. A minimum
block size ensures a price applies for a tangible period of time. The maxi-
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mum number of blocks is specified for both I and J . We enforce contiguous
rectangular block structures on the ToU search space as follows:

(i) Redefine I as a set of week (or a weekday/weekend) blocks.

(ii) Partition I and J separately into contiguous blocks.

(iii) Combine the partitions of I and J into rectangular structures over χ.

The cent/kWh rate that applies for Tb can then be calculated as:

T̂b =

∑
{i,j}∈Tb

Hijfij∑
{i,j}∈Tb

fij
(3)

3.2 Solution approach: Genetic Algorithm

Due to the nonconvexity and stochastic nature of the search space, a meta-
heuristic approach was chosen to determine a tariff structure that minimises
wholesale risk. A Genetic Algorithm (GA) with a bespoke representation of
population individuals as well as custom crossover and mutation operators was
developed using Python and the SciPy “ecosystem” of packages e.g., NumPy.

The genome is of variable length with three components: 1) the boundary
points partitioning I, 2) the boundary points partitioning J and 3) boolean
variables showing the split between full week and weekend/weekday. The geno-
type is mapped to the phenotype through a function that takes the genome,
H and f and produces a cent/kWh rate for each half hour. A function to
create a random genome was written and used to initialize a population of
random tariffs.

3.2.1 Crossover and Mutation

Crossover is performed by swapping, with uniform probability, the first, second
or third components of two tariff representations. The remaining components
are then adjusted to fit around the new component of both tariff represen-
tations. Mutation is performed by performing crossover of the genome to be
mutated with a random genome.

3.2.2 Fitness Function - Simulation Model

The wholesale risk associated with each tariff T is determined by computing
V ar(P (T )), see Eq 1. This is the fitness of a tariff genome which is calculated
using a simulation model of customer demand and outturn SMP, see figure 2.
Recall both aij and Sij are stochastic. Computational complexity is a key
challenge when implementing this approach. The simulation model acts as
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the fitness function of the GA - for each member of a population (consisting of
thousands of tariffs) a single simulation of wholesale risk must be performed.
Each of these simulations themselves consist of thousands of simulations of
both customer demand aij and SMP Sij.

Fig. 2. The optimization approach: fitness function is a simulation model

3.2.3 Data - Demand and SMP distributions

The CER CBT data was used to model customer demand, [3]. Historical
data for the SMP was taken from the SEMO website, [6]. As noted in [2] a
price volume correlation is present in many electricity markets where higher
system demand tends to imply a higher system price. The inclusion of such a
phenomenon when modelling the SMP limits the data suitable for modelling
to the intersection of the CBT demand and SMP data sets. Therefore the
data between 14 July 2009 to 31 December 2010 were used.

Much work has been done to characterise electricity demand, see for exam-
ple [5]. Models for both an inter and intra day basis were created for demand
and SMP to capture the seasonal and diurnal patterns illustrated in figure 3.

A Fast Fourier Transform was applied to the inter day values to identify
the frequencies of any seasonal behaviour. Based on the prominent frequencies
dummy fourier variables were created and regressed against the daily data.
The residual of this regression were then modelled using an ARIMA approach.

The intra day values were then modelled by first scaling the 48 values
for each day. In the case of customer demand this was done by dividing
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Fig. 3. Aggregated Customer Demand showing seasonal and diurnal patterns

each value by the sum of the demand in that day while for the SMP the
average SMP price for the day was used. Note also that the price volume
correlation mentioned previously is included through a simple regression of
customer demand against the SMP. Each day was then treated as a vector
in a vector space of 48 dimensions and principal component analysis used to
reduce the dimensionality of the data sets. The first five components of the
intra day data for customer demand explained 92% of the variance. For the
SMP data, the first 5 components account for 49% of the variance.

Each principal component has an associated time series describing the
presence of that component in the intra day shape for each day. These time
series were modelled in a similar ARIMA fashion to the inter day data.

In order to reduce the computational complexity of the simulation model
demand response was excluded from modelling. However the inclusion of same
would be an important element of future work.

4 Results and Analysis

A portfolio of 10,000 customers was hypothesised with an average consumption
of 4,200 kWh per customer per annum. The term of the tariff is 1st of October
2009 to 31st March 2010 i.e. 6 months or 182 days. The revenue associated
with the energy component of the tariff (i.e. not transmission and distribution
charges) from such a venture is circa e1,250,000.

Four separate configurations of the GA were run with a fixed generation
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Configuration
Search Space

Size
Minimum
Found

Sq. Root of
Minimum
Found (e)

Average
Minimum of
Best Tariff

Sq. Root of
Average

Minimum (e)

Number of
Partitions in
best Tariff

1 147,355,998 3,656,041 1912 4,179,214 2,044 33

2 5,265,645 3,811,350 1952 4,349,316 2,085 25

3 2,713,260 3,774,253 1942 4,326,149 2,079 18

4 228,140 3,960,364 1990 4,439,781 2,106 15

Table 1
Summary of results.

size of 2,000 individuals. Each configuration varied the search space size by
adjusting the min and max number of partitions. In each case it was found
the results were dominated by a number of key features.

The resulting value of wholesale risk is itself a random variable since sim-
ulation was used. In every generation 2,000 simulations of equation 1 were
performed when calculating the wholesale risk of each tariff. This gave a rea-
sonable balance between the variance of calculated wholesale risk values and
model run-time given the computational resources available. However the
GA is always bias towards tariffs which experience an extreme calculation of
wholesale risk and an increase in the number of simulations would be required
to mitigate this effect. A summary of results can be seen in table 1.

The wholesale risk of a flat tariff (where one price applies at all times) was
calculated to be circa e3,100. The results in each configuration are circa 30%
less than this. Thus there would be a one third decrease in the risk to the
supplier which may be reflected in a smaller risk premium being added to the
tariff. The wholesale risk when compared to the total revenue of e1,250,000
is relatively small. However, it should be noted that residential electricity
demand is predictable unlike the SME or Industrial and Commercial sectors.

The improvement in the average population fitness between early genera-
tions is evidence that a GA is an effective tool for exploring the search space.
However, the generation fitness plateaus quite quickly causing the algorithm
to stop within 15 generations in all configurations. Further configurations at-
tempted to address this issue through refinement of parameters such as the
tournament selection size and the generation size. There is scope for further
exploration of the GA parameters, other configurations and increased process-
ing power. We note that the valleys of the search space are very big, many
tariffs may offer equivalent wholesale risk values and alternative optimisation
techniques could be considered.

Furthermore, table 1 shows similar solution quality is obtained with tariffs
that have a large number of ToU blocks and with those that have a small
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number. There is scope for the use of a fitness function incorporating a penalty
of sorts based on tariff complexity. In particular, if the search space when
considering wholesale risk alone is flat, this will provide a further avenue to
differentiate between tariffs.

5 Conclusions

This work presents a novel concept in two respects. First it asks a question
not covered by previous literature - can wholesale risk be reduced through
the ToU configuration of a tariff? Second, a bespoke GA is presented with a
custom representation, crossover function, mutation operator and stochastic
fitness function.

It has demonstrated that there are ToU configurations that reduce whole-
sale risk. The reduction can be circa 30% when compared to a tariff with no
ToU configuration based on the historical data modelled.

Given the likely flat landscape of the search space with tariffs of varying
complexity giving similar results further work will explore the least complex
tariff with the lowest value of wholesale risk by adding a penalty to the fitness
function based on the complexity of the tariff.
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