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The dynamic analogue of the von Karman equations is used to study the forced response, 
including asymmetric vibrations and traveling waves, of a clamped circular plate subjected 
to harmonic excitations when the frequency of excitation is near one of the natural frequen- 
cies. The method of multiple scales, a perturbation technique, is used to solve the non-linear 
governing equations. The approach presented provides a great deal of insight into the 
nature of the non-linear forced resonant response. It is shown that in the absence of internal 
resonance (i.e., a combination of commensurable natural frequencies) or when the frequency 
of excitation is near one of the lower frequencies involved in the internal resonance, the 
steady state response can only have the form of a standing wave. However, when the 
frequency of excitation is near the highest frequency involved in the internal resonance 
it is possible for a traveling wave component of the highest mode to appear in the steady 
state response. 

1. INTRODUCTION 

It is well known that the large amplitude oscillations of a circular plate can include a traveling 
wave component [l]. The governing equations are the dynamic analogue of the von Karman 
equations, which take into account the stretching of the mid-plane. Tobias and Arnold 
[l], Williams and Tobias [2] and Williams [3] studied the vibrations of so called imperfect 
disks which exhibit the phenomenon of preferential modes: that is, corresponding to each 
asymmetric mode of a perfect disk there are two modes having slightly differing frequencies 
in the imperfect disk. The existence of the traveling wave component in the response was 
attributed (and confirmed by experiments) to the non-linear coupling between preferential 
modes. Efstathiades [4] used the Galerkin procedure to analyze the large deflection vibrations 
of imperfect circular disks. Non-linear vibrations of spinning membrane disks were studied 
by Advani and Bulkeley [5] and Bulkeley [6] who noted the possibility of traveling waves 
in the response. 

The purpose of this paper is to present a systematic analysis of the forced response, in- 
cluding asymmetric vibrations and traveling waves, of a clamped perfect circular plate 
subjected to harmonic excitations. The analysis is essentially a generalization of that presented 
by the authors in an earlier paper [7]. Attention is focused on the response when the frequency 
of excitation is near one of the natural frequencies. The effects of an internal resonance 
(combination of commensurable frequencies) in the system are evaluated. The method 
of multiple scales [8], a perturbation technique, is used in the analysis. 
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2. PROBLEM FORMULATION 

The equations governing the free, undamped oscillations of non-uniform circular plates 
were derived by Efstathiades [4]. These equations are simplified to fit the special case of 
uniform plates, and damping and forcing terms are added. The result is 

ph a2 w/at2 + DV~ w = L,(w, F) - c awlat + p(r, e, t), (14 

V4 F = EhL,( w), (lb) 
where 

i 

i azw iaF iazw Ii 1 aw 
-2 ----- --_-- 

rarae r2 ae rarae 1 r2i3e ’ 

L*(w) = - vL$~2+?(!~+_yP), 

p is the density, h is the thickness, D = Eh3/[12(1 - v*)], c is the damping coefficient, p is 
the forcing function, E is Young’s modulus, v is Poisson’s ratio, w is the deflection of the 
middle surface, F is the force function which satisfies the in-plane equilibrium conditions 
(in-plane inertia is neglected), and 

The relationships between F, w and the in-plane displacements, U, and ug, are given by 

1 a2F 
ed=p ----- 9 r &%I 1 (2a-c) 

where 

I au, au, u. i awaw 
e,, =;ar+-$--+;zz. 

r 

(3a-c) 

It is convenient to rewrite these equations in terms of dimensionless variables, denoted 
by overbars, which are defined as follows : 

r = ai, t = a* (ph/D)‘l* i 7 w = (h*/a) @, (u,, ue) = (h4/a3) (k &A 

c = [24( 1 - v*)/d’] (ph5 0)“’ E, p = [12(1 - v’) Dh4/a7]jJ F = (Eh’/a*) F, 

where a is the radius of the plate. We are concerned with generating an approximate solution 
which is valid as h/a approaches zero; each of the dimensionless variables defined above 
is presumed to be O(1) in this limit. In addition, we define &,, c?~ and &, which are also pre- 
sumed to be O( 1) as h/a approaches zero, as follows: 

(e,, e,, e,,) = (h4/a4) (G, Ge, Cd. 
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Substituting these definitions into equations (1) and (2) and dropping the overbars in the 
result, one obtains 

a2 w/at* + vu1 = .+gW1 F) - 2~ abqat + ~1, V4 F = L*(w), (4a, b) 

where E = 12(1 - v2)h2/u2, 

1aF 1 a2F a*F 
~,=--++--v-, 

r ar r* a62 ar2 

e,,=2(1 +v) 
i 

1aF 1a2F 
>%--- 

1 rara0 ’ 
(5a-c) 

and the form of equations (3) is not changed. 
The boundary conditions are developed for plates which are clamped along a circular 

edge. For all t, and 8, 

w = 0, a@r = 0, at r = a, (6a) 

u, = 0, ug = 0, at r = a. (6bJ 

It follows from equations (3), (5) and (6) that, for all t and 8, 

e, = 0, i (re,) - e, - $ (e,,) = 0, at r = a, 

ff--v(~~+~~)=O, at r=a, (7al 

a3F I a2F 1 aF (2 + V) a2F 
s+;arz-r’z+--- r2 arae 

(3 + v) 82 F = o 
-y---j+ ’ at r = a. (7bb 

In addition, it is necessary to require the solution to be bounded at r = 0. 
It is noted that, when E is small, w is much smaller than h. Had w been the same order as 

h (say, w = A#), then no small parameter would have appeared in equation (4a) and the 
linear and non-linear terms would have been the same order. Hence, the present approach 
must be viewed as one which provides corrections for the small-deflection theory (for which 
w is much smaller than h) and not as one which provides a solution for the large-deflection 
theory (for which w is the same order as h). This means that some typical non-linear phenomena 
such as jump phenomena, modal interactions, etc., can be part of the corrected small- 
deflection theory. 

Further, it is noted that w is a function of r, 8 and t and the solution may contain traveling 
waves. Equations (4) do not lend themselves to a straightforward separation of the spatial 
and temporal variables. However, by using the method of multiple scales, an asymptotic 
expansion of the solution of equations (4) can still be constructed. The expansion is to be 
uniformly valid for small E and large t. 

3. SOLUTION 

Following the derivative-expansion version of the method of multiple scales (see reference 
[7]), we expand w and F as follows: 

w(r, 8, t; .z) - 2 .G wj(r, 8, To, Tl, . .), F(r, 8, t; E) - -2 c’ Fj(r, 8, To, T,, . . .) (8a, b) 
j=O j=O 

where T,, = ft. 
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Substituting equations (8) into equations (4) and equating coefficients of like powers of 
E yields 

D;W,+v4wg=o, (9) 

D;w,+V4w1=-2DoD,wo-2cD,w,+p+- 

etc., where D, = a/aT,,. 
Substituting equations (8) into equations (6a) and (7) and equating coefficients of like 

powers of s, one obtains (letting a = 1) 

wj = 0, awjjar = 0, Wa, b) 

a2Fjlar2 - ~(a~,/ar+ a2Fj/ae2)= 0, (134 
a3 Fj/ar3 + a2 FJar2 - aFjlar + (2 + V) a3 Fj/& a82 - (3 + V) a2Fjlae2 = 0, (13b) 

for allj, 0 and t at r = 1. In addition, it is necessary to require wj and Fj, for allj, to be boun- 
dedatr=O. 

It follows from equations (9) and (12) that 

w. = 5 : &,Ar) {A,, exp li(%,, To + 41 + 4, exp [iCon,,, To - @I+ cc> 
n-0 rn=l 

(14) 

where the &Jr) are the linear, free oscillation modes given by 

&&) = K,,[J,(%,r) - ~J,h,)/Lhd~ Lh, r)l, 
the K,, are chosen so that 

1 

s r&$,,(r) dr = 1, 
0 

the vn,,, are the roots of I,(q) J;(q) - IA(q) J,(q) = 0, o,, = r&,, the A,, and the B,,,,, are complex 
functions of all the T,, for n > 1 which are to be determined from the solvability conditions 
at the next level of approximation, and cc represents the complex conjugate of the preceding 
terms. 

It is noted that the solution given by equation (14) contains both traveling and standing 
waves depending on the relative values of the A,,,,, and B,,,. ?he solution can also be written 
in the following equivalent form: 

where 

w. = z $ &,,(r) Unn(Tor T,, . . .) ew W% (15) 
“S--m Ill=1 

u,, = A,, exp (iw,, To) + B,, exp (-iw,, To), 

qL,, = &,, and w-,, = o,,. Because w0 is real, 

A-,,, = &,, and B-,, = A,,. 

(16) 

(17) 
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Substituting equation (15) into equation (10) leads to 

V4 F0 = ? $ E(nm,pq) u,, u,, exp [i(n + P) 4 
n. p=-cc m.q=1 

where 

163 

(18) 

and primes denote differentiation with respect to r. 
An expansion for F0 is assumed in the following form : 

F. = 2 U,,(r, To, T,, . . .) exp(in8). (19) 
n--m 

Substituting equation (19) into equation (18), multiplying the result by exp(-ia@, and 
integrating from 0 = 0 to 8 = 271, we obtain 

V,4 U, = : $ E(nm,pq)u,,u,,, (20) 
It=--m rn.l/=l 

where 
p=a-n (21) 

and 
V,O = [a2/3r2 + (l/r) ajar - u2/r2]‘. 

Then U, is further expanded as 

U, = 5 v,,Vo, Tl, . J $dr), 
n=l 

where the 1,4,, are the eigenfunctions of the following problem : 

(22) 

cv: - 5:“) $a, = 0 in r = [0, I], 

where +a” is bounded at r = 0 and, from equations (13), 

4G” - V($L” - a2 Ic/lln) = 0 and 4Cl + tiL - +:, - a2K2 + v) K” - (3 + v) $enl = 0 

for all 8 and t at r = 1. It follows that 

$Im = &,AJ,(L r> - L L(5,. r)l, (23) 

where the R,, are chosen so that 

i rt+!&dr = 1, 
0 

Fa” = 
Ma + l)(v + 1) - tL1 J,(L) - Ln(v + 1) Jo-l(L) 
Ma + 1) (v + 1) + en.1 L(L”) - 5.“(V + 1) L-*(L) ’ 

and &,, are the roots of 

~‘(a + 1) (v + 1) [J,(L) - Gn L(L)1 - 4:.(v + 1) [Jo-,(L) - L L-1(5,,,)1 

+ &C,[Jo(Lt) + (t,. L(L)1 - MJa-l(L) + F,,, L-1 (LJI = 0. 
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Substituting equation (22) into equation (20), multiplying the result by rtjob. and then 
integrating from r = 0 to r = 1, one obtains 

where 

(24) 

(25) 

and p, a and n are related according to equation (21). It follows from equations (24), (22) 
and (19) that 

Fo= $ LI n=_-oo b .%, $,b G(nm,pq; 4 u,, up4 ev (i4, (26) 
. 1 

wherep=a-n. 
Substituting equations (26) and (14) into equation (1 I) leads to 

Dl w1 + V” w1 = $ ,$ -2i%,, A, ND1 A,,,, + c,, A,,,,) cxp (im,, To) - (Di &,, + c,, B,,,) 
n---m m=l 

x exp (-io,, To)] exp (ino) + 
[ 

: $ P,, &,, exp (in@ 1 coslTo 
It=-a? rn=l 

-f 2 2 G(nm,pq; ab) g(cd, ub) u,d u,,, u,, exp [i(a + c) 01, (27) 
0,“. c=--co b. m, d, q=l 

where modal damping has been assumed, p has been expanded as 

and 

p(r, 8, t) = $ ? P,, &,, exp (i&J) COSAT, 
n=-_m ,:I I 

&&&!k $1 -C$ +!5 4’ -$) +2”” *’ _!$ 
r ( ab r ab) r ( cd r cd) r2 ( ab r ab)( &d-1;,,). 

Because w1 and w. satisfy the same boundary conditions, an expansion for wi is assumed 
in the form 

WI= 5 : H,,(To,T,, . . .I dh(r) exp W). (28) 
“=-cc rn=l 

Substituting equation (28) into equation (27), multiplying the result by r&(r)exp(-ike), 
and integrating the result from r = 0 to 1 and fI = 0 to 2n, one obtains 

DS H,, + Ok: H,, = 2icU(& A,, + =kl Ak,) exP cimkl TO) - CD, Bk, + ckl Bkl) exP (-imkl TO)] 

+ P,,[exp (iAT,) + exp (-iAT,)] + 5 2 Wl, cd, nm,pq) 
p.n,c=--m d,m.q=1 

,gl SjexP GA, TO) I 
1 

k = 1,2,. . ., l= 1,2,..., (29) 

where 

T(kl, cd, nm,pq) = 2 G(nm,pq; ab) i t$kl &cd, 4 dr, 

b=l 
0 

(304 

a=k-c, p=k-c-n, (job, c) 
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A, are frequency combinations, and Sj are functions of A,, and B,,. Both nj and Sj are 
listed in the Appendix. 

The solvability conditions can be obtained by requiring the coefficients of exp(kio,, To) 
to vanish from the right-hand sides of equation (29). In general the solvability conditions 
can be written as 

-2ieU& & + ckI AU) + Akr 5 2 ~~~~~~~~~ A,, + B,, k,) + Nfl + %, = 0. (3 1 a) 
R=--m m=l 

where Rfi B are terms due to internal resonances, if any, NiiB are terms due to the external 
excitation, if any, and yklnm are constants. We made use of equations (17j and (30~) to arrive 
at the double sums in equations (3 1). 

4. THE CASE OF NO INTERNAL RESONANCE 

In the absence of internal resonances R$/ B = 0 in equations (31). When I is near ors, 

2 = w,, + Eb, (32) 

N& = _tj,, exp (iaT,), N,B, = gr, exp (-icrT,) (33a, bj 
and 

NA*B,O k for kl # rs, (33c) 

where c is a detuning parameter. Next we let 

A,, = +a,, exp (ia,,) and B,, = +k,, exp (&,J (34a, b) 

where anm, b,,, a,, and &,, are real functions of Tl. 
Substituting equations (33) and (34) into (31) and separating the result into real and im- 

aginary parts yields 

okl(“;l + ckl akl) = 0, akl akl a.h + i$akl ski = O? (35a, b) 

ok,@;, + ckl bkd = 0, mkl bk, a;i + ibk, skl = 0, (Xc, d) 

for kl # rs, 

w,(ai, + c,, ad - t P,, sin 14 = 0, a,, ars 4, + iars s,, + 3& COSP,“, = 0% (3% b) 

w,,Cbi, + G, b,,) - 4 ft, sin di = 0, w,, b,, I%‘, + ibm s,, + 3P,, ~0s & = 0, (3% d 1 

where m m 
s kl= 2 2 Yklnm @urn + CA 

“;--_m Ill=, 

1.4 = aTI - a,, and nl” = aT, - I%,. (37a, bj 
For the steady state solution, the unm, b,,, 

ately from equations (35) that 
p,“, and & are constants. It follows immedi- 

akl = bk, = 0, for kl#rs 

and from equations (36) that neither urs nor b,, can be zero. Thus, the steady state solution 
is given by equations (36) which can be rewritten as 

w,, c,, = (P,,/~G) sin P,“, (38a) 

0,s B + $Y&& + bf,) = -(P,,/~Q,,) cos PG, (38bj 
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w, c,, = VJ,,P,J sin & (394 

% 0 + $Yrs&fs + Vs) = -V,s/%) cm /&. Wb) 

Squaring and adding equations (38) and comparing the result with that obtained by squaring 
and adding equations (39), we obtain 

b,, = ars and h- KS - r-l?“,. (40a b) 

Therefore, using equations (37), (34) and (14), one can write the steady state response as 

W = 2&, ars cos (nr - ,L&) cos re + O(E). (41) 

Consequently, in the absence of internal resonances, the steady state forced response 
consists of standing waves only. One can describe the response with a single mode having 
a frequency equal to that of the excitation, as several investigators have done previously, 
the solution being essentially that of the Duffing equation, 

5. EFFECTS OF AN INTERNAL RESONANCE 

In this section consideration is given to the effects of an internal resonance involving four 
modes : that is, combination of commensurable frequencies of the form 

OCO+wNM +*PQ = *KL. (42) 

Further, we assume that these frequencies are such that equation (30~) is satisfied: that is 

K=C+N+P. (431 

(For a clamped circular plate equations (42) and (43) are satisfied by the following natural 
frequencies (see, e.g., reference [9]): wOi = 10.22, woZ = 39.77, oZ1 = 34.88 and oZ2 = 84.58; 
so that o,,i + woZ + oZ1 = 84.87 z oZ2. The first subscript refers to the number of nodal 
diameters and the second subscript refers to the number of nodal circles including the 
boundary.) To characterize the approximation in equation (42), we introduce a detuning 
parameter, 6i, as follows: 

c&-D + ON&, + OpQ + ED1 = OKL. (44) 

The terms due to the internal resonance, RfiBB, appearing in the solvability conditions 
(31), which can be obtained by considering the Appendix and equations (17), (43) and 
(44), are 

REAL = PKL(&D ANM APQ + &, B,vM BpQ) ew (-ial TI), 

R& = QPQ(AKL AXI ANM + BKL &D BNM) ew WI TA 

RA NM = PNM(AKLAPQ~cD+BKLBPQBcD)~~P(~~,T,), 

R,A, = QCDCAKL A.~M APQ + BKLBNMBPQ)exp(ial &j 

and R,q = 0 for kl # KL, PQ, NM, CD, 

where the Q’s are constants. The expressions for R,fl can be obtained from those of Ri by 
replacing Akl by &,, Bkl by kkl and r~i by -cl. 

Substituting equations (34) and the expressions for R$’ and N$ B into equations (31) 
and separating the result into real and imaginary parts leads to the following solvability 
conditions : 

(4% b) 

(46% b) 
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for kl= CD, NM, PQ, 

wd&. + cxL ad + BQKL Sk, - NKL sin P& = 0, 
wd& + cKL bKL) + BQKL Sk, - NH. sin I& = 0, (47a, b) 

~KL aKL & + $aKL SKL + QQKL. S~KL. - NKL ~0s P& = 0, 

ou btc, PL f #‘m SKL + $Qu SZ,I. + NK, COS PAL. = 0, (48a, b) 

for kl = KL and 

wkl + (ah f ckl akl) - Nk, sin p.t = 0, ~kdb;~ f ckl bkl) - Nk, Sin & = 0, (4% b:) 

mkI akl ah + iakl skt + Nkl cos pi1 = 0, Wkl bk, /$L + +bk, ski + Nk, COSKt, = 0, (5Oa, b) 

for kl # CD, NM, PQ and KL, where 

Nkl = +Pk, when 1. is near okI, Nkl = 0 when ii is away from c&l, (51a, b) 

Pk4 = c2 TI - aklj p;I = 62 TI - bkh (52a, b:) 

the detuning parameter o, being defined by 1, = okI + .sbz when A is near okl, 

Si, = aNM aPQ aKL Sin CA + b,, bPQ b,, Sin j&, 

% = QNM aPQaKLCOsi& f &MbPQbKL cosfi~, 

%=aPQQKLaCDcosib f bPQbKLbCDcoSI%~ 

s,h = aPQaKLaCDcOsfiA + b,QbKLbCDcoS~,, 

s:Q = aKL QCD aNM sin ,L?* bKL b,, b,M sin pB, ’ 

SsQ=a Q a KL CD NMCoSfiA +bKLbCDhwco~ih 

Sk, = QCD QNM QPQ Sin kA -b bcD bNM bpQ Sin /&, 

S~L=aCDaNMaPQco~~A +bcDbNMbPQcosh 

DA = olTl - aCD- ENM-UPQ + aKL, lis=a,T, -bCD -bNM-fiPQ+bKL. 

It is noted that equations (45)-(50) are analogous to equations (29)-(32) of reference 
[7]. For a steady state solution, al1 a kl, bkI, pa, ,&, p& and & are constants. This leads to 

OkI ckl % - QQk, Sk, - N,, sin pl, = 0, Ok1 ckl bk, - +Qk, s:, - Nkl sin Pt, = 0, (53a, b) 

for kl= CD, NM, and PQ, 

QJKL CKLaKL+ +QK= %L- N~~sin~lllL=O, 

for kl = KL, and 

WKLCKLbKL+ +QKLSL_- N~Lsindi~=O, 

(54a, b) 

WkI CkI akl - Nkl sin & = 0, wkl ckl bk, - N,, cos p,fL = 0, (55a, b) 

for kl# CD, NM, PQ and KL, 

ji; = c1 - a&, - aA&, - &Q + akL = 0, jfi = 01 - bh - hM - bi.Q f &L = 0, (%a, b) 

where aL1 and p;r are given by equations (46) for kl= CD, NM and PQ and by equations 
(48) for kl= KL, 

a’ - prs - o2 - a,, - ’ -0 y p;; = 62 - fi;, = 0, (57% b) 
when I is near w,,. Several possibilities are considered next. 
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5.1. THE CASE OF 1 AWAY FROM ALL OkI 

In this case Nkl = 0 for all kl. Thus equations (53) and (54) lead to 

&I = bkl, for kl = CD, NM,PQ and KL 

and equations (55) lead to 

ak, = btl = 0, for kl # CD, NM,PQ and KL. 

Assuming non-trivial solutions for acD, aNM, apQ, and agLr one finds from equations (53) 
and (54) that 

(%&k)* = -aKL CK~ QcD/wD cCD QK~, (584 

h%hKL)’ = +KL CKL QN.+hNM CNM QKL, (58b) 

~apQ/aKL)2=-w~~C~~ QPQimPQ CPQ QKL. (58c) 

However, for mechanical systems and structural elements, non-trivial solutions cannot exist 
in the absence of external excitations and in the presence of linear viscous damping: that 
is, the systems cannot be self-excited. Consequently, the signs of QcD, QNM, Qpo and QKr_ 
must be the same so that the relationships given by equations (58) are impossible and thus 

acD =a~,+, = aPQ=aKL=O. 

5.2. THE CASE OF A NEAR okl, kl# CD, NM, PQ AND KL 

In this case N,, = NNM = NPQ = NKL = 0, and it follows that acD = aNM = apQ = aKL = 0 
in the steady-state solution, which is governed by equations (49) and (50). These equations 
are identical in structure to equations (36). Hence, the steady-state response is a standing 
wave of the form 

w = 2& a,,cos(& - ,&) cos kB+ O(E). (59) 

5.3. THE CASE OF r? NEAR WcD 

In this case, Nkl = 0, for kl# CD. It follows from equations (53)-(55) and (58) that 
akl = bkl = 0, for kl # CD and hence 

s:, = si, = 0. (60) 

Substituting equation (60) into (45) and (46), one obtains the equations governing the 
solution. These equations are identical in structure to equations (36) and hence the steady 
state response is a standing wave of the form 

w = 2&D acD cos (At - &) cos Ce + Q(s). (61) 

Similar results are obtained for the cases of 1 near aNM and 1 near oPQ. 

5.4. THE CASE OF 1 NEAR OxL 

In this case Nkl = 0 for kl# KL. It follows from equations (55) that akl = b,, = 0, for 
kl # KL. A study of equations (53) and (54) reveals that there are two possibilities as follows. 

(a) acD = aNM = apQ = 0. Therefore, 
Sk, = s;, = 0. (62) 

Substituting equation (62) into (47) and (48), we obtain the equations governing the solution. 
Again these equations are identical in structure to equations (36): that is, the steady state 
response is a standing wave of the form 

w=24KL a,,cos(At- p;tL)cos K8+ O(E). (63) 
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(b) %DI (IN&f and+Q are non-zero. Here one cannot arrive at the result given by equation 
(62) and hence one must conclude that the only possible steady state response is a standing 
wave. The highest mode involved in the internal resonance can appear in the response 
either as a standing wave (i.e., uKL = bKL) of the form 2&,a,,cos(~t - &)cosKO, or as 
a traveling wave (i.e., clxL + bKL) of the form 

LSaKL. cos (At - /& + KO) + b,, cos (At - & - KO)]. 

Thus, the steady-state response is described by either (1) a superposition of the standing 
wave components of all the modes involved in the internal resonance, or (2) a superposition 
of the standing wave components of all the lower modes (i.e., CD, NM, PQ) and the traveling 
wave component of the highest mode (i.e., KL) in the internal resonance. 

6. SUMMARY 

A systematic analysis of the forced response of a clamped circular plate subjected to har- 
monic excitations is presented. The general problem, including asymmetric vibrations and 
traveling waves, is a difficult exercise in analysis and the present approach is shown to provide 
a great deal of clarity and insight into the nature of the non-linear forced resonant response. 
The effects of an internal resonance involving four modes are evaluated. 

The steady state resonant response, in the first approximation, exhibits the following 
features. 

(1) In the absence of internal resonances or when the frequency of excitation is near 
one of the lower modes involved in the internal resonance, the steady state response 
can only have the form of a standing wave. 

(2) When the frequency of the excitation is near the highest mode involved in the 
internal resonance, the steady state response is given by one of the following two 
forms: (a) a superposition of the standing wave components of all the modes in- 
volved in the internal resonance, or (b) a superposition of the standing wave com- 
ponents of all the lower modes and the traveling wave component of the highest 
mode involved in the internal resonance. 

Finally, we note that the general results obtained here can be reduced to those of Part I. 
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APPENDIX 

Coeficients S, andfrequency combinations 
A, in equations (29) 


