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Oil produced in plant seeds is utilized as a major source of

calories for human nutrition, as feedstocks for non-food uses

such as soaps and polymers, and can serve as a high-energy

biofuel. The biochemical pathways leading to oil (triacylglycerol)

synthesis in seeds involve multiple subcellular organelles,

requiring extensive lipid trafficking. Phosphatidylcholine plays a

central role in these pathways as a substrate for acyl

modifications and likely as a carrier for the trafficking of acyl

groups between organelles and membrane subdomains.

Although much has been clarified regarding the enzymes and

pathways responsible for acyl-group flux, there are still major

gaps in our understanding. These include the identity of several

key enzymes, how flux between alternative pathways is

controlled and the specialized cell biology leading to biogenesis

of oil bodies that store up to 80% of carbon in seeds.
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Introduction
Oils are the most energy-dense plant reserves, supplying

humans with much of the calories and essential fatty acids

required in our diet. Because they are composed of long

chain hydrocarbons, plant oils can also replace petroleum in

many applications, including as feedstocks for the chemical

industry and as biofuels. The majority of the plant oils we

consume are accumulated in seeds. World production from

oilseed crops was approximately 100 billion kg of oil in 2011

[1] with a value near US$120 billion [2]. Vegetable

oil consumption is expected to double by 2040 [3]. The

important uses, high value and growing demand are a major

reason why oil biosynthesis in seeds has been extensively
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studied. A recent review [4��] and website (aralip.plant-

biology.msu.edu) provide details on the very large number

of genes involved in Arabidopsis oil synthesis and lipid

metabolism.

Seed oil biosynthesis synthesis begins in the
plastid
Fatty acid (FA) synthesis is localized to plastids

(Figure 1a), whereas assembly of the TAG molecule

occurs outside the plastid and may be associated with

both the endoplasmic reticulum (ER) and the oil body

(Figure 1b,c) [5–7]. In most seeds, carbon is delivered to

FA synthesis via glycolysis with hexose and/or triose as

the predominant carbohydrate entering the plastid. How-

ever, green seeds can also use light to supply NADPH and

ATP, which allows a ‘bypass’ of glycolysis via ribulose-

1,5-bisphosphate carboxylase activity and pentose phos-

phate enzymes. This alternative pathway is more carbon

efficient, resulting in 20% more acetyl-CoA available for

oil synthesis, and also does not require reductant supply

from the oxidative pentose phosphate pathway [8�]. The

plastid FA synthesis pathway determines the chain length

(up to 18 carbons) and the level of saturated FAs in seed

oils. The first committed enzyme in the pathway is acetyl-

CoA carboxylase (ACCase). As in yeast, animals and

bacteria, plant ACCase is highly regulated and is a key

control point over the flux of carbon into FAs [9]. In

addition to control by phosphorylation, redox status and

PII interactions [10�], feedback on ACCase by 18:1-ACP

has recently been described [11��]. Assembly of FAs

occurs on acyl carrier protein (ACP) via a cycle of 4

reactions that elongate the acyl chain by 2 carbons each

cycle. After 7 cycles, the saturated 16 carbon acyl-ACP

can either be hydrolyzed by the FATB acyl-ACP thioes-

terase or further elongated by KASII to 18:0-ACP, which

is then desaturated to 18:1-ACP and hydrolyzed by the

FATA thioesterase [4��]. The resulting 16:0 and 18:1 free

acids are the main products of plastid FA synthesis, and

their relative proportions are determined by the activities

of FATA, FATB, 18:0-ACP desaturase (SAD) and KASII

(Figure 1a). Transgenics and mutants have demonstrated

that seed FA chain length and saturation can be altered by

manipulation of any of these four enzymes [12]. For

example, a dramatic demonstration of the control of chain

length is the production of 60% lauric acid (12:0) in

transgenic B. napus that expresses a FATB with speci-

ficity for this FA [13].

The transcription factor WRI1 [14] controls the expres-

sion of at least 15 enzymes including pyruvate dehydro-

genase, ACCase and members of the FA synthesis and

glycolytic pathways [15��]. Thus, WRI1 expression is
www.sciencedirect.com
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synthesis. Acyl transfer reactions are dashed lines. Green lines are de

novo TAG synthesis, blue lines are PC-derived DAG synthesis, orange

lines are acyl editing, and purple represents phospholipid:diacylglycerol

acyltransferase (PDAT). DAG(1) is de novo synthesized DAG and DAG(2)

is PC-derived DAG. Abbreviations: substrates are in bold: ACP, acyl

carrier protein; DAG, diacylglycerol; FFA, free fatty acid; G3P, glycerol-

3-phosphate; LPA, lyso-phosphatidic acid; LPC, lyso-

phosphatidylcholine; Mal, malonate; PA, phosphatidic acid; PC,

phosphatidylcholine; PUFA, polyunsaturated fatty acids; TAG,

triacylglycerol. Enzymatic reactions are in italics: ACCase, acetyl-CoA

carboxylase; CPT, CDP-choline:DAG cholinephosphotransferase;

DGAT, acyl-CoA:DAG acyltransferase; FAD, fatty acid desaturase; FAS,

fatty acid synthase; FATA, acyl-ACP thioesterase A; FATB, acyl-ACP

thioesterase B; GPAT, acyl-CoA:G3P acyltransferase; KASII, ketoacyl-

ACP synthase II; LACS, long chain acyl-CoA synthetase; LPAAT, acyl-

CoA:LPA acyltransferase; LPCAT, acyl-CoA:LPC acyltransferase; PAP,

PA phosphatase; PDCT, PC:DAG cholinephosphotransferase; PLC,
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pivotal in directing the carbon flux that enters the seed

toward the synthesis of FAs. Oil content is reduced to the

extent of 80% in wri1 mutants, and overexpression of

WRI1 increases maize embryo oil content by over 30%

and oil yield per hectare by over 20% [16�]. So far there is

no evidence that WRI1 controls expression of any of the

acyltransferases or other ‘downstream’ enzymes involved

in TAG assembly [81]. An intriguing observation is that

the temporal patterns of gene expression for the enzymes

of FA synthesis and for TAG assembly are very different

during seed development. There is a general lack of

understanding of the regulation of gene expression and

enzyme activity for these later steps in oil biosynthesis

[17�,18�].

How do acyl chains move from the plastid to
the ER?
After FA synthesis, the free FA products of the FATA/B

thioesterases are exported from the plastid. Although there

is evidence for a channeled pathway through the plastid

envelope [19] a major unknown is whether there are

specific transporters for this process. After export, it is

presumed that long-chain acyl-CoA synthetase (LACS)

on the outer plastid envelope forms the acyl-CoA that is

the substrate for glycerolipid assembly (Figure 1a,b). How-

ever, it is puzzling that mutants in LACS9, the major

plastid LACS, have no seed oil phenotype [20] suggesting

that other members of the LACS family may be able to

compensate [21]. Without more evidence, it cannot be

ruled out that another type of enzyme, or reaction may

activate FAs after their export from plastids. Regardless, it

is likely that esterification of newly synthesized FAs to PC

via the acyl-editing cycle can occur at the plastid envelope

via acyl-CoA:lysophosphatidylcholine acyltransferase

(LPCAT) [22] (Figure 1b). In this scenario we speculate

that PC may act as a carrier of FAs from plastids to the ER,

perhaps via direct connections between these organelles

[23]. Inter-membrane transport of lipids can occur much

more rapidly than diffusion through the cytosol via soluble

carriers, and thus may provide an efficient plastid-ER acyl

transfer mechanism. Recently, an ABC transporter has

been proposed to be involved in the delivery of FA to

the ER for oil synthesis [24]. However, both microarray and

RNAseq data indicate that this transporter’s expression in

seeds is much lower than other lipid-related ABC trans-

porters, and the radiolabeling evidence presented is uncer-

tain because incubations were performed in the dark and

without a supply of carbon. Thus, how this transporter

modifies seed oil biosynthesis remains to be determined.

Simple and complex pathways of TAG
assembly
The de novo assembly of TAG from glycerol-3-phosphate

and acyl-CoAs (also known as the Kennedy pathway)
phospholipase C; PLD, phospholipase D; SAD, Stearoyl-ACP

desaturase.
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involves only four enzymatic steps: first, two acylations

of G3P by sn-1 glycerol-3-phosphate acyltransferase

(GPAT) and lysophosphatidic acid acyltransferase

(LPAAT), followed by phosphatidic acid phosphatase

(PAP), and a third acylation by diacylglycerol acyltrans-

ferase (DGAT) (Figure 1c, green arrows). The pathway

was first characterized in animals over 50 years ago [25,26]

and soon after in plants [27]. Since that time biochemical,

molecular genetic and metabolic flux analyses of plants

have defined an additional more complex pathway in

which the membrane lipid phosphatidylcholine (PC) is

a central intermediate in the flux of FAs (Figure 1b) or

diacylglycerol (Figure 1c), or both substrates into TAG

[28]. The FA esterified to the sn-2 position of PC is the

major site of ER localized FA modification (e.g. desatura-

tion, hydroxylation, etc. [29,30]). Therefore, acyl fluxes

into and out of PC are crucial for the production of TAG

containing high levels of PC-modified FAs, such as the

polyunsaturated FAs (PUFA) that are essential for human

health [31]. The pathway of TAG synthesis appears to

differ between plant species ranging from just a simple

Kennedy pathway to a pathway where >90% of the FAs

within the seed fluxes through PC before incorporation

into TAG [28].

Genes involved in de novo triacylglycerol
assembly (Kennedy pathway)
Surprisingly, the sn-1 GPAT that initiates TAG assembly

is not yet certain, but it may be the ER localized ‘GPAT9’

in Arabidopsis [32]. GPAT9 is a homolog of mammalian

and yeast GPATs involved in TAG production [33,34].

Arabidopsis also expresses an eight-member GPAT

family (GPAT1-8) that is only found in land plants;

however at least five of these encode sn-2 acyltransferases

that are involved in synthesis of extracellular lipids (e.g.

cutin, suberin) and almost certainly do not participate in

membrane lipid or TAG synthesis [35]. Genes that

encode LPAAT, the second step in de novo TAG assem-

bly have been identified from several plants [36,37].

However, the isozyme(s) of PAP responsible for the

majority of de novo synthesized diacylglycerol (DAG)

(Figure 1c, DAG(1)) synthesis have yet to be identified.

Arabidopsis contains at least 11 genes annotated as poten-

tial PAPs (aralip.plantbiology.msu.edu). A double knock-

out of two genes (PAH1 and PAH2) only resulted in a 15%

reduction in seed FA levels [38] indicating other PAP

isozymes must also be contributing to TAG synthesis. For

the last step of the Kennedy pathway, plants possess

multiple unrelated DGAT enzymes, which appear to

have differential involvement during TAG accumulation

in oil producing tissues of different plants [7]. DGAT1

and DGAT2 are related to DGATs involved in TAG

synthesis in animals and fungi [7,39,40]. Genetic manip-

ulation of DGAT1 has demonstrated it to be the major

enzyme catalyzing TAG production in Arabidopsis [41–
43]. The function of DGAT2 in Arabidopsis remains

unclear [43] but in some plants such as Ricinus communis
Current Opinion in Plant Biology 2013, 16:358–364 
and Vernicia fordii, DGAT2 is more highly expressed than

DGAT1 during seed maturation and DGAT2 appears to

be the enzyme responsible for most TAG synthesis

[44,45]. A distinct DGAT enzyme from Euonymus alatus
is related to wax synthases, and utilizes acetyl-CoA rather

than long chain acyl-CoAs to produce uniquely structured

TAGs with an acetyl-group at the sn-3 hydroxyl of TAG

[46]. Other enzymes with DGAT activity include a

soluble DGAT3 first identified in developing peanut

cotyledons [47] and that may have a role in TAG recycling

within germinating Arabidopsis seedlings [48]. Two other

Arabidopsis enzymes with DGAT activity have recently

been identified but also do not appear to be involved in

seed oil synthesis [49,50].

The central role of phosphatidylcholine in TAG
synthesis
Three mechanisms allow the flux of FA through PC for

eventual TAG synthesis. First, ‘‘Acyl editing’’ (Figure 1b,

orange arrows) [51–53]. Second, direct transfer of a FA

from PC to DAG producing TAG by the phospholipid:-

diacylglycerol acyltransferase (PDAT; Figure 1c, purple

arrows) [54]. Third, utilization of a PC-derived DAG as

the substrate for TAG synthesis (Figure 1c, DAG(2), blue

arrows) [28].

Acyl editing mechanisms

Acyl editing is a PC-deacylation and lysophosphatidyl-

choline (LPC)-reacylation cycle which exchanges the FA

on PC with the acyl-CoA pool without net PC synthesis or

degradation (Figure 1b, orange arrows). The acyl editing

cycle allows: first, nascent FA from the plastid to be

incorporated into PC while second, FAs that have been

desaturated or otherwise modified on PC are released into

the acyl-CoA pool where they can participate in the

Kennedy pathway or other reactions. In vitro and in vivo
metabolic analyses of acyl fluxes in/out of PC in multiple

plant tissues [28,53] suggest that acyl editing may involve

both the forward and reverse actions of LPCAT [55]. This

mechanism is supported in planta by the inability of the

Arabidopsis lpcat1 lpcat2 double mutant to incorporate

newly synthesized FA into PC through acyl editing in

seeds [56��]. These results indicate that LPCATs are

involved in at least the LPC-reacylation half of the acyl

editing cycle. Other broad specificity lysophospholipid

acyltransferases, such as lyso-phosphatidylethanolamine

acyltransferases [57], cannot compensate for the loss of

LPCAT acyl editing in Arabidopsis seeds [56��]. The

molecular identity of the enzyme(s) responsible for the

PC-deacylation half of the acyl editing cycle is a key

unknown, and may involve the reverse activity of LPCAT

[55,56��] and/or a phospholipase A [58].

A second recent analysis of the lpcat1 lpcat2 double

mutant indicated increased total PC synthesis and degra-

dation without a change in steady-state PC levels but with

an increase in steady state levels of LPC [59]. The acyl
www.sciencedirect.com
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editing cycle does not require net PC synthesis, thus the

increase in PC synthesis-degradation in the lpcat1 lpcat2
double mutant was unexpected. However, the accumu-

lation of LPC due to the lack of LPCAT activity (for acyl

editing (Figure 1b) or PDAT activity (Figure 1c)) may

induce LPC turnover due to its inherent detergent prop-

erties on membranes, and thus require synthesis of new

PC in a futile cycle in these mutant plants.

The involvement of PDAT in TAG synthesis

The relative flux of acyl chains onto the sn-3 position of

TAG through either the DGAT or PDAT activities is

unclear in most oilseed plants. The dgat1 mutant of

Arabidopsis only reduces oil content by 20–30% [41,42]

and the pdat1 mutant has no impact on TAG accumu-

lation [60]. These results can be explained by overlapping

functions of DGAT and PDAT that allow PDAT to

partially compensate for a DGAT knockout, and DGAT

to fully compensate for a lack of PDAT. A double knock-

out is pollen lethal and seed-specific RNAi of PDAT in

the dgat1 mutant reduced oil 80% [43]. Within the Ara-

bidopsis dgat1 mutant background PDAT expression is

upregulated [61], perhaps to achieve �80% of wild-type

TAG levels [41–43]. It is possible that in some oilseeds

PDAT has a primary role in maintaining membrane

homeostasis, as in yeast [62], whereas in other species

PDAT can play a more major role in TAG production

[82]. PDATs from Arabidopsis and other plants have been

shown to have high activity with PC containing unusual

FA [63–65], suggesting that PDAT may be involved in

removal of damaged or unusual FA from the membrane

and sequestering them in TAG.

PC-derived DAG production

In addition to the above mechanisms, acyl chains on PC

can also be incorporated into the sn-1 and sn-2 positions of

TAG by remaining esterified to the glycerol backbone of

PC until DAG is derived from PC for TAG synthesis.

Three alternative enzymatic routes can generate DAG

from PC (Figure 1c, blue arrows). First, phosphatidylcho-

line:diacylglycerol cholinephosphotransferase (PDCT)

which exchanges phosphocholine between PC and

DAG [66]; second, the reverse reaction of CDP-choline:-

diacylglycerol cholinephosphotransferase (CPT) [67,68];

or third, a lipase-based mechanism utilizing phospho-

lipase C, or phospholipase D plus PAP.

Acyl fluxes through PC may or may not
determine TAG FA composition
Different plants likely utilize different combinations of

the above pathways of acyl flux through PC to accumulate

PC-modified FA in TAG. For instance, characterization

of pdct1 [66] and the pdct1 lpcat1 lpcat2 triple mutant

indicates that LPCAT-based acyl editing and DAG pro-

duced by PDCT together are responsible for at least 2/3

of the flux of PUFA from PC to TAG in wild-type

Arabidopsis seeds [56��]. A residual PC-derived DAG
www.sciencedirect.com 
flux utilizing phospholipase D, may be involved in the

remaining flux of PUFA from PC to substrates for TAG

synthesis in Arabidopsis [56��] and possibly higher levels

in other plants such as that in soybean [69�]. However, not

all FA’s that flux through PC are further modified. High

flux of acyl chains into PC via acyl editing is likely to occur

in oilseeds that modify very little FA in TAG (e.g.

coriander [70]; and Thunbergia seeds [71]). Analysis of

acyl fluxes in developing soybean embryos estimated that

�90% of all FA in TAG fluxed through PC either by acyl

editing or by the predominant use of PC-derived DAG for

TAG synthesis (regardless of whether the FA was further

desaturated or not) [51]. Similar conclusions have been

made in Arabidopsis which also contains high rates of PC

acyl editing [22,56��] and predominantly utilizes PC-

derived DAG during TAG synthesis [72]. High rates of

acyl editing without accompanying FA modification may

imply the importance of acyl editing as a mechanism for

the export of FA from the plastid [22] and PC-mediated

‘FA trafficking’ to specific sites of the ER for TAG

biosynthesis, or for additional cellular processes such as

maintenance of membrane homeostasis [52].

Multiple substrate pools and channeling
In vivo metabolic flux analysis of soybeans strongly

suggests that de novo DAG (Figure 1c, DAG(1)) and

PC-derived DAG (Figure 1c, DAG(2)) are distinct pools

that do not intermix [51]. Additionally, many plants can

produce unusual modified FA on PC, but these FAs do

not accumulate in membrane lipids yet can accumulate to

over 90% of the FA in TAG [73]. Together, these results

suggest that plants may generate specific lipid substrate

pools that can be channeled into TAG and kept separate

from membrane lipid synthesis. How such channeling is

achieved is unknown but may involve enzymes specific

for unusual FAs [63,65,74–76] as well as separation of

lipid biosynthetic activities to different subdomains of the

ER membrane [44,77]. If there is spatial separation of

Kennedy pathway de novo DAG synthesis from PC-

derived DAG synthesis in different microdomains of

the ER, then PC may serve as a ‘DAG trafficking’

molecule through the ER membrane.

What determines seed oil content?
Increasing oil production in seeds has been a target of

plant breeders and metabolic engineers for decades. Even

a few % increase in oil yield per ha in a crop such as

soybean can add more than US$1 billion to the crop’s

annual world value. How can this be achieved? In general,

flux into metabolic pathways can be controlled either by

increasing the supply of upstream substrates (source

control) or by increasing ‘demand’ or ‘sink’ strength in

the last steps of a pathway. Increased seed oil accumu-

lation has been engineered at both stages. An increase in

maize embyo oil by overexpressing the WRI1 transcrip-

tion factor [16�] and increased soybean and B. napus oil by

expression of DGAT [78,79], represent successes at
Current Opinion in Plant Biology 2013, 16:358–364
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source and sink levels, respectively. Although there are

dozens of other reports of gene manipulations that

increase seed oil [80], so far there are only a few examples

where such increases have been demonstrated in multiple

field trials. Further research is required to determine

whether PC acyl flux reactions can also be utilized to

modify oil content.

Questions and unknowns
There is no shortage of questions that must be answered

to better understand oil synthesis in plant seeds. These

include identifying which genes are involved in: first, FA

export from plastids; second, the GPAT and the PA to

DAG reactions of the Kennedy pathway; third, PC dea-

cylation during acyl editing. In addition, there is a funda-

mental lack of clarity about the cell biology of TAG

assembly. Unknowns include: first, is PC a universal

FA/DAG carrier between organelles? Second, to what

extent are substrate channeling and distinct subcellular

pools of DAG, PC, acyl-CoA (and other intermediates)

involved in TAG biosynthesis? Third, do membrane and

TAG synthesis require different locations of their bio-

synthetic enzymes and are oilbody:ER connections

involved? Fourth, how are unusual FA excluded from

membranes and channeled to TAG? Fifth, to what extent

is PC involved in acyl fluxes of saturated or other FA that

are not modified in the ER? Finally, how are levels of

transcripts, proteins and activities of DGAT and other

downstream enzymes of TAG assembly controlled?
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