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OF PLATES, PART II: ASYMMETRIC RESPONSES OF
CIRCULAR PLATES

S. SRIDHAR,T D. T. Mook AND A. H. NAYFEH

Department of Engineering Science and Mechanics,
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, U.S.A.

(Received 2 March 1976, and in revised form 14 June 1976)

The dynamic analogue of the von Karman equations is used to study the forced response,
including asymmetric vibrations and traveling waves, of a clamped circular plate subjected
to harmonic excitations when the frequency of excitation is near one of the natural frequen-
cies. The method of multiple scales, a perturbation technique, is used to solve the non-linear
governing equations. The approach presented provides a great deal of insight into the
nature of the non-linear forced resonant response. It is shown that in the absence of internal
resonance (i.e., a combination of commensurable natural frequencies) or when the frequency
of excitation is near one of the lower frequencies involved in the internal resonance, the
steady state response can only have the form of a standing wave. However, when the
frequency of excitation is near the highest frequency involved in the internal resonance
it is possible for a traveling wave component of the highest mode to appear in the steady
state response.

1. INTRODUCTION

It is well known that the large amplitude oscillations of a circular plate can include a traveling
wave component [1]. The governing equations are the dynamic analogue of the von Karman
equations, which take into account the stretching of the mid-plane. Tobias and Arnold
[1], Williams and Tobias [2] and Williams [3] studied the vibrations of so called imperfect
disks which exhibit the phenomenon of preferential modes: that is, corresponding to each
asymmetric mode of a perfect disk there are two modes having slightly differing frequencies
in the imperfect disk. The existence of the traveling wave component in the response was
attributed (and confirmed by experiments) to the non-linear coupling between preferential
modes. Efstathiades [4] used the Galerkin procedure to analyze the large deflection vibrations
of imperfect circular disks. Non-linear vibrations of spinning membrane disks were studied
by Advani and Bulkeley [5] and Bulkeley [6] who noted the possibility of traveling waves
in the response.

The purpose of this paper is to present a systematic analysis of the forced response, in-
cluding asymmetric vibrations and traveling waves, of a clamped perfect circular plate
subjected to harmonic excitations. The analysis is essentially a generalization of that presented
by the authors in an earlier paper [7]. Attention is focused on the response when the frequency
of excitation is near one of the natural frequencies. The effects of an internal resonance
(combination of commensurable frequencies) in the system are evaluated. The method
of multiple scales [8], a perturbation technique, is used in the analysis.
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2. PROBLEM FORMULATION

The equations governing the free, undamped oscillations of non-uniform circular plates
were derived by Efstathiades [4]. These equations are simplified to fit the special case of
uniform plates, and damping and forcing terms are added. The result is

pho*w/ot? + DV*w=L,(w, F) — cow/dt + p(r,0,1), (la)
V4 F = EhL,(w), (1b)
where
UL TAN AT o3
or* \ror r 00? ort \ror r?06?

) 1 ?w 1 0F\ {1 0*w 1 ow
rorod r2o0 /\roroe r2o0)’

_ 12w loaw\® *w/low 1w
Lw={-—-—=—1] — -—+— ,
rorod r*o0 or2 \ror r? 00>

p is the density, 4 is the thickness, D = ER3/[12(1 — v?)), ¢ is the damping coefficient, p is
the forcing function, E is Young’s modulus, v is Poisson’s ratio, w is the deflection of the
middle surface, F is the force function which satisfies the in-plane equilibrium conditions
(in-plane inertia is neglected), and

g (P12 12
“\orz  ror r2e6*)

The relationships between F, w and the in-plane displacements, u, and u,, are given by
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It is convenient to rewrite these equations in terms of dimensionless variables, denoted
by overbars, which are defined as follows:

r = ar, t=a? (ph/D)”z i, w= (h?./a) w, (ur, ug) = (h4/aa) (4., 120),
¢ =[24(1 — V3@ (oh* D)2 ¢,  p=[12(1 —v) Di*/a’)p,  F= (EKSjad)F,

where a is the radius of the plate. We are concerned with generating an approximate solution
which is valid as h/a approaches zero; each of the dimensionless variables defined above
is presumed to be O(1) in this limit. In addition, we define é,, &, and é,5, Which are also pre-
sumed to be O(1) as h/a approaches zero, as follows:

(e,, €, ero) = (h4/a4) (e, &, Zrp)-
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Substituting these definitions into equations (1) and (2) and dropping the overbars in the
result, one obtains

02 w/ot? + V4w = g[L,(w, F) — 2c ow/dt + p], V4 F = L,(w), (4a.b)
where £ = 12(1 — v?) h?/a?,
18F 1 &*F 0’ F *F 10F | 0*F
“utrw e T (;Wﬁ:ﬁ)’
10F 1 0*F
e =2l +V)(ﬁ£_7arao)’ (e

and the form of equations (3) is not changed.
The boundary conditions are developed for plates which are clamped along a circular
edge. For all ¢, and 0,

w=0, ow/or =0, at r=a, (6a)
u, =0, uy =0, at r=a. (6b)

It follows from equations (3), (5) and (6) that, for all # and 6,

d d

eezoa 5("6’9)_6’,'—%(6’,@)=0, at r=a,
o*F 10F 1 02F .
_ =y -— E— :0, at":a, (73)
or? ror r?oe?

B*F 10*F 10F (2+v) 0*F (3+v)62F_

i ik - ~0, at r=a  (Tb)
o e o 7 w0 at r=a

In addition, it is necessary to require the solution to be bounded at r = 0.

It is noted that, when ¢ is small, w is much smaller than 4. Had w been the same order as
h (say, w= hw), then no small parameter would have appeared in equation (4a) and the
linear and non-linear terms would have been the same order. Hence, the present approach
must be viewed as one which provides corrections for the small-deflection theory (for which
w is much smaller than /) and not as one which provides a solution for the large-deflection
theory (for which w is the same order as 4). This means that some typical non-linear phenomena
such as jump phenomena, modal interactions, etc., can be part of the corrected small-
deflection theory.

Further, it is noted that w is a function of r, 8 and ¢ and the solution may contain traveling
waves. Equations (4) do not lend themselves to a straightforward separation of the spatial
and temporal variables. However, by using the method of multiple scales, an asymptotic
expansion of the solution of equations (4) can still be constructed. The expansion is to be
uniformly valid for small ¢ and large ¢.

3. SOLUTION

Following the derivative-expansion version of the method of multiple scales (see reference
[7D), we expand w and F as follows:

wir,0,t;e)~ > e wyr,0,T,Ty,...), F(r,0,t;6)~> e/ F(r,0,T,,T,,...) (8a,b)

Jj=0 Jj=0
where T, = &"¢.
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Substituting equations (8) into equations (4) and equating coefficients of like powers of
¢ yields

D2wo+ V4we =0, ©)
10*w 1 owg\® 02w, (10w 1 8?w,
Vep, o L0001\ Fwo(1dwo 1 Fwo (10)
rordd r* o0 or* \ror r? 00% )’

Diw, + V4w, =-2Dy D, wy — 2cDywo +p +

?wy (10F, 1 0*F,
or: \r or r? 007

rordd r: o8

LR (1owy 12w\ (10F, 1R\ (12w 1aw,
a2 \ror ' r o6 rore r ’

etc., where D, = 0/aT,,.
Substituting equations (8) into equations (6a) and (7) and equating coefficients of like
powers of &, one obtains (letting a = 1)

w; =0, ow,/or =0, (12a,b)

02 F,/or? — v(3F;/or + 0% F;/00%) = 0, (13a)

O F;/or3 + 02 F,jor? — OF ;for + (2 + v) & F;{or00? — (3 + v) 0* F,/06* =0,  (13b)

for all j, @ and t at r = 1. In addition, it is necessary to require w; and F}, for all j, to be boun-

ded at r=0.
It follows from equations (9) and (12) that

Wo=S S Gunlr){Aum€Xp [i(ym To + 10)] + By €xp [i(wm To — )] + 00} (14)

n=0m=1

where the ¢,,(r) are the linear, free oscillation modes given by

¢nm(r) = Knm[Jn(']nm r) - {Jn(r’nm)/ln(rlnm)} ln(nnm r)]a

the x,,, are chosen so that
1

[ réryar=1,

0]

the #,,, are the roots of L (n) J.(n) — I,(m) J..(n) = 0, w,,, = 12, the 4,,, and the B, are complex
functions of all the T, for n > 1 which are to be determined from the solvability conditions
at the next level of approximation, and cc represents the complex conjugate of the preceding
terms.

It is noted that the solution given by equation (14) contains both traveling and standing
waves depending on the relative values of the 4,,, and B,,. The solution can also be written
in the following equivalent form:

Wo = § i ¢nm(r) unm(TO’ Tl’ . ) exXp (ll’l@), (15)

n=—com=1
where
Upm = Anm exp (iwnm TO) + Bnm €Xp (—iwnm TO)9 ( 16)
D _wm = Pum and w_,,, = @,,,. Because w, is real,

A»nm = Bnm and B—nm = Anm' (17)
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Substituting equation (15) into equation (10) leads to

Ve Fo= 5 5 E(1,p9) tamtupgexplin+p)6] (18)
n, p=—cwo m,q=1
where
i nm q 1 ’ ' ’ 1 »” ”
E(nm’pq) = _'g (¢'I’"‘ - ?;——) (¢ll'll - d)_:_) - ;(d’nm d)pq) + ﬁ (p2 ¢nm ¢pq + n2¢m] ¢nm)

and primes denote differentiation with respect to r.
An expansion for F, is assumed in the following form:

o

Fo= 3 Ufr,To,T,,...)exp(inf). (19)

n=-r0

Substituting equation (19) into equation (18), multiplying the result by exp(—iaf)), and
integrating from 6 = 0 to 6 = 2, we obtain

VaUsr= 2 > E(nm,pq)uptp, (20)
n=—com,q=1
where
p=a—n (21)
and

V4 = [9%/or* + (1/r)d[or — a*[r?]*.
Then U, is further expanded as

Ua = % Uan(T09 Tl’ o ) l//an(r)’ (22)

=1

X

where the ¥, are the eigenfunctions of the following problem:
(Vi—& V=0 in r=[0,1],
where ,, is bounded at r = 0 and, from equations (13),
= VWi — @ Ya) =0  and Yo + ¥ — Y — @R+ VYo — G+ V) Y] =0
for all § and ¢ at r = 1. It follows that

l/’an = ’Gan[Ja(Can r) - (?an Ia(éan r)]5 (23)

where the %,, are chosen so that

4]

(7 — [a(a + 1)(V + l) - étzm] Ja(éan) - éan(v + l) Ja—l(éan)
T al@a+ D+ 1) + E2)LEa) — Ean(v + DL (Ean)

and &,, are the roots of

aZ(a + 1)(V + 1) [Ja(éan) - 5an Ia(éun)] - aégn(v + 1) [Jaol(éan) - Ean Ia—l(éan)]
+ aégn[Ja(éan) + 5an Ia(éan)] - ﬁgn[Ja—l(éan) + Ean Ia—l (éan)] =0.
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Substituting equation (22) into equation (20), multiplying the result by ry,,. and then
integrating from r = 0 to r = 1, one obtains

Va(To; T1s.. )= 3 5 G(nm,pq;ab) upy tp,, (24)
n=—owom,qg=1

where .

Glnm, pg; ab) = ot [ Pvas Enm, pg) dr (25)

V]

and p, a and n are related according to equation (21). It follows from equations (24), (22)
and (19) that

Fo= 3 2 YaGnm,pq;ab) uu, u,qexp (iab), (26)
an=—cb,m,q=1
wherep=a—n.
Substituting equations (26) and (14) into equation (11) leads to

D(Z) wy + V4 W, = Z Z —21a)nm ¢nm [(Dl Anm + Com Anm) €xp (lwnm TO) - (Dl Enm + Com Enm)

n=—com=1

X exp (—iwnm To)] exp (in0) + [ i E P o €XP (inO)] cos AT,

R=—o m=1
+ i i G(nm, pq; ab) E(cd, ab) u g u,, tamexp [il@+ ¢) 8],  (27)
an,c=—w b,m,d, qg=1
where modal damping has been assumed, p has been expanded as

plr,60,1) = [ > 3 Puydumexp (in())] cos AT,

n=—co m=1

and
. Goa| ,, @ oo . 2ac{ 1 o1
E(cd, ab) = = Yoo — — Vs | + = Goa— — Pea| + — Yar = ~Vab || Pea ~ ~Pea |-
r r r r r r r
Because w, and w; satisfy the same boundary conditions, an expansion for w; is assumed
in the form

Wy = i i Hopl(To, T, . . .) @um(r) exp (inb). (28)

n=—cwo m=1

Substituting equation (28) into equation (27), multiplying the result by r¢,,(r)exp(—ik8),
and integrating the result from r =0 to 1 and 8 = 0 to 2=, one obtains

D Hyy + w} Hy = 2i0,[(Dy Ay + ¢ Ai) exp (iwy, To) — (D, B+ cu Ekl) exp (—iwy,; To)]

+ P [exp (ilTg) + exp (—iAT)]+ > > I'(kl,cd,nm,pq)
p.n,c=—wd, mg=1
8
x[}j S,.exp(iA,To)], k=1,2,.., 1=12.., (29)
i=1
where
1
I(kl,cd,nm,pq) = > G(nm,pq;ab) f réy E(cd,ab)dr, (30a)
b=1
0

a=k—c, p=k—c—n, (30b, c)
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A, are frequency combinations, and S; are functions of 4,, and B,,. Both A; and §; are
listed in the Appendix.

The solvability conditions can be obtained by requiring the coefficients of exp(ziwy; T;,)
to vanish from the right-hand sides of equation (29). In general the solvability conditions
can be written as

—2iw (D) Ay + iy Awd) + A 22 Vitnm(Aum Aum + By Bum) + N+ R4 =0, (3la)

n=—com=1
2iw( Dy By + ¢ Bu) + Bu > 2 Vuinm(Aum Aum + Bum Bum) + NE+ RE=0, (31b)
n=—om=1

where R};” are terms due to internal resonances, if any, N B are terms due to the external
excitation, if any, and y,,.,, are constants. We made use of equations (17) and (30c) to arrive
at the double sums in equations (31).

4. THE CASE OF NO INTERNAL RESONANCE

In the absence of internal resonances R{; 2 = 0 in equations (31). When 1 is near o

rss

A= w,+ €a, (32)
Ni=4P,exp(ioT)),  NE=P exp(ioT)) (33a,b)

and
N8 =0, for kl # rs, (33¢)

where ¢ is a detuning parameter. Next we let
Apm = 3y eXp (i0yy)  and By = 3b,mexp(ifum) (34a,b)
where a,pm; bpms % and B, are real functions of T;.
Substituting equations (33) and (34) into (31) and separating the result into real and im-
aginary parts yields
@y + €y @) =0, Oy Ay O + $ax S = 0, (35a,b)
Wby + ¢4y by) =0, Oy byt B + $biy 810 = 0, (35¢,d)
for kl # rs,
w,.s(a,’s + Crs ars) - %Prs Sil’l .u:"s = 09 Wyps Qg a;s + %ars Srs + %Prs COS/I,”S = 0, (363, b)
(‘ors(bl:s + Crs brs) - %Rs sin ﬂfs = 0’ Wpg brs ﬁl:s + %brs Sps + %R’s Cos ﬂrbs = 0’ (36C9 d)
where o -
skl = z z Vhlnm (at%m + bnzm E]

n=—com=1
uh=0T, —a,, and pb=oT, — B, (37a,b)

For the steady state solution, the a,,, bnm, u2 and ub, are constants. It follows immedi-
ately from equations (35) that

[49] Zbkl =0, for k[#rs

and from equations (36) that neither a,, nor b,, can be zero. Thus, the steady state solution
is given by equations (36) which can be rewritten as

Wy Cps = (Prs/zars) sin lul"]s’ (383)
W6 + %yrsrs(arzs + brzs) = —(P,S/Za,s) COS /%, (38b)
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Wy Crs = (Prs/2brs) sin ﬂfs’ (39a)
Wy O + %)"rsrs(arz's + brzs) = _(Prs/zbrs) cos ”fs (39b)

Squaring and adding equations (38) and comparing the result with that obtained by squaring
and adding equations (39), we obtain

brs =0, and :u:’s = ji55 (40a, b)
Therefore, using equations (37), (34) and (14), one can write the steady state response as
w =26, a,,cos (At — pl)cosrd + O(g). (41)

Consequently, in the absence of internal resonances, the steady state forced response
consists of standing waves only. One can describe the response with a single mode having
a frequency equal to that of the excitation, as several investigators have done previously,
the solution being essentially that of the Duffing equation.

5. EFFECTS OF AN INTERNAL RESONANCE

In this section consideration is given to the effects of an internal resonance involving four
modes: that is, combination of commensurable frequencies of the form

Wco + Wy + Ppo T Wi1. (42)
Further, we assume that these frequencies are such that equation (30c) is satisfied: that is
K=C+N+P. (43)

(For a clamped circular plate equations (42) and (43) are satisfied by the following natural
frequencies (see, e.g., reference [9]): wy, = 10:22, wq, = 3977, w,; = 34-88 and w,, = 84-58;
so that wg; + we; + w,,; = 84-87 ~ w,,. The first subscript refers to the number of nodal
diameters and the second subscript refers to the number of nodal circles including the
boundary.) To characterize the approximation in equation (42), we introduce a detuning
parameter, ¢, as follows:

Wcp + Oyy + Wpo + €01 = Wy (44)

The terms due to the internal resonance, Ry; 2, appearing in the solvability conditions
(31), which can be obtained by considering the Appendix and equations (17), (43) and
(44), are

RiL = Qxi(Acp Anm Apq + Bep Bum Beo) exp(—io Ty),
Réq = Qpo(Axr Acp Anm + Brr Bep Byw) exp (ioy Ty),
Riim = Onm(Axr Apg Acp + Bir Brg Bep) exp (io; T)),
Rép= Qcp(Axr Aym APQ + By Bym BPQ) exp (ic; T)
and R{=0 for kl# KL,PQ,NM,CD,

where the Qs are constants. The expressions for R2 can be obtained from those of R} by
replacing 4,, by By, By, by 4;, and o, by —0a;.

Substituting equations (34) and the expressions for R4;® and N ® into equations (31)
and separating the result into real and imaginary parts leads to the following solvability
conditions:

oy + Oy ai) — $Qu Sk — Niasin pfy = 0,

@ulbyy + Cabry) — Qu Sk — Nusin i =0, (45a,b)
O % + $au S+ $Qu St + Nucos g, =0,

Wy b Pia + $bia St + $Qia S + Ny cos B =0, (46a, b)
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for kl=CD, NM, PQ,
oxi(axy + cxpax) + $Que Sk — Niwsinpgr =0,
wri(bie + cxpbrr) + $Qxi Sk — Nusin g, =0, (47a,b)
Okr Ak %ke + $0xe Sk + $Oke Sk — Nk cos g, =0,
okr by Bkr + ke Skr + $Oki Ske + Ny cos g, =0, (48a,b)
for kI = KL and
Wy + (@i + C @) — N sinpgy =0, ®ui(buy + b)) — Nygsinpl, =0, (49a,b)
O A Oy + 300 S0+ Ngcos iy =0, 0 b B + b sy + Nygcos g, =0, (50a,b)
for kI CD, NM, PQ and KL, where

skl = 2 21 ’Yk,lnm(afm + br%m)i

H=—com=
Ny = 1P, when 1 is near w,,, N, = 0 when A is away from wy,, (5la,b)
pa =0Ty — ay, i =0, Ty — B, (52a,b)

the detuning parameter o, being defined by 4 = w,, + €0, when 4 is near w,,,
Stp = Gnu Gpo @k SIN fla + byp bpo bipsin g,
S2p = ayp dpg gy €08 iy + by bpo by, €OS fig,
Sim = apqaxLacpOS fiy + bpg by bep Os flp,
Sim = apoakLacpcos fly + bpo by bep cos fig,
Sho = axracp anm SN 4 by bep by sin fig, !
S$e = axLdcp Aym COS iy + by bep byy €08 fip,
SkL = Acp Awm Gpo SN fis + bep byy bpg sin fig,
SkL=acp anm ApoCOs fi, + benbym bPQ COS fig,
fa=01Ty — Ocp — Ay — Apg + Ok, fis=0,Ty — Bcp — Bym — Bro + Pxi-
It is noted that equations (45)~(50) are analogous to equations (29)-(32) of reference
[7]. For a steady state solution, all a,, by,, fi, fig, #f, and pd, are constants. This leads to
Ot Oy Gt — $ Q@ Skt — N sin i = 0, O G b — $Qi Sk — Nusing =0,  (53a,b)
for kiI= CD, NM, and PQ,
gy CxL kL + $Qxe SkL— Nxosinpg; =0, wkr kL bxr + $Qxe Ski — Nxosin g, =0,
(54a, b)
for ki= KL, and
Wyt Ct Ay — Ny sinpgy =0, Wt Chy by — Ny cos gy = 0, (55a,b)
for ki CD, NM, PQ and KL,

fiy =0y~ tcp — oy — Opg + ok, =0, fs=01—Bcp — Buvm — Bro + Bk =0, (56a,b)

where oy, and f; are given by equations (46) for k/= CD, NM and PQ and by equations
(48) for ki = KL,

pa=0,—0,=0, p=0,—p,=0, (57a, b)
when 4 is near ,,. Several possibilities are considered next.
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5.1. THE CASE OF 1 AWAY FROM ALL @y,
In this case N,, = 0 for all k/. Thus equations (53) and (54) lead to

ay; = by, for kl=CD,NM,PQ and KL
and equations (55) lead to
a,=by=0, for kl#CD,NM,PQ and KL.

Assuming non-trivial solutions for dacp, ayuy, apg, and ag;, one finds from equations (53)
and (54) that

(acplaxr)? = —wkr cxr Qep/®cp cep Qxrs (58a)
(anm/axL)? = —wxr Cxr Onm/Onm Caum Oxk., {(58b)
(aPQ/aKL)2 = —Wgy Cxr QPQ/wPQ Cpq OxL (58¢)

However, for mechanical systems and structural elements, non-trivial solutions cannot exist
in the absence of external excitations and in the presence of linear viscous damping: that
is, the systems cannot be self-excited. Consequently, the signs of Qcp, Qnum> Opo and Oy
must be the same so that the relationships given by equations (58) are impossible and thus

dcp = Aym = Apg = ax. = 0.

5.2. THE CASE OF 1 NEAR @y, kl # CD, NM, PQ AND KL

In this case Ncp = Nypy = Npg = Ngr =0, and it follows that acp = ayy = apg = ag, = 0
in the steady-state solution, which is governed by equations (49) and (50). These equations
are identical in structure to equations (36). Hence, the steady-state response is a standing
wave of the form

w = 2¢b, a; cos (At — ug) cos kO + O(e). (59)

5.3. THE CASE OF 1 NEAR (¢p

In this case, N, =0, for kI CD. It follows from equations (53)-(55) and (58) that
ay; = by, =0, for kl # CD and hence

Stp=Sep=0. (60)

Substituting equation (60) into (45) and (46), one obtains the equations governing the
solution. These equations are identical in structure to equations (36) and hence the steady
state response is a standing wave of the form

w = 2P cp acp €0s (At — ulp) cos CO + O(e). (61)

Similar results are obtained for the cases of A near wy,, and 4 near wpg.

5.4. THE CASE OF A NEAR Wgy
In this case Ny, =0 for kl# KL. It follows from equations (55) that a;, = by, =0, for
kl+# KL. A study of equations (53) and (54) reveals that there are two possibilities as follows.
(a) acp = ayy = apg = 0. Therefore,
SkL=SkL=0. (62)
Substituting equation (62) into (47) and (48), we obtain the equations governing the solution.

Again these equations are identical in structure to equations (36): that is, the steady state
response is a standing wave of the form

w = 2¢xy axr €0s (At — pfr) cos KO + O(e). (63)
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(b) acp, any and apq are non-zero. Here one cannot arrive at the result given by equation
(62) and hence one must conclude that the only possible steady state response is a standing
wave. The highest mode involved in the internal resonance can appear in the response
either as a standing wave (i.e., axy = bg,) of the form 2¢y, ax, cos(At — uk)cos K8, or as
a traveling wave (i.e., ag; # bgy) of the form

bxilax cos (At — pgy + KO) + by cos (At — pg, — K0)).

Thus, the steady-state response is described by either (1) a superposition of the standing
wave components of all the modes involved in the internal resonance, or (2) a superposition
of the standing wave components of all the lower modes (i.e., CD, NM, PQ) and the traveling
wave component of the highest mode (i.e., KL) in the internal resonance.

6. SUMMARY

A systematic analysis of the forced response of a clamped circular plate subjected to har-
monic excitations is presented. The general problem, including asymmetric vibrations and
traveling waves, is a difficult exercise in analysis and the present approach is shown to provide
a great deal of clarity and insight into the nature of the non-linear forced resonant response.
The effects of an internal resonance involving four modes are evaluated.

The steady state resonant response, in the first approximation, exhibits the following
features.

(1) In the absence of internal resonances or when the frequency of excitation is near
one of the lower modes involved in the internal resonance, the steady state response
can only have the form of a standing wave.

(2) When the frequency of the excitation is near the highest mode involved in the
internal resonance, the steady state response is given by one of the following two
forms: (a) a superposition of the standing wave components of all the modes in-
volved in the internal resonance, or (b) a superposition of the standing wave com-
ponents of all the lower modes and the traveling wave component of the highest
mode involved in the internal resonance.

Finally, we note that the general results obtained here can be reduced to those of Part 1.
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APPENDIX
Coefficients S, and frequency combinations
A; in equations (29)

j S; A4;

1 Achnmqu Wed + Wpm + wpq
2 AcaAnm qu Wed + Wnm — WDpg
3 Acd Bnm qu Weq — Wnm + Wpgq
4 BeyAuwmAps  —@ca + Onm + Wpg
5 B, B B —Wed — O — Dpg
6 B.s B Apg  —Wea — Onm T Dpy
7 B A B ~Weg + Oun — Wpg
8 AecaBum E Weg — O — Opg




