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Abstract

As compared to the traditional advertising, word-of-mouth (WOM) communications have striking advantages such as
significantly lower cost and much faster propagation, and this is especially the case with the popularity of online social
networks. This paper focuses on the modeling and analysis of the WOM marketing. A dynamic model, known as the
SIPNS model, capturing the WOM marketing processes with both positive and negative comments is established. On
this basis, a measure of the overall profit of a WOM marketing campaign is proposed. The SIPNS model is shown to
admit a unique equilibrium, and the equilibrium is determined. The impact of different factors on the equilibrium of the
SIPNS model is illuminated through theoretical analysis. Extensive experimental results suggest that the equilibrium
is much likely to be globally attracting. Finally, the influence of different factors on the expected overall profit of a
WOM marketing campaign is ascertained both theoretically and experimentally. Thereby, some promotion strategies
are recommended. To our knowledge, this is the first time the WOM marketing is treated in this way.
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1. Introduction

Promotion is a common form of product sales. The third-party advertising on mass media such as TV and news-
paper has long been taken as the major means of promotion. However, this promotion strategy suffers from expensive
cost [1, 2]. Furthermore, it has been found that, beyond the early stage of product promotion, the efficacy of advertis-
ing diminishes [3]. Word-of-mouth (WOM) communications are a pervasive and intriguing phenomenon. It has been
found that satisfied and dissatisfied consumers tend to spread positive and negative comments, respectively, regarding
the items they have purchased and used [4, 5]. As compared to positive comments, negative comments are more
emotional and, hence, are more likely to influence the receiver’s opinion. By contrast, positive comments are more
cognitive and more considered [6–9]. The significant role of WOM in product sales is supported by broad agreement
among practitioners and academics. Indeed, both positive and negative WOM will affect the purchase decision of
potential consumers. Due to striking advantages such as significantly lower cost and much faster propagation, the
WOM marketing outperforms the traditional advertising marketing [10, 11]. With the increasing popularity of online
social networks such as Facebook, Myspace, and Twitter, the WOM marketing has come to be one of the main forms
of product marketing [12].

Currently, the major concern on WOM marketing focuses on finding a set of seeds such that the expected num-
ber of individuals activated from this seed set is maximized [13]. Toward this direction, large number of seeding
algorithms have been reported [14–23]. Additionally, a number of dynamic models capturing the WOM spreading
processes have been suggested [24–34]. However, all the previous work builds on the premise that a single product or
a few competing products are on sale. Typically, customers involved in a marketing campaign may purchase multiple
products. The ultimate goal of such marketing campaigns is to maximize the overall profit. To achieve the goal, it is
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crucial to determine those factors that have significant influence on the overall profit. To our knowledge, so far there
is no literature in this aspect.

This paper addresses the modeling and analysis of the WOM marketing for a consistent set of items. First,
a dynamic model, which is known as the SIPNS model, that characterizes the WOM marketing processes with both
positive and negative comments is established. Second, a measure of the overall profit of a WOM marketing campaign
is introduced. Third, the SIPNS model is shown to admit a unique equilibrium, and the equilibrium is figured out.
Next, the impact of different factors on the equilibrium of the SIPNS model is expounded through theoretical analysis,
and extensive experiments show that the equilibrium is much likely to be globally attracting. Finally, the impact of
different factors on the expected overall profit of a WOM marketing campaign is ascertained through both theoretical
analysis and simulation experiment. On this basis, some promotion strategies are recommended. To our knowledge,
this is the first time the WOM marketing is modeled and analyzed in this way.

The subsequent materials are organized as follows. Section 2 describes the SIPNS model, and presents a measure
of the overall profit. Section 3 studies the SIPNS model. Section 4 reveals the influence of different factors on the
expected overall profit. Finally, Section 5 closes this work.

2. The modeling of the WOM marketing

Suppose a marketer is asked to plan a WOM marketing campaign for promoting a batch of items, with the goal of
achieving the maximum possible overall profit. To achieve the goal, the marketer needs to establish a mathematical
model for the WOM marketing campaign and, thereby, to make a comparison among different marketing strategies in
terms of the overall profit. This section is devoted to the modeling of the WOM marketing.

2.1. The target market and its state
Later on, it will be seen that the expected overall profit of a WOM marketing campaign is closely related to the

WOM marketing process. Now, let us establish a dynamic model characterizing the WOM marketing processes.
Consider a WOM marketing campaign that starts at time t = 0 and terminates at time t = T . Define the target

market for the campaign at time t as the set of all the consumers and potential consumers involved in the campaign at
time t. Let XM(t) denote the size of the target market at time t. Due to the impact of many known or unknown factors,
XM(t) is usually uncertain. Let M(t) denote the expectation of XM(t). Then,

M(t) =

∞∑

n=0

n · Pr{XM(t) = n}, t ∈ [0,T ]. (1)

Henceforth, we assume that M(0) = M0.
In what follows, it is assumed that, at any time, every individual in the target market is in one of the four possible

states: (a) susceptible, which means that the individual hasn’t recently purchased any item but tends to purchase one,
(b) infected, which means that the individual has recently purchased an item but hasn’t yet made any comment on it,
(c) positive, which means that the individual has recently purchased an item and has made a positive comment on it,
and (d) negative, which means that the individual has recently purchased an item and has made a negative comment
on it.

Let XS (t), XI(t), XP(t) and XN(t) denote the number of susceptible, infected, positive and negative individuals at
time t, respectively. Then, the vector

X(t) = (XS (t), XI(t), XP(t), XN(t)) (2)

represents the state of the target market at time t. By the relevant definitions, we have

XS (t) + XI(t) + XP(t) + XN(t) = XM(t), t ∈ [0,T ]. (3)

Due to the impact of a variety of factors, these quantities are all uncertain. Let S (t), I(t), P(t) and N(t) denote the
expectation of XS (t), XI(t), XP(t) and XN(t), respectively.

S (t) =

∞∑

n=0

n · Pr{XS (t) = n}, t ∈ [0,T ], (4)
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I(t) =

∞∑

n=0

n · Pr{XI(t) = n}, t ∈ [0,T ], (5)

P(t) =

∞∑

n=0

n · Pr{XP(t) = n}, t ∈ [0,T ], (6)

N(t) =

∞∑

n=0

n · Pr{XN(t) = n}, t ∈ [0,T ]. (7)

Then, the vector
S(t) = (S (t), I(t), P(t),N(t)) (8)

represents the expected state of the target market at time t.

2.2. A dynamic model capturing the WOM marketing processes

For the purpose of establishing a mathematical model for the WOM marketing processes, let us impose a set of
statistical hypotheses as follows.

(H1) Due to the influence of advertising, at any time new individuals enter the target market and become susceptible
at the average rate µ > 0. We refer to µ as the entrance rate.

(H2) Due to the loss of interest in shopping, at any time an infected (respectively, a positive, a negative) individual
exits from the target market at the average rate δI > 0 (respectively, δP > 0, δN > 0). We refer to δI , δP and δN

as the I-exit rate, P-exit rate, and N-exit rate, respectively. Certainly, we have δP ≤ δI ≤ δN .
(H3) Encouraged by the positive comments, at time t a susceptible individual purchases an item and, hence, becomes

infected at the average rate βPP(t), where βP > 0 is a constant. We refer to βP as the P-infection force.
(H4) Discouraged by the negative comments, at time t a susceptible individual exits from the market at the average

rate βN N(t), where βN > 0 is a constant. We refer to βN as the N-infection force.
(H5) Due to the desire to express the feeling for the recently purchased item, at any time an infected individual makes

a positive (respectively, negative) comment on the item and hence becomes positive (respectively, negative) at
the average rate αP > 0 (respectively, αN > 0). We refer to αP and αN as the P-comment rate and N-comment
rate, respectively.

(H6) Due to the shopping desire, an infected (respectively, a positive) individual tends to purchase one more item
and hence becomes susceptible at the average rate γI > 0 (respectively, γP > 0). We refer to γI and γP as the
I-viscosity rate and P-viscosity rate, respectively. Certainly, we have γI ≤ γP.

Fig. 1 demonstrates these hypotheses schematically.

( )S t ( )I t

( )P t

( )N t

( )PP t
P

N

P

I



( )NN t
I

P

N

Figure 1. A schematic representation of the hypotheses (H1)-(H6).
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This collection of hypotheses implies the following differential dynamical system.


dS (t)
dt

= µ − βPP(t)S (t) − βN N(t)S (t) + γPP(t) + γI I(t), t ∈ [0,T ],

dI(t)
dt

= βPP(t)S (t) − αPI(t) − αN I(t) − γI I(t) − δI I(t), t ∈ [0,T ],

dP(t)
dt

= αPI(t) − γPP(t) − δPP(t), t ∈ [0,T ],

dN(t)
dt

= αN I(t) − δN N(t), t ∈ [0,T ],

(9)

subject to M(0) = M0. We refer to the system as the Susceptible-Infected-Positive-Negative-Susceptible model (the
SIPNS model, for short). The model captures the expected WOM marketing processes.

2.3. A measure of the overall profit

Based on the SIPNS model, we are ready to measure the overall profit of a WOM marketing campaign. Hereafter
we will take the uniform-profit assumption: selling an item will bring about an one-unit profit.

It can be seen from the second equation in the SIPNS model (9) that the excepted increment of the number of
the individuals who purchase an item in the infinitesimal time horizon [t, t + dt) is βPP(t)S (t)dt. Hence, the expected
profit gained in this time horizon is βPP(t)S (t)dt. It follows that the expected overall profit of the marketing campaign
is

J = βP

∫ T

0
P(t)S (t)dt. (10)

Naturally, we will take this quantity as a measure of the overall profit of the marketing campaign.
Obviously, the expected overall profit relies the ten model parameters: the entrance rate, the three exit rates, the

two comment rates, the two infection rates, and the two viscosity rates. So, the expected overall profit can be written
as

J = J(µ, δI , δP, δN , αP, αN , βP, βN , γI , γP). (11)

3. The dynamics of the SIPNS model

The key to the enhancement of the expected overall profit of a WOM marketing campaign is to gain insight into
the dynamics of the SIPNS model. This section is dedicated to the study of the dynamics of the SIPNS model.

3.1. The equilibrium

An equilibrium of a differential dynamical system is a state of the system such that, starting from the state, the
system will always stay in the state. Clearly, the equilibria of a differential dynamical system are the best-understood
states of the system. Therefore, the first step toward understanding the dynamics of a differential dynamical system is
to determine all of its equilibria. The following result determines all the equilibria of the SIPNS model (9).

Theorem 1. The SIPNS model (9) admits a unique equilibrium E∗ = (S ∗, I∗, P∗,N∗), where



S ∗ =
(αP + αN + γI + δI)(γP + δP)

αPβP
,

I∗ =
µαPβPδN(γP + δP)

αPβPδN(αN + δI)(γP + δP) + α2
PβPδPδN + αNβN(γP + δP)2(αP + αN + γI + δI)

,

P∗ =
µα2

PβPδN

αPβPδN(αN + δI)(γP + δP) + α2
PβPδPδN + αNβN(γP + δP)2(αP + αN + γI + δI)

,

N∗ =
µαPαNβP(γP + δP)

αPβPδN(αN + δI)(γP + δP) + α2
PβPδPδN + αNβN(γP + δP)2(αP + αN + γI + δI)

.

(12)
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Proof. Let E = (S , I, P,N) be an equilibrium of the SIPNS model (9). Then,



µ − βPPS − βN NS + γPP + γI I = 0,
βPPS − αPI − αN I − γI I − δI I = 0,

αPI − γPP − δPP = 0,
αN I − δN N = 0.

(13)

By the third and fourth equations of the system, we get that

P =
αP

γP + δP
I, N =

αN

δN
I. (14)

Substituting the system into the second equation of the system (13) and noticing that I , 0, we get that S = S ∗.
Substituting this equation and the system (14) into the first equation of the system (13) and simplifying, we derive that
I = I∗. Substituting this equation into the system (14), we deduce that P = P∗ and N = N∗. The proof is complete.

It follows from this theorem that, starting from the equilibrium E∗, the SIPNS model will always stay in this
equilibrium. Moreover, the location of the equilibrium is determined.

In reality, however, the probability of the event that a differential dynamical system starts from an equilibrium is
often vanishingly small. To have a full qualitative understanding of the dynamics of the system, one must be aware of
the evolutionary trend of the system when starting from an initial state other than any of the equilibria, and this often
involves the stability properties of the equilibrium. An equilibrium is stable if, starting from near the equilibrium, the
system will always stay near the equilibrium. An equilibrium is globally attracting if, starting from any initial state,
the system approaches the equilibrium. An equilibrium is globally stable if it is stable and globally attracting.

Because of the inherent complexity of the SIPNS model, we failed to prove the stability of its equilibrium, let
alone the global stability of the equilibrium. Nevertheless, due to its practical significance and potential application,
the SIPNS model is worth further study. Next, let us turn our attention to the study of the SIPNS model through
computer simulations, with emphasis on the impact of different factors on the dynamics of the model.

All the subsequent theorems are proved either through direct observation or by applying the following lemma.

Lemma 1. Let a, b, c, d > 0. The following claims hold.

(a) The function f1(x) = ax + b
x (x > 0) is strictly decreasing with x <

√
b
a , is strictly increasing with x >

√
b
a , and

attains the minimum at x =

√
b
a .

(b) The function f2(x) = ax+b
cx+d (x > 0) is strictly increasing or strictly decreasing or constant according as ad > bc

or ad < bc or ad = bc.

Proof. The first claim follows from f ′1(x) = a − b
x2 . The second claim follows from f ′2(x) = ad−bc

(cx+d)2 .

3.2. The impact of the entrance rate

By Theorem 1, the entrance rate affects the equilibrium of the SIPNS model in the following way.

Theorem 2. Consider the equilibrium E∗ = (S ∗, I∗, P∗,N∗) of the SIPNS model (9). The following claims hold.

(a) S ∗ is irrelevant to µ.
(b) I∗, P∗ and N∗ are strictly incresing with µ.

Extensive experiments show that, typically, the entrance rate affects the dynamics of the SIPNS model in the way
shown in Fig. 2. In general, it is drawn that, for any entrance rate, the SIPNS model approaches the equilibrium.

5



5

4

3

2

1

0

S(
t)

200150100500

 Time

 
 
 
 

(a)
5

4

3

2

1

0

I(
t)

4003002001000

 Time 

 
 
 
 

(b)

1.0

0.8

0.6

0.4

0.2

0.0

P(
t)

4003002001000

 Time 

 
 
 
 

(c)
100x10

-3

80

60

40

20

0

N
(t

)

4003002001000

 Time 

 
 
 
 

(d)

Figure 2. The time plots of S (t), I(t), P(t) and N(t) for different entrance rates.

3.3. The impact of the three exit rates

By Theorem 1, the I-exit rate affects the equilibrium of the SIPNS model in the following way.

Theorem 3. Consider the equilibrium E∗ = (S ∗, I∗, P∗,N∗) of the SIPNS model (9). The following claims hold.

(a) S ∗ is strictly increasing with δI .
(b) I∗, P∗ and N∗ are strictly decreasing with δI .

Extensive experiments show that, typically, the I-exit rate affects the dynamics of the SIPNS model in the way
shown in Fig. 3. In general, it is drawn that, for any I-exit rate, the SIPNS model approaches the equilibrium.

Let

δ∗P = αP

√
βPδPδN

αNβN(αP + αN + γI + δI)
− γP. (15)

By Theorem 1, the P-exit rate affects the equilibrium of the SIPNS model in the following way.

Theorem 4. Consider the equilibrium E∗ = (S ∗, I∗, P∗,N∗) of the SIPNS model (9). The following claims hold.

(a) S ∗ is strictly increasing with δP.
(b) P∗ is strictly decreasing with δP.
(c) If δ∗P ≤ 0, then I∗ and N∗ are strictly decreasing with δP.
(d) If δ∗P > 0, then I∗ and N∗ are strictly increasing with δP < δ∗P, are strictly decreasing with δP > δ∗P, and attain

their respective maximum at δP = δ∗P.

Extensive experiments show that, typically, the P-exit rate affects the dynamics of the SIPNS model in the way
shown in Fig. 4. In general, it is drawn that, for any P-exit rate, the SIPNS model approaches the equilibrium.

By Theorem 1, the N-exit rate affects the equilibrium of the SIPNS model in the following way.

Theorem 5. Consider the equilibrium E∗ = (S ∗, I∗, P∗,N∗) of the SIPNS model (9). The following claims hold.
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Figure 3. The time plots of S (t), I(t), P(t) and N(t) for different I-exit rates.

(a) S ∗ is irrelevant to δN .
(b) I∗ and P∗ are strictly increasing with δN .
(c) N∗ is strictly decreasing with δN .

Extensive experiments show that, typically, the N-exit rate affects the dynamics of the SIPNS model in the way
shown in Fig. 5. In general, it is drawn that, for any N-exit rate, the SIPNS model approaches the equilibrium.

3.4. The impact of the two comment rates
Let

α∗P = (γP + δP)

√
αNβN(αN + γI + δI)

βPδPδN
. (16)

By Theorem 1, the P-comment rate affects the equilibrium of the SIPNS model in the following way.

Theorem 6. Consider the equilibrium E∗ = (S ∗, I∗, P∗,N∗) of the SIPNS model (9). The following claims hold.

(a) S ∗ is strictly decreasing with αP.
(b) P∗ is strictly increasing with αP.
(c) I∗ and N∗ are strictly increasing with αP < α

∗
P, are strictly decreasing with αP > α

∗
P, and attain their respective

maximum at αP = α∗P.

Extensive experiments show that, typically, the P-comment rate affects the dynamics of the SIPNS model in
the way shown in Fig. 6. In general, it is drawn that, for any P-comment rate, the SIPNS model approaches the
equilibrium.

Let

α∗N =
1

γP + δP

√
αPβPδIδN(γP + δP) + α2

PβPδPδN

βN
. (17)

By Theorem 1, the N-comment rate affects the equilibrium of the SIPNS model in the following way.
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Figure 4. The time plots of S (t), I(t), P(t), and N(t) for different P-exit rates.

Theorem 7. Consider the equilibrium E∗ = (S ∗, I∗, P∗,N∗) of the SIPNS model (9). The following claims hold.

(a) S ∗ is strictly increasing with αN .
(b) I∗ and P∗ are strictly decreasing with αN .
(c) N∗ is strictly increasing with αN < α∗N , is strictly decreasing with α∗N , and attains the maximum at αN = α∗N .

Extensive experiments show that, typically, the N-comment rate affects the dynamics of the SIPNS model in
the way shown in Fig. 7. In general, it is drawn that, for any N-comment rate, the SIPNS model approaches the
equilibrium.

3.5. The impact of the two infection forces
By Theorem 1, the P-infection rate affects the equilibrium of the SIPNS model in the following way.

Theorem 8. Consider the equilibrium E∗ = (S ∗, I∗, P∗,N∗) of the SIPNS model (9). The following claims hold.

(a) S ∗ is strictly decreasing with βP.
(b) I∗, P∗ and N∗ are strictly increasing with βP.

Extensive experiments show that, typically, the P-infection force affects the dynamics of the SIPNS model in
the way shown in Fig. 8. In general, it is drawn that, for any P-infection force, the SIPNS model approaches the
equilibrium.

By Theorem 1, the N-infection rate affects the equilibrium of the SIPNS model in the following way.

Theorem 9. Consider the equilibrium E∗ = (S ∗, I∗, P∗,N∗) of the SIPNS model (9). The following claims hold.

(a) S ∗ is irrelevant to βN .
(b) I∗, P∗ and N∗ are strictly decreasing with βN .

Extensive experiments show that, typically, the N-infection force affects the dynamics of the SIPNS model in
the way shown in Fig. 9. In general, it is drawn that, for any N-infection force, the SIPNS model approaches the
equilibrium.
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Figure 5. The time plots of S (t), I(t), P(t), and N(t) for different N-exit rates.

3.6. The impact of the two viscosity rates
By Theorem 1, the I-viscosity rate affects the equilibrium of the SIPNS model in the following way.

Theorem 10. Consider the equilibrium E∗ = (S ∗, I∗, P∗,N∗) of the SIPNS model (9). The following claims hold.

(a) S ∗ is strictly increasing with γI .
(b) I∗, P∗ and N∗ are strictly decreasing with γI .

Extensive experiments show that, typically, the I-viscosity rate affects the dynamics of the SIPNS model in the way
shown in Fig. 10. In general, it is drawn that, for any I-viscosity rate, the SIPNS model approaches the equilibrium.

By Theorem 1, the P-viscosity rate affects the equilibrium of the SIPNS model in the following way.
Let

γ∗P = αP

√
βPδPδN

αNβN(αP + αN + γI + δI)
− δP. (18)

Theorem 11. Consider the equilibrium E∗ = (S ∗, I∗, P∗,N∗) of the SIPNS model (9). The following claims hold.

(a) S ∗ is strictly increasing with γP.
(b) P∗ is strictly decreasing with γP.
(c) If γ∗P ≤ 0, then I∗ and N∗ are strictly decreasing with γP.
(d) If γ∗P > 0, then I∗ and N∗ are strictly increasing with γP < γ∗P, are strictly decreasing with γP > γ∗P, and attain

their respective maximum at γP = γ∗P.

Extensive experiments show that, typically, the P-viscosity rate affects the dynamics of the SIPNS model in the
way shown in Fig. 11. In general, it is drawn that, for any P-viscosity rate, the SIPNS model approaches the equilib-
rium.

Combining the above discussions, we propose the following conjecture.

Conjecture 1. The equilibrium of the SIPNS model (9) is globally attracting. That is, starting from any initial state,
the model approaches the equilibrium.
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Figure 6. The time plots of S (t), I(t), P(t), and N(t) for different P-comment rates.

4. The expected overall profit of a WOM marketing campaign

This section is dedicated to the study of the impact of different factors on the expected overall profit of a WOM
marketing campaign. First, it should be noted that, when T is large enough, the expected overall profit can be approx-
imated by the following quantity.

J∗ = βPT P∗S ∗ = T
µαPβPδN(αP + αN + γI + δI)(γP + δP)

αPβPδN(αN + δI)(γP + δP) + α2
PβPδPδN + αNβN(γP + δP)2(αP + αN + γI + δI)

. (19)

4.1. The impact of the entrance rate and the three exit rates

The impact of the entrance rate and the three exits rates on J∗ is as follows.

Theorem 12. Consider the SIPNS model (9). The following claims hold.

(a) J∗ is strictly increasing with µ and δN .
(b) J∗ is strictly decreasing with δI and δP.

Extensive experiments show that, typically, the impact of the entrance rate and the three exit rates on the expected
overall profit is as shown in Fig. 12. In general, it is drawn that J is strictly increasing with µ and δN , and is strictly
decreasing with δI and δP. These findings accord with Theorem 12.

In practice, the entrance rate can be enhanced by launching a viral marketing (VM) campaign. That is, the marketer
develops a marketing message and encourages customers to forward this message to their contacts. There are quite a
number of successful VM cases: Hotmail generated 12 million subscribers in just 18 months with a marketing budget
of only $50,000, and Unilevers Dove Evolution campaign generated over 2.3 million views in its first 10 days. These
VM campaigns were successful in part because the marketers effectively utilized VM’s unique potential to reach large
numbers of potential customers in a short period of time at a lower cost. The I-exit rate or the P-exit rate can be
reduced by enhancing customers’ experiences with the purchased products or/and taking promotional measures such
as discounting and distributing coupons. Typically, the N-exit rate is uncontrollable.
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Figure 7. The time plots of S (t), I(t), P(t) and N(t) for different N-comment rates.

4.2. The impact of the two comment rates

The impact of the two comment rates on J∗ is as follows.

Theorem 13. Consider the SIPNS model (9). The following claims hold.

(a) J∗ is strictly increasing with αP.
(b) J∗ is strictly decreasing with αN .

Extensive experiments show that, typically, the impact of the two comment rates on the expected overall profit is
as shown in Fig. 13. In general, it is drawn that J is strictly increasing with αP, and is strictly decreasing with αN .
These findings conform to Theorem 13.

In practice, the P-comment rate can be enhanced, and the N-comment rate can be reduced, by enhancing cus-
tomers’ experiences.

4.3. The impact of the two infection forces

The impact of the two infection forces on J∗ is as follows.

Theorem 14. Consider the SIPNS model (9). The following claims hold.

(a) J∗ is strictly increasing with βP.
(b) J∗ is strictly decreasing with βN .

Extensive experiments show that, typically, the impact of the two infection forces on the expected overall profit
is as shown in Fig. 14. In general, it is drawn that J is strictly increasing with βP, and is strictly decreasing with βN .
These findings agree with Theorem 14. In practice, the P-infection force can be enhanced by enhancing customers’
experiences and, hence, earning positive WOM. The N-infection force is often uncontrollable.
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Figure 8. The time plots of S (t), I(t), P(t) and N(t) under different P-infection forces.

4.4. The impact of the two viscosity rates

See Eq. (18). The impact of the two viscosity rates on J∗ is as follows.

Theorem 15. Consider the SIPNS model (9). The following claims hold.

(a) J∗ is strictly increasing with γI .
(b) If γ∗P ≤ 0, then J∗ is strictly decreasing with γP.
(c) If γ∗P > 0, then J∗ is strictly increasing with γP < γ∗P, is strictly decreasing with γP > γ∗P, and attains the

maximum at γP = γ∗P.

Extensive experiments show that, typically, the impact of the two viscosity rates on the expected overall profit is
as shown in Fig. 15. In general, the following conclusions are drawn.

(a) J is increasing with γI .
(b) There is γ∗∗P (T ) (T > 0) such that (1) γ∗∗P (T )→ γ∗P as T → ∞, (2) if γ∗∗P (T ) ≤ 0, then J is strictly decreasing with

γP, and (3) if γ∗∗P (T ) > 0, then J is strictly increasing with γP < γ
∗∗
P (T ), is strictly decreasing with γP > γ

∗∗
P (T ),

and attains the maximum at γP = γ∗∗P (T ).

These findings comply with Theorem 15.
In practice, the I-viscosity rate can be enhanced by enhancing customers’ experiences or by taking promotional

measures.

5. Conclusions and remarks

WOM marketing processes with both positive and negative comments have been modeled as the SIPNS model,
and a measure of the overall profit of WOM marketing campaigns has been proposed. The SIPNS model has been
shown to admit a unique equilibrium, and the impact of different factors on the equilibrium has been determined.
Furthermore, extensive experiments have shown that the equilibrium is much likely to be globally attracting. Finally,

12



25

20

15

10

5

0

S(
t)

3002001000

 Time

 
 
 
 

(a)
5

4

3

2

1

0

I(
t)

3002001000

 Time

 
 
 
 

(b)

2.5

2.0

1.5

1.0

0.5

0.0

P(
t)

3002001000

 Time

 
 
 
 

(c)
0.4

0.3

0.2

0.1

0.0

N
(t

)

3002001000

 Time

 
 
 
 

(d)

Figure 9. The time plots of S (t), I(t), P(t) and N(t) under different N-infection forces.

the influence of different factors on the expected overall profit has been ascertained. On this basis, some promotion
strategies have been suggested.

Toward this direction, lots of efforts are yet to be made. It is well known that the structure of the WOM network
has significant influence on the performance of a viral marketing [35, 36]. The proposed SIPNS model is a population-
level model and hence does not allow the analysis of this influence. To reveal the impact of the WOM network on
the performance, network-level spreading models [37–40] or individual-level spreading models [41–47] are better
options. The profit model presented in this paper builds on the uniform-profit assumption. However, in everyday life
different products may have separate profits. Hence, it is of practical importance to construct a non-uniform profit
model. Also, a customer may purchase multiple items a time, and the corresponding model is yet to be developed.
Typically, WOM marketing campaigns are subject to limited budgets. The dynamic optimal control strategy against
malicious epidemics [48–52] may be borrowed to the analysis of WOM marketing so as to achieve the maximum
possible net profit.
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Figure 12. The expected overall profit versus (a) the entrance rate, (b) the I-exit rate, (c) the P-exit rate, and (d) the N-exit rate.
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Figure 13. The expected overall profit versus (a) the P-comment rate, and (b) the N-comment rate.
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Figure 14. The expected overall profit versus (a) the P-infection force, and (b) the N-infection force.
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Figure 15. The expected overall profit versus (a) the P-viscosity rate, and (b) the I-viscosity rate.

17


