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Dysarthria is a neurological impairment of controlling the motor speech articulators that compromises
the speech signal. Automatic Speech Recognition (ASR) can be very helpful for speakers with dysarthria
because the disabled persons are often physically incapacitated. Mel-Frequency Cepstral Coefficients
(MFCCs) have been proven to be an appropriate representation of dysarthric speech, but the question
of which MFCC-based feature set represents dysarthric acoustic features most effectively has not been
answered. Moreover, most of the current dysarthric speech recognisers are either speaker-dependent
(SD) or speaker-adaptive (SA), and they perform poorly in terms of generalisability as a speaker-
independent (SI) model. First, by comparing the results of 28 dysarthric SD speech recognisers, this study
identifies the best-performing set of MFCC parameters, which can represent dysarthric acoustic features
to be used in Artificial Neural Network (ANN)-based ASR. Next, this paper studies the application of ANNs
as a fixed-length isolated-word SI ASR for individuals who suffer from dysarthria. The results show that
the speech recognisers trained by the conventional 12 coefficients MFCC features without the use of delta
and acceleration features provided the best accuracy, and the proposed SI ASR recognised the speech of
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the unforeseen dysarthric evaluation subjects with word recognition rate of 68.38%.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Dysarthria is a neurological impairment that damages the con-
trol of the motor speech articulators, which the malfunction is
caused by the lack of control over the speech-related muscles,
the lack of coordination among them, or their paralysis. It is often
associated with irregular phonation and amplitude [1,2]. As a re-
sult of the impairment, the speech signal is compromised and its
intelligibility is reduced [3,4]. According to [5], low intelligibility
is one of the most detrimental social characteristics of dysarthria
that affects different aspects of the lives of people with such
disability.

Automatic Speech Recognition (ASR) systems identify the uttered
word(s) represented as an acoustic signal and rely on a given lex-
icon to recognise the spoken word(s). They have several applica-
tions in health care, the military, telephony, and other domains
[6]. They can be very helpful for speakers with dysarthria, because
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the disabled persons are often physically incapacitated and unable
to use keyboards [7,8].

Most state-of-the-art commercial ASR systems are designed for
speakers without speech disabilities, (i.e. non-speech disordered)
and exclude those with speech disabilities [9]. These ASR systems
record lower performance for individuals who suffer from dysar-
thria (specifically severe dysarthria [10,11]) than for people with-
out speech disabilities as dysarthric speech is different from
normal speech [12-14]. Therefore, there has recently been a trend
towards creating specialised ASR systems for individuals with dys-
arthria instead of using ASR systems designed primarily for speak-
ers without speech disabilities [3,10,15,16]. Thus, it is necessary to
propose an ASR model specifically built for users with dysarthria
that delivers adequate accuracy; specialised systems have gener-
ally achieved comparatively better performance for people with
speech disorders [2,4,10,16].

According to [9], it is easier for people with dysarthria to utter
isolated words rather than a continuous sequence of words. Simi-
larly, it is more effective when the size of the ASR vocabulary is
small and includes only simple words with one or two syllables
in order to boost recognition rates with reduction or minimisation
of dysarthric ASR errors [9]. Therefore, isolated-word and small-
vocabulary ASR models are in greater demand for dysarthric
speech recognition [10,15].
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Although ASR technologies for dysarthria have been considered,
previous studies show that ASR systems for users with dysarthria
have not yet attained an adequate performance level in terms of
generalisability because of the complex issues related to dysarthric
speech [13]. For example, increased variability due to physical fa-
tigue and frustration of individuals with dysarthria, as well as vari-
ations in the severity levels of the disease, make it difficult to
produce an ASR model to be used by most individuals with
dysarthria.

A speaker-dependent (SD) ASR system is capable of recognising
the speech of users whose acoustic data have been captured while
training the system [17]. If an unknown speaker uses the system,
the accuracy of the system is reduced. In the context of dysarthric
ASR system, as the performance of an ASR system is reduced with-
out proper training data, a major problem with SD paradigm is that
people with dysarthria may be rapidly fatigued by the effort
needed to provide the vocabulary in order to train the ASR system
[18,19].

Dysarthric speaker-adaptive (SA) ASR models are usually
trained as normal speaker-independent (SI) ASR models, but they
adapt to new users’ data while the systems are being used by the
disabled people. Particularly, the systems learn the speech of
new users every time they utter a new word. These systems may
provide low recognition rates during early stage of usage, but the
performance will gradually improve over longer time of usage
[20]. Hence, they do not recognise dysarthric speech properly
out-of-the-box. Furthermore, from the perspective of performance,
none of these models are capable of identifying speech uttered by
unforeseen users accurately, and therefore, they are not suitable
for applications such as in the public telephone network [17].

In contrast, SI speech recognisers are trained with databases
containing utterances of several speakers. These systems are
capable of recognising the speech of a variety of users more
accurately than speaker dependent or adaptive ASR systems,
including the speech of users whose acoustic data have not been
provided during the training process. Consequently, an SI ASR
model for users with dysarthria is required in order to recognise
more accurately the speech of a wide range of users with speech
disabilities; such ASR system can then be accessed by speech-
disabled people using public services [11]. As an illustration,
usage of banking phone services requires a user to input menu
commands by pressing physical numeric buttons located on a
phone. Normal people can easily press the keypad buttons, but
dysarthric people may be unable to do that, because they are
usually physically handicapped. As such, an ASR system is extre-
mely useful in facilitating the disabled people to utter the num-
bers associated with the menu commands. SD or SA ASR models
are incapable of performing this function with sufficient accu-
racy for new users, but SI ASR systems may be capable of pro-
viding the required generalisability and performance so that
speech-disabled people can communicate their instructions by
using public services. Therefore, building SI ASR systems de-
signed for users with dysarthria is an important topic that
should be investigated further.

In order for an ASR system to be operable, acoustic features of
utterances must be presented to the system using a process called
Feature Extraction. The usage of Mel-Frequency Cepstral Coefficients
(MFCCs) is the most common feature-extraction method in ASR
applications, which represent speech signals in cepstral domain
[20]. It is a representation defined as the real cepstrum of a win-
dowed short-time signal derived from the Fast Fourier Transform
of that signal, in which the frequency bands are spaced on the
mel scale equally (inspired by the human auditory perception sys-
tem). MFCCs have been widely used for several speech-disorder
signal-processing tasks such as speech disability classification
[21,22] and dysarthric speech recognition. The MFCCs are usually

presented as mel cepstrum with 12 coefficients, their first and sec-
ond derivatives.

MFCCs have been proven to be an appropriate representation of
dysarthric speech [3,23,24]. Although it is advisable to use all
MFCC-based feature sets (i.e. MFCCs (12 coefficients), Delta-MFCCs,
and Delta/Delta MFCCs and log energies) together for training an
ASR system for normal speakers, it remains unexplored if all the
MEFCC features and/or its combination with the first and second
derivative should be used as inputs to dysarthric ASR systems
based on Artificial Neural Networks (ANNs). This question should
be looked into because normal speech is different from dysarthric
speech, and the same goes for the respective acoustic features.
Selecting the best representation set of dysarthric acoustic features
is a crucial issue because it may directly influence the recognition
accuracy of dysarthric ASR systems.

Hence, this paper attempts to resolve the above issues relating
to dysarthric ASR systems. The objectives of this study are:

1. To identify the most effective MFCC-based feature set for
representing dysarthric acoustic signals in order to provide
an ANN-based dysarthric ASR model. The MFCC parameters
considered here are mel cepstrum with 12 coefficients, their
first and second derivatives, and all the acoustic features.

2. To study the application of ANNs in a fixed-length, isolated-
word SI dysarthric ASR system. The vocabulary size is 11
including 10 digits and silence.

The first objective was achieved by providing 28 SD ANN-based
ASR systems over seven dysarthric subjects, the results of which
were compared. For each speaker, four speech recognisers were
provided, and each of them was trained by one set of the MFCC
parameters (12 MFCCs, Delta-MFCCs, Delta-Delta MFCCs, and all
sets together). The energy information was not considered here,
because it is often difficult for dysarthric individuals to maintain
a steady volume; hence, according to Green et al. [18], the energy
information may not be useful. The second objective was accom-
plished by proposing an automatic dysarthric digit recogniser,
which provides spoken-numerical-command capability; this mod-
el is very useful for users with speech disabilities who are physi-
cally incapacitated. The accuracy and recognition rate of the
proposed SI ASR system were measured by using evaluation data
collected from people with severe, moderate, and mild dysarthria
respectively. It is pertinent to note that no acoustic sample from
the evaluation subjects was considered during the SI ASR training
in order to highlight the generalisability and speaker independency
of the proposed ASR model.

2. Previous works

This section surveys the studies of state-of-the-art ASR technol-
ogies for users with dysarthria. Most of the experimental dysar-
thric speech recognition systems resorted to SD or adaptive
approaches because of the above-mentioned dysarthric speech is-
sues. As an illustration, Hasegawa-Johnson et al. [16] provided two
isolated-word SD ASR systems (10-digit vocabulary) based on the
data collected from three subjects with dysarthria: one female
and two males with one control subject. The speech samples were
recorded using an array of seven microphones and four cameras
mounted on top of a computer monitor. The first system was a
phone-based Hidden Markov Model (HMM), and the second was a
fixed-length isolated-word ASR system based on Support Vector
Machines (SVMs). The former was successful for two subjects, but
it failed for one of the subjects with the tendency to delete conso-
nants in a word. Similarly, the SVM-based ASR failed to perform for
one of the subjects with dysarthria, because he suffered from
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stuttering, but it was successful for the other two subjects. The
authors concluded that HMM-based dysarthric ASR models may
provide robustness against large-scale word-length fluctuations,
and SVM-based models can handle the deletion or reduction of
consonants.

Selouani et al. 3] proposed another SD ASR based on HMMs for
English and French speakers with dysarthria for continuous
speech. The ASR system was trained using speech materials col-
lected from four dysarthric speakers in the Nemours database
and one control speaker; the authors did not mention the severity
of the subjects’ disabilities. The training speech samples were pre-
sented by mel cepstrum with 12 coefficients, their first and second
derivatives, and their log energies. The training set is composed of
50 sentences (300 words), and the test is composed of 24 sentences
(144 words). The average recognition rate of this SD system was
70% for the four dysarthric subjects.

STARDUST, a HMM-based ASR system for users with severe dys-
arthria, was introduced in [10,18]. In this system, a new HMM was
trained every time the user uttered a new word. The training and
evaluation data were obtained from five individuals with dysar-
thria and were presented as mel cepstrum with 12 coefficients
inclusive of their first derivatives. The speech samples were col-
lected by Andrea DA.400 microphone array or Acoustic Magic
Voice Tracker array at distances of 0.5-3 m from the participants.
The system was an isolated-word ASR and included a 10-digit
vocabulary. In another example of isolated-word HMM-based
ASR for users with dysarthria [25], a small and medium vocabulary
size (SD) ASR system for spastic dysarthria was studied.

ANN-based ASR system have been successfully employed for
normal speech as reported in the literature (such as [26-28]).
ANNSs are mathematical models inspired by natural neural systems
that learn the function by capturing information from given input
and output samples. Jayaram and Abdelhamied studied the appli-
cation of ANNs in a SD dysarthric speech recognition system but
with limited success [29]. The authors applied ANNs in a 10-word
ASR system to recognise the speech of one speaker with severe
dysarthria. They provided two recognisers: the first was trained
using MFCC parameters and the second using the formant frequen-
cies; it was found that the first system performed better than the
second and outperformed five human listeners. The results of this
study are not concrete, because the ASR system was trained and
evaluated using only one subject with dysarthria.

Several studies on ANN/HMM hybrid ASR showed that the hy-
brid model is a suitable platform for normal ASR [26]. However,
the applications of hybrid ASR for users with dysarthria have not
been widely studied, because proper ANN training data to perform
dysarthric phoneme recognition are not easily achievable. Neural
networks within the ASR hybrid approach (normal speakers) are
usually applied to provide the language model since the hybrid ap-
proach is phone-based; nonetheless, for dysarthric speech this is a
challenging task, because identifying the phones and labelling
them, i.e. segmenting the speech utterances for dysarthria, is a dif-
ficult, error-prone, and time-consuming process due to low speech
intelligibility of the disabled persons. Moreover, since the unintel-
ligibility of dysarthric speech is because of the combination of
many articulatory behaviours that can lead to phonemic insertion
errors in or around words [30,31], dysarthric ASR approaches that
consider word-based units may be more successful than those
which depend on phone based units.

Despite the above SD and SA systems, there had been a few
unsuccessful attempts to provide SI ASR systems for users with
dysarthria. They were unsuccessful because the error rates were
too high for these speech recognition systems to be of any practical
application. For example, Sanders and his colleagues [13] studied
how a normal, SI HMM-based ASR system behaved when it was
used by people with dysarthria. The ASR, trained with

non-speech-disordered speech data, was evaluated with dysarthric
data acquired from two male speakers with mild dysarthria. The
results for the two evaluation subjects showed WER of 15.4% and
41% respectively. However, the same ASR system had better perfor-
mance when it was trained and tested with dysarthric data, (i.e. as
a SD ASR). The SD ASR system for the same two dysarthric subjects
had WER of 2.6% and zero respectively. Similar results were de-
scribed by Talbot for the ENABL project [14]. The author verified
a commercial ASR system with data collected from 10 individuals
with dysarthria (five males and five females) and reported that
the error rate was as high as 71%.

Sharma and Hasegawa-Johnson considered the database used in
this study to provide two isolated-word HMM-based speech rec-
ognisers for users with dysarthria (one SD and another SA) [19].
For the adaptive model, they provided an isolated-word, SI ASR
system for speakers without disabilities first; the system was
based on the TIMIT database, in which Perceptual Linear Prediction
(PLP) coefficients were extracted as acoustic features. Subse-
quently, the authors utilised the speech of seven speakers with
dysarthria from the UA-Speech database to verify the normal ASR
as a SA dysarthric ASR system. The maximum average recognition
rate for the SA systems was 36.8% and 30.84% for the SD systems.
However, to the best of our knowledge, they did not provide any SI
model for speakers with dysarthria. The method proposed here
achieved better results even as an SI ASR system.

Therefore, the literature review shows that there is no SI ASR
model designed specifically for individuals with dysarthria. This
study explains how ANNs can be trained by word-based acoustic
features to be used as a fixed-length automatic digit recogniser,
which has the capability of recognising speech of unknown dysar-
thric individuals. Such speaker-independent ASR system will ben-
efit a wider range of people with dysarthria. Moreover, each of the
previous studies considered a different set of acoustic features.
Therefore, it is important to identify which MFCC-based feature
set represents dysarthric acoustic features most effectively.

3. Methods
3.1. Materials and participants

A few dysarthric databases were available at the time of writing
this report. However, most of them were not suitable for this re-
search since the context of this study was to provide a fixed-length,
isolated-word digit speech recogniser. Thus, an isolated-word dys-
arthric speech corpus including enough utterances of the vocabu-
lary, (i.e. digits 0-9) was necessary. In addition, training a
speaker-independent ASR system requires a large number of par-
ticipants in order to increase the generalisability of the classifier.
Hence, we used speech materials provided by the UA-Speech Data-
base for dysarthria, which was produced by the University of Illi-
nois [32]. The database contains isolated-words, acoustic samples
of digits, radio alphabet letters, computer commands, and common
words acquired from 19 male and female subjects with dysarthria
of different severity levels, varying from extremely low speech
intelligibility (2%) to high intelligibility (95%). The speech data
were recorded at a sampling rate of 48 kHz using an eight micro-
phones (6 mm in diameter) array with 1.5 in. of spacing between
adjacent microphones. The array was mounted at the top of the
laptop computer screen next to a video camera used to capture
the visual features of speech. Each utterance contains only a single
word so that no word detection module was necessary.

The vocabulary size of the database is 455 but we only utilised
the 10-digit utterances of 16 of the subjects with dysarthria to pro-
vide the required speech materials for ASR modelling and evalua-
tion. For each utterance, there are three examples of each digit
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per subject. Table 1 provides more information about the subjects
with dysarthria used in this research. As can be seen, all dysarthric
severity classes among male and female participants are covered in
order to highlight the capability of the proposed ASR system as an
SI paradigm. Moreover, acoustic samples of 11 speakers without
disabilities for the same vocabulary (provided by the database)
are also considered as control speakers; this will provide a bench-
mark for measuring the performance of the proposed system when
it evaluates data given by normal speech.

Speech therapists often use clinical assessments of intelligibility
in dysarthric speakers for rehabilitation [33]. Speech intelligibility
is the measure of the degree of dysarthric speech understandabil-
ity, and it correlates well with accuracy of SD, SI, or SA dysarthric
ASR systems [8]. UA-Speech database presents dysarthric speech
severity by the speech intelligibility of each speaker. Here we clas-
sified the speech severity as high, moderate, or mild based on the
participants’ intelligibility provided by the database. If the speech
is identified as “High Dysarthric Severity”, its intelligibility is low
(less than 33%). On the other hand, “Mild Dysarthric Severity”
means the intelligibility is high (between 66% and 99%). The rest
of the intelligibility values, ranging between 33% and 66%, are de-
fined as “Moderate Dysarthric Severity”. In this study, we mea-
sured the performance of the proposed SI ASR model for each of
the above severity levels separately.

3.2. The ANN-based ASR model for users with dysarthria

The first step in building an ANN-based ASR system is to train it
with speech utterances. In order to train the ANN, speech samples
must be represented as acoustic features; these features are usu-
ally provided by the feature extraction procedure. After several
experiments with different frame and sliding window sizes, the
best performance was provided by selecting 22 frames of MFCC
features for each digit utterance (each utterance is an isolated di-
git), in which the frame size was 162.5 ms with a sliding hamming
window of 81 ms (i.e. 50% frame overlapping). The number of
frames was selected to match the maximum length of the utter-
ances (1782 ms) provided by the database. The silence at the
beginning and the end of each utterance was removed to ensure
that each utterance commenced with useful acoustic data instead
of silence. Nevertheless, for utterances smaller than 22 frames,
the missing frames were replaced by silence frames at the end of

Table 1
The training and evaluation subjects with dysarthria [32].

Participant  Sex Age Severity of dysarthria
MO1 Male >18 High

MO04 Male >18 High

MO05 Male 21 Moderate
MO06 Male 18 Moderate
MO07 Male 58 High

MO8 Male 28 Mild

M09 Male 18 Mild

M10 Male 21  Mild

M11 Male 48 Moderate
M12 Male 19 High

M14 Male 44 Mild

M16 Male 40 High

F02 Female 30 High

F03 Female 51 High

Fo4 Female 18 Moderate
FO5 Female 22 Mild
Control speakers

CF02°, CF03, CF05, CM01¢, CM04, CM05, CMO06,
CMO08, CM09, CM12, CM13

¢ CF is a female subject and CM is a male subject.

the utterance, in order to solve the length variability issue of dys-
arthric speech. The features extracted from each frame were con-
catenated to the previous frames to create the ANN input vector.
As an illustration, for the experiments conducted with mel cep-
strum with 12 coefficients, each utterance was represented by a
vector of 264 features (12 features per frame x 22 frames); each
feature was assigned to one of the input neurons, (i.e. each 12-in-
put neuron represented one of the frames). When the features
were ready, the ANN was trained with the extracted word-feature
vectors.

We considered MLP neural networks with three layers. The in-
put layer should have one neuron for each speech feature. The out-
put layer must have one neuron for each item in the vocabulary.
The feed-forward and back-propagation training procedure was se-
lected as the training algorithm. The rest of the ANN parameters
are explained in the next section.

Once the utterance of a disabled person is given to the system,
the same feature extraction procedure must be applied to the
utterance before it is fed to the ANN. Next, the extracted features
are provided to the trained ANN as an input vector. Each of the out-
put neurons produces a result for the given input vector, and the
one with the maximum value is identified as the recognised digit.
The entire process of training and using the ANN-based ASR system
for users with dysarthria is shown in Fig. 1.

3.3. Evaluation criteria

Accuracy and word recognition rate are considered as the eval-
uation criteria in order to assess the quality of the ANN-based
speech recognisers produced in this study. These two parameters
are defined as follows [28]:

1. Word Recognition Rate (WRR): The proportion of correct identi-
fication of the words, (i.e. digits) by the ASR system. This con-
veys the correctness of the recognisers’ results when the
evaluation data are given to the system:

WCR

WRR:TWAX 100

In which WCR is the number of words correctly recognised and TWA

is the total words attempted.

2. Normalised Root Mean Square Error (NRMSE): It is used to mea-
sure the accuracy of the system. NRMSE is usually measured
in computational neurosciences in order to show how well a
system learns a model. Here, it is based on the calculation of
the absolute distance between the ideal results (i.e. zero and
one as the min and max of the sigmoid activation function)
and the actual results produced by the ASR system during the
evaluation procedures. This parameter shows how close the
ASR results are to the ideal ones in practice. Lower NRMSE per-
centage values show that the ASR is more accurate. NRMSE is
simply defined as:

NRMSE(%) RMSE
0) = -
MaxldealOutput - MmldealOutput

where RMSE is calculated as:

X201 (IdealOutput; — ANNOutput;)’
RMSE = ¢ o

In which m is the number of evaluation samples and n is the vocab-
ulary size. The parameters Max;geaioutput aNd MiNgeqioutpur Were set as
maximum and minimum of Sigmoid activation function.
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Fig. 1. Providing the ANN-based ASR system for users with dysarthria.

4. Experiments and results

In this section, we explain the two sets of experiments carried
out in achieving the objectives of this study and present the eval-
uation results. They are described in detail as follows:

4.1. Experiment 1: identifying the best-performing set of MFCC
parameters

The first set of experiments was conducted to identify the
best-performing set of MFCC features for representing dysarthric
acoustic signals in order to provide an ANN-based dysarthric
ASR system. We trained 28 ANN-based speech recognisers
(speaker-dependent) for seven dysarthric subjects. Four SD speech
recognisers were provided for each subject, each of which was
trained with a different set of MFCC parameters. These sets are:

(a) 12 MFCCs (i.e. mel cepstrum with 12 coefficients).
(b) 12 MFCCs first derivatives.
(c) 12 MFCCs second derivatives.
(d) Set a+Set b + Set c.

The database provided three different utterances of each digit
per speaker. As training samples, we used one of the utterances to-

gether with the speech samples of three control speakers per digit.
The second and third utterances were considered as ASR evalua-
tion data and were employed to measure the aforementioned eval-
uation criteria.

For each dysarthric subject, the four MLPs were trained with the
same tool and the same acoustic samples, but the extracted fea-
tures were different. The tool was developed in our lab in Matlab
and Visual Studio.Net. The trained MLPs had 60 hidden neurons,
the activation function was Sigmoid, and 5000 training epochs
were performed. It is important to note that the number of hidden
neurons, training epochs, and activation functions was chosen by
trial and error. For the MLPs trained by acoustic feature set d, each
frame included mel cepstrum with 12 coeffs (set a), their first
derivatives (set b), and their second derivatives (set c), (i.e. each
frame was composed of 36 MFCC features). They were trained with
the same parameters, but 130 hidden neurons were chosen, be-
cause the number of input neurons was bigger. Table 2 shows
the results of these experiments.

4.2. Experiment 2: speaker-independent dysarthric ANN-based ASR

The evaluation of the proposed isolated-word SI dysarthric ASR
model is discussed in this section. The speech materials of the 13
speakers with dysarthria described in Table 1 together with those
of nine speakers without dysarthria, (i.e. control speakers) were



S.R. Shahamiri, S.S. Binti Salim / Advanced Engineering Informatics 28 (2014) 102-110 107

Table 2
Speaker-dependent ASR experimental results.
SD ASR no. Participant” Gender Age Speech intelligibility (%) Acoustic feature set® WRR (%) NRMSE (%)
1 MO04 Male 18 2 a 40.00 30.54
2 b 25.00 37.37
3 c 30.00 34.23
4 d 40.00 31.72
5 FO3 Female 51 6 a 57.89 27.81
6 b 36.84 30.11
7 c 42.10 26.08
8 d 47.36 27.71
9 MO07 Male 58 28 a 70.00 20.39
10 b 42.10 27.85
11 c 70.00 22.25
12 d 65.00 20.98
13 F02 Female 30 29 a 68.42 24.84
14 b 36.84 28.65
15 c 42.10 30.99
16 d 52.63 25.81
17 MO06 Male 18 39 a 95.00 14.38
18 b 50.00 27.25
19 c 55.00 2391
21 d 85.00 19.16
21 MO05 Male 21 58 a 85.00 15.39
22 b 60.00 23.21
23 c 75.00 20.56
24 d 70.00 18.42
25 M09 Male 18 86 a 80.00 18.00
26 b 75.00 23.84
27 c 65.00 27.41
28 d 70.00 20.18
A Male control speakers were CM01, CM04, CMO06, and female control speakers were CF02, CF03, CF05.
B The acoustic feature sets are (a) 12 MFCCs, (b) 12 MFCCs first derivatives, (c) 12 MFCCs second derivatives, and (d) a+b +c.
Table 3
Results of the speaker-independent dysarthric ASR system trained with acoustic feature set a.
Evaluation dataset Subject Number of evaluation Correct Incorrect WRR NRMSE
samples classifications classification (%) (%)
High dysarthric severity MO07 77 Digits 44 Digits 33 Digits 57.14 24.53
Moderate dysarthric severity MO05 95 Digits 71 Digits 24 Digits 74.73 21.34
Mild dysarthric severity FO5 89 Digits 60 Digits 29 Digits 67.41 22.77
All dysarthric testing data MO07, M05, FO5, plus 272 Samples 186 Samples 86 Samples 68.38 22.34
silence
Testing data for speakers without CF05, CM05 52 Digits 51 Digits 1 Digit 98.07 8.12
disability
Table 4
Results of the speaker-independent dysarthric ASR system trained with acoustic feature set d.
Evaluation dataset Subject Number of evaluation Correct Incorrect WRR NRMSE
samples classifications classification (%) (%)
High dysarthric severity MO07 77 Digits 38 Digits 39 Digits 49.35 27.77
Moderate dysarthric severity MO05 95 Digits 71 Digits 24 Digits 74.73 19.32
Mild dysarthric severity FO5 89 Digits 48 Digits 41 Digits 53.93 27.03
All dysarthric testing data MO07, M05, FO5, plus 272 Samples 168 Samples 104 Samples 61.76 24.24
silence
Testing data for speakers without CF05, CM05 52 Digits 47 Digits 5 Digits 90.38 12.01

disability

considered for training; the speech materials of the other three
subjects with dysarthria were used for evaluation. The evaluation
subjects with dysarthria were MO07 for High Dysarthric Severity
evaluation (28% speech intelligibility), M05 for Moderate Dysar-
thric Severity evaluation (speech intelligibility 58%), and F05 for
Mild Dysarthric Severity evaluation (speech intelligibility 95%).
The data of CFO5 and CMO05 were also considered during the eval-
uation process in order to study the behaviour of the proposed SI

ASR model when it was used to process unforeseen normal speech
data. It is pertinent to note that no speech data and sample of the
evaluation (test) subjects (both dysarthric and non-disabled sub-
jects) were provided to the recognisers during the training
procedures.

Two SI speech recognisers were provided for subjects with dys-
arthria. For the first system, the mel cepstrum with 12 coefficients,
(i.e. acoustic feature set a) was extracted as acoustic features, but
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Fig. 3. Statistical analysis of NRMSEs (speaker-dependent experiments).

acoustic feature set d was considered for the second system. These
sets of MFCC parameters were chosen, because we noted that these
parameters provided better performance than the other two in SD
experiments, as shown in Table 2.

Both SI recognisers consisted of 11 output neurons (one addi-
tional neuron to recognise silence) and one hidden layer, and train-
ing cycles was 5000. However, the number of input neurons was
264 for the first ASR system and 792 for the second ASR system
(36 MFCC features per frame x 22 frames =792 MFCC features).
The chosen numbers of hidden neurons (h) were set as [34]:

h=((c)x @) +n

where i is the number of input neurons, ¢ = 2/3 is a constant, and n
is the vocabulary size. The training MSE of the first MLP was
0.03566 and the other was 0.00726.

As explained above, the performance of the speech recognisers
presented in this section was evaluated by measuring the WRR as
the rate of correct identification of digits by the recognisers, and
the NRMSE was computed to measure their accuracy. The ideal re-
sult is “1” for a correctly identified digit and “0” otherwise. There-
fore, any other values produced by the output neurons were

regarded as distance errors and were considered while calculating
NRMSE.

Tables 3 and 4 illustrate the results obtained by applying the
testing datasets to the proposed SI speech recognisers accordingly.
The results of each experiment with its associated set of MFCC
parameters are presented in a separate table. The evaluation
parameters were measured for each dysarthric severity level, (i.e.

Speaker-Independent Dysarthric Speech Recognisers WRR Comparison

61.76%

All Dysarthric Subjects 68.38%

s 53.93%
Dysarthric Subject FO5 67.41%
. . 74.73%
Dysarthric Subject M05 74.73%

Dysarthric Subject M07 $7.14%

60%

0% 10%

20%

SI ASR based on acoustic feature set d wSI ASR based on acoustic feature set a

30% 40% 50% 70% 80%

Fig. 4. Word recognition rate comparison of the two speaker-independent ASR
systems.
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Fig. 5. NRMSE Comparison of the two speaker-independent ASR systems (lower is better).

for each dysarthric subject) separately. It should be noted that the
“All Dysarthric Testing Data” dataset includes all of the speech
samples obtained from the three dysarthric evaluation subjects,
in addition to silence samples.

5. Discussion

In order to achieve the first objective of this paper, we provided
28 speaker-dependent ANN-based ASR systems over seven dysar-
thric subjects and trained them with different sets of MFCC param-
eters. Figs. 2 and 3 depict statistical analysis of the experiments
employed to identify the best-performing set of MFCC parameters.
It is shown that the WRRs and NRMSEs followed a Normal distribu-
tion because the minimum of 71.42% of the observations fell be-
tween Mean +SD and 100% between Mean +2SD. The speech
recognisers that were trained with the 12 MFCCs as dysarthric
speech features (set a) provided the highest mean WRR. In addition
to the best recognition rates, they also produced the smallest mean
NRMSE, which shows that the results from these experiments are
more accurate.

Likewise, the results from the speech recognisers that were fed
with mel cepstrum with 12 coefficients inclusive of their first and
second derivatives are acceptable, although they are not as good as
the results of speech recognisers fed with set a acoustic features.
Nonetheless, it is shown that the first or second derivatives of
mel cepstrum coeffs are not good dysarthric speech representa-
tions, because the speech recognisers trained with these parame-
ters (sets b and c) performed poorly in terms of accuracy and WRR.

The second objective of this study is to investigate the applica-
tion of ANNs in a fixed-length isolated-word speaker-independent
dysarthric ASR model. Two ANN-based speech recognisers were
provided using the acoustic materials collected from 13 dysarthric
subjects in addition to the data of nine control speakers. Acoustic
feature set a was used to represent dysarthric speech as input to
the first SI ASR system; the acoustic features of the second ASR sys-
tem were a combination of all the MFCC-based parameters, (i.e.
acoustic feature set d). Figs. 4 and 5 compare the WRR and NRMSE
of these two SI ASR systems respectively, for each of the evaluation
datasets. The SI ASR system based on acoustic feature set a had
consistently produced better results than the ASR system based
on set d. There was only one occasion the ASR system trained with
set d delivered lower NRMSE than the ASR system based on set q,
namely the evaluation of dataset for subject MO5.

Although the results of the SI ASR system, trained with set d, are
quite close to those of set g, it is not recommended to consider all
the MFCC parameters together for ANN-based, speaker-indepen-
dent dysarthric ASR systems. The reason being that it needs a huge
ANN to learn the acoustic features; it may not be practical and
effective in terms of performance when the system is deployed
in low-capacity devices. In our experiments, the SI ASR system

trained with acoustic feature set d used an ANN with 1338 neurons
and 430 K synaptic weights; training the system by using such a
big ANN requires a considerable amount of computational re-
sources. On the other hand, when the ASR system was trained with
12 MFCCs, it used an ANN with only 462 neurons and about 51 K
synaptic weights. This means ANN trained with set a is much smal-
ler than the ANN trained with set d. In addition, the ASR system
which used mel cepstrum with 12 coefficients produced better re-
sults. Judging from the better results of the ASR system trained
with acoustic feature set g, it can be concluded that ANNs can clas-
sify dysarthric speech more accurately when dysarthric acoustic
features are presented as mel cepstrum with 12 coefficients.

6. Conclusions

In this paper we studied the application of ANNs in an SI ASR
model for individuals with dysarthria. In addition, several SD
ANN-based speech recognisers for users with dysarthria were pro-
vided, and the results were compared in detail. The purpose is to
investigate and to ascertain the best MFCC-based feature set that
can represent dysarthric acoustic features; the representation is
then used by an ANN-based SI ASR system designed for individuals
with dysarthria. The performance of the proposed ASR models was
measured in terms of word recognition rate and accuracy of eval-
uation. Speech samples of the subjects with speech disabilities
were evaluated by the proposed SI ASR systems for each dysarthric
severity level separately. The speech data of the evaluation sub-
jects were not included for the training of the SI speech recognis-
ers. This exclusion of speech data of the evaluation subjects
allows the generalisability of the proposed models to be evaluated.

The results show that mel cepstrum with 12 coefficients can be
selected as the best set of MFCC acoustic features in order to train
an ANN-based ASR system for speakers with dysarthria. The WRR
of the dysarthric SI ASR model, trained with mel cepstrum includ-
ing 12 coefficients achieved an average of 68.38%. It also produced
98.07% WRR for the speech of unanticipated speakers without
speech disabilities. The highest WRR of speaker-dependent ASR
models was 95%.
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