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Highlihgts

• Analysis of a peak-load pricing framework on a network

• General conditions for existence and uniqueness of the market equilibrium

• Characterization of equilibrium investment and production
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Abstract

In this paper we establish conditions under which uniqueness of market equilibrium is obtained
in a setup where prior to trading of electricity, transmission capacities between different market
regions are fixed. In our setup, firms facing fluctuating demand decide on the size and location
of production facilities. They make production decisions constrained by the invested capacities,
taking into account that market prices (partially) reflect scarce transmission capacities between
the different market zones. For this type of peak-load pricing model on a network we state
general conditions for existence and uniqueness of the market equilibrium and provide a
characterization of equilibrium investment and production. The presented analysis covers the
cases of perfect competition and monopoly—the case of strategic firms is approximated by a
conjectural variations approach. Our result is a prerequisite for analyzing regulatory policy
options with computational multilevel equilibrium models, since uniqueness of the equilibrium
at lower levels is of key importance when solving these models. Thus, our paper contributes
to an evolving strand of literature that analyzes regulatory policy based on computational
multilevel equilibrium models and aims at taking into account individual objectives of various
agents, among them not only generators and customers but also, e.g., the regulator deciding on
network expansion.

Keywords: OR in Energy, Pricing, Peak-Load Pricing, Networks, Uniqueness
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1. Introduction

The peak-load pricing literature analyzes investment incentives in industries where demand
is fluctuating and storability of the output is limited; see [6] for an overview. In such an
environment firms will find it optimal to invest in a differentiated portfolio of base- and peak-
load technologies. For the case of perfectly competitive markets, the unique equilibrium of this
game is welfare optimal, i.e., firms take the right investment and production decisions. The
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approach of peak-load pricing is currently extensively used to analyze electricity markets, e.g.,
by [34] or [31], and many others.

The scope of this paper is to extend existence and uniqueness results of the peak-load
pricing literature to the case where producers and consumers interact on a network. This is
an important contribution to the literature on liberalized electricity markets, where typically
private firms decide on investment and production, guided by incentives from spot market
trading. In such an environment an adequate model of peak-load pricing on a network must
account for the network constraints that the agents face at the spot markets whenever they are
reflected in the spot market prices. One of the results of our analysis is that the consideration
of network constraints in a model of peak-load pricing does not require additional assumptions
to guarantee uniqueness of the equilibrium. That means, all assumptions on cost and demand
functions that guarantee a unique solution in the absence of network considerations will always
guarantee uniqueness when also considering network constraints. The ability to establish a
unique solution of this game is a prerequisite to meaningfully analyze complementary decisions
taken by other agents—such as the regulator’s decisions on network expansion or the regulatory
framework itself; see e.g., the analysis in [21].

In this paper we propose a framework that captures trading at spot markets, where market
prices reflect scarce network capacities. Demand at each node is fluctuating. We analyze a setup
where firms decide on size and location of production facilities and make production decisions
that are constrained by the invested capacities, taking into account regionally differentiated
prices reflecting network constraints. We provide general conditions that allow to establish
uniqueness of the resulting market equilibrium under perfect competition, characterize this
equilibrium, and provide an intuitive example. In an extension we show that our results still
hold if strategic behavior of firms is approximated based on the conjectural variations approach,
analogously to the approach chosen, e.g., by [43].

As a key contribution we show that uniqueness of the market outcome in our setting can be
guaranteed relying on the usual assumptions used in the entire literature on modeling liberalized
electricity markets. In particular, this implies that uniqueness can be obtained without strong
assumptions regarding convexity of investment and production cost. The latter is convenient in
theoretical modeling, but typically not easily applicable, and thus not assumed, in numerical
models. When it comes to applying numerical models in order to answer questions concerning
market design, uniqueness of the outcome is important for several reasons. First, comparison of
market designs in models that lead to multiple predictions of the outcome is difficult. A solution
could be to resort to specifically tailored equilibrium selection procedures, which are, however,
controversially discussed in the literature; see, e.g., [36] for two-stage stochastic programs
or [29] and [37], which apply a specific equilibrium selection mechanism. Second, a model
with multiple outcomes can hardly be used to analyze interaction of the modeled environment
and some complementary decisions. An example is the analysis of the interdependency of
generation investment and line expansion in electricity market models; see, e.g., [30] or [21].

To the best of our knowledge, our contribution is the first to establish uniqueness of the
peak-load pricing equilibrium on a network. This is an important cornerstone to the multilevel
analysis of situations where competitive firms have to make production and investment deci-
sions facing network constraints. As it is well acknowledged in the literature, multiple solutions
of lower level problems hinder the solution, interpretation, and comparison of results obtained
in a multilevel context; see, e.g., [8], [5], or [17]. Our result is thus important to meaningfully
analyze energy policy options in computational equilibrium models, which include network
expansion plans or alternative regulatory regimes.
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It should be emphasized that our approach does not cover cases where further techni-
cal constraints, such as AC or DC flow models in electricity, are reflected in spot market
prices. A prominent example is the consideration of a fully-fledged physical model upon
the determination of spot market prices, as it is practiced in a system with nodal pricing.
Instead, our analysis captures situations where electricity is traded between different market
regions with uniform electricity prices and the transmission capacities between the regions are
predetermined (i.e., they are independent of realized power flows). Note that this approach
of congestion management at the market stage does not perfectly capture physical network
constraints but aims at reflecting the main bottlenecks within the market clearing procedure.
In practice this covers both the case of regular explicit auctions as well as implicit auctions
for the assignment of scarce transmission capacities. Note that from a modeling perspective
where all market participants hold rational expectations and play equilibrium strategies, the
outcome of explicit cross border auctions corresponds to the outcome of fully coordinated
implicit auctions (see, e.g., [11] or [7]). Explicit auctions are typically introduced at early
stages of interconnecting liberalized electricity markets. In the past, these procedures had been
used in markets in North America and also in Australia as well as Europe. Today, while some
European countries switched to more complex flow based coupling, explicit auctions are still
used in Switzerland, Greece, and the Balkan countries. A very prominent example outside
Europe is Latin America, where explicit trading of cross border capacities takes place among
various Latin American countries (see [44]). Note that whenever transmission capacities are
exogenously determined prior to the bidding process also a regime of implicit auctions is fully
covered by our results. However, more recent developments of flow based market coupling in
some European countries or nodal pricing in Northern America are not covered.

As a summary, our study contributes to enabling a rigorous analysis of explicit and implicit
auctioning of scarce transmission capacity as it is typically introduced as a first step to connect
recently liberalized markets. Therefore, besides the applicability to existing systems in Europe
or Latin America, our results can be helpful for the analysis of future developments in Asia
and Africa, where the interconnection of electricity markets may proceed. The consideration
of more complex flow models is out of the scope of this paper and topic of future research.

Our work contributes to several strands of the literature. First, it directly extends the
peak-load pricing literature to peak-load pricing on a network. The seminal contributions to
the analysis of peak-load pricing date back to [2] and [40]. For a more recent summary of the
main findings and contributions see [6]. These contributions establish existence and uniqueness
of the perfectly competitive market equilibrium in the absence of network constraints. More
recently this literature has also been extended to the case of strategic firms, e.g., by [34], [28],
[45], [23], or [43]. Only [45] and [23] consider specific conditions that guarantee uniqueness
of the resulting market equilibrium with strategic firms. In the general case with multiple and
discrete production technologies, however, uniqueness cannot be obtained in a framework with
strategic firms, not even in the absence of network restrictions. In our contribution we thus
chose to approximate the case of strategic interaction by a conjectural variations approach,
similar to the one applied recently by [43], which allows for the establishment of a unique
solution.

Our article also contributes to the literature on market interaction in the presence of
network constraints. This literature dates back to early contributions by [42] and [1], who
were among the first to study optimal pricing on a network with several spatially located
consumers and producers. [27] or [4] build on those seminal contributions to analyze optimal
transmission pricing in electricity markets under nodal pricing—a regime that nowadays is
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used in various electricity markets in the US, Canada, and some other countries. European and
Australian electricity markets, however, predominantly use a system of zonal prices, where
only predetermined “available transfer capacities” between zones are taken into account upon
trading at the spot market. For a discussion also see [35], [11], or [10]. All those studies do not
focus on uniqueness of the problem under consideration and most importantly abstract from
firms’ endogenous choice of production capacities, which is at the heart of our analysis.

The paper is organized as follows. In Sect. 2 we introduce the notation used throughout
the paper and the considered peak-load pricing model is stated. Moreover, an equivalent
reformulation of this model is given, which is used in Sect. 3 to prove the uniqueness of
solutions of the peak-load pricing framework. Section 4 provides an illustrative example of our
findings. Finally, Sect. 5 concludes and states some topics of further research.

2. A Framework of Peak-Load Pricing on a Network

2.1. Notation and Model Formulation

We consider a general transport network modeled by a connected and directed graph G =

(N, A) with node set N and arc set A. Flow on arc a is denoted by fa, which is limited by the arc
capacity f̄a ∈ R+, i.e., | fa| ≤ f̄a. Throughout the paper we make use of the standard δ-notation,
i.e., the set of in- and outgoing arcs of a node set M ⊆ N is given by

δin(M) := {a = (m, n) ∈ A : m < M, n ∈ M},
δout(M) := {a = (n,m) ∈ A : n ∈ M,m < M}.

The time horizon (or scenario set) that we consider in our peak-load pricing framework is
given as an interval T = [t0, te] ⊂ R with t0 < te. Demand dn(t) ≥ 0 is located at every
node n ∈ N. Elastic demand at node n ∈ N and time t ∈ T is modeled by a continuous
function pn(t, ·) : R+ → R. For later reference we note the following additional assumption on
the demand functions:

Assumption 1. All demand functions pn(t, ·), t ∈ T, are strictly decreasing, i.e., ∂d pn(t, d) < 0.

Under Assumption 1, we can specify the definition of our demand functions to pn(t) :
[0, d̄n(t)]→ R+, where d̄n(t) is the unique root of pn(t). Further note that the gross consumer
surplus, which is defined as ∫ dn(t)

0
pn(t, x) dx,

is concave under Assumption 1 for all t ∈ T . Note that the assumption of elastic demand is
standard in economic market models (e.g., compare [33]), irrespectively of whether network
constraints are considered or not.

Moreover, at every node n ∈ N a single production technology is located that is character-
ized by its variable production costs cvar

n ∈ R+ and its capacity investment costs cinv
n ∈ R+. The

chosen setup of a single technology per node is without loss of generality. All of our results
also apply to the situation in which multiple producers with different technologies are located
at the nodes. This can be easily seen by introducing an auxiliary node for every producer at
the node and by connecting the auxiliary nodes with the original nodes by arcs with “infinite”
capacity. Production at time t ∈ T is denoted by yn(t) ∈ R+ and capacity by ȳn ∈ R+, i.e.,
capacity is constant over time. Since actual production is nonnegative and restricted by the
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corresponding capacity, we have 0 ≤ yn(t) ≤ ȳn. It is crucial to note at this point that we
do not impose strict convexity on the cost structure considered throughout this article. Both
marginal cost of investment and of production of each technology is assumed to be constant.
This is closely in line with the entire literature analyzing liberalized electricity markets (see the
literature cited in Sect. 1), where the assumption of increasing marginal cost would be clearly
unusual and unnatural. As a central contribution our results show that uniqueness in our setting
obtains for the non-strict convex cost structure usually relied on in the literature. We remark
that we analyze a perfectly competitive environment, i.e., all firms are price takers. Under
the assumption of strategic firms it is easy to show that multiple equilibria would obtain in
the present setup. Typically, papers that focus on strategic interaction analyze much simpler
frameworks—and often still find multiple equilibria. Since the focus of our paper is to show
uniqueness of the market game (in order to develop a basis to analyze policy proposals with
computational equilibrium setups), we have to restrict attention to the case of perfect competi-
tion. In order to shed lights on a world with positive markups, in Sect. 3.3 we use a simplified
approach that draws on the idea of conjectural variations; see, e.g., [18]. For later reference,
we formalize an additional assumption on the variable production costs.

Assumption 2. All variable production costs cvar
n , n ∈ N, are pairwise distinct.

This is a standard assumption in the peak-load-pricing literature; see, e.g., [6]. In the case
without a network it directly implies that, w.l.o.g., we may assume for all producers n, n′ that
it holds that cvar

n < cvar
n′ implies cinv

n > cinv
n′ . As in our case the location of a producer plays an

important role, we need to use the formulation used in Assumption 2 as it generalizes to the
network setting.

We now state the market model that is considered throughout the paper. To this end, we
make use of our main economic assumption of perfect competition. This implies that “[. . . ] all
consumers and producers act as price takes. The idea behind the price-taking assumption is
that if consumers and producers are small relative to the size of the market they will regard
market prices as unaffected by their own actions”; see page 314 of [33]. Note that given the
assumption of price taking, the specific ownership structure of generation facilities across nodes
is irrelevant. Our assumption that each agent owns a single plant located at a specific node of
the transport network is just made for notational convenience, which delivers equivalent results
than situations where agents own several plants across nodes but still act as price takers. Note
that in the absence of network or production constraints this assumption directly yields the
result that under perfect competition price is equal to marginal cost of production; see, e.g.,
Chap. 10.C in [33]. Our results characterize the unique market equilibrium in the more general
case where both production and network constraints are relevant.

Using the assumption of perfect competition we can formulate the optimization problems
of all agents by using prices πn(t) as exogenously given data. We start with a producer (located
at node n ∈ N), who maximizes its profit by solving the problem

max
yn(·),ȳn

∫

T
πn(t)yn(t) dt −

∫

T
cvar

n yn(t) dt − cinv
n ȳn

s.t. 0 ≤ yn(t) ≤ ȳn, t ∈ T.

In what follows we make the technical assumption that all demand, price, and production
functions are L2(T ), i.e., square-integrable, functions. Thus, considering the optimization
problems of the single players in continuous time leads to infinite-dimensional problems in
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Banach spaces. In this setting, the optimality conditions of the producer at node n state that
there exist β±n (·) ∈ L2(T ;R+) such that

0 = πn(t) − cvar
n + β−n (t) − β+

n (t) for almost all t ∈ T,

0 =

∫

T
β+

n (t) dt − cinv
n ,

0 =

∫

T
yn(t)β−n (t) dt =

∫

T
(ȳn − yn(t))β+

n (t) dt,

0 ≤ yn(t) ≤ ȳn, t ∈ T,

holds; see [24]. On the other hand, the consumer (located at node n) faces the problem

max
dn(·)

∫

T

∫ dn(t)

0
pn(t, x) dx dt −

∫

T
πn(t)dn(t) dt

s.t. dn(t) ≥ 0, t ∈ T,

for which the first-order conditions state the existence of γn(·) ∈ L2(T,R+) satisfying

0 = pn(t, dn(t)) − πn(t) + γn(t) for almost all t ∈ T,

0 =

∫

T
dn(t)γn(t) dt,

0 ≤ dn(t).

Finally, the last player to model is the transmission system operator (TSO), who operates the
transmission network. The TSO faces the optimization problem

max
( fa(·))a∈A

∫

T
(πm(t) − πn(t)) fa(t) dt

s.t. − f̄a ≤ fa(t) ≤ f̄a, t ∈ T,

for every arc a = (n,m), which is equivalent to its first-order optimality conditions, i.e., the
existence of ε±a (·) ∈ L2(T ;R+) with

0 = πm(t) − πn(t) + ε−a (t) − ε+
a (t) for almost all t ∈ T,

0 =

∫

T
( fa(t) + f̄a)ε−a (t) dt =

∫

T
( f̄a − fa(t))ε+

a (t) dt,

− f̄a ≤ fa(t) ≤ f̄a, t ∈ T.

Taking all these optimality conditions together and adding the flow balance equations
∑

a∈δin(n)

fa(t) −
∑

a∈δout(n)

fa(t) − dn(t) + yn(t) = 0, t ∈ T, n ∈ N,

we obtain a mixed complementarity problem in which competitive prices clear the market as it
is well-known for competitive equilibrium models in discrete time. Moreover, it can be seen
that the presented model in continuous time is equivalent to a single welfare maximization
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problem as it is the case for discrete time models as well; see [25]. In our setting, this problem
reads

max
d(·),y(·),ȳ, f (·)

∑

n∈N

∫

T

∫ dn(t)

0
pn(t, x) dx dt −

∑

n∈N

∫

T
cvar

n yn(t) dt −
∑

n∈N

cinv
n ȳn (1a)

s.t.
∑

a∈δin(n)

fa(t) −
∑

a∈δout(n)

fa(t) − dn(t) + yn(t) = 0, t ∈ T, n ∈ N, (1b)

− f̄a ≤ fa(t) ≤ f̄a, t ∈ T, a ∈ A, (1c)

0 ≤ yn(t) ≤ ȳn, t ∈ T, n ∈ N, (1d)

0 ≤ dn(t), t ∈ T, n ∈ N. (1e)

The equivalence can be shown by comparing the first-order optimality conditions of Problem (1)
with the complementarity system consisting of the optimality conditions of all players.

Note that the objective function (1a) models total social welfare, which is the difference
of gross consumer surplus aggregated over all scenarios (first term) and production as well
as capacity investment costs (second and third term). Constraint (1b) models flow balance
for every node in every scenario. It can be shown that the dual values αn(t) are exactly the
competitive equilibrium prices πn(t) of the above mentioned complementarity system which
clear the market. Constraint (1d) states production restrictions according to capacity investment
that is taken once for every node and which is thus independent of a specific time t. The network
model covered by our analysis corresponds to a regular flow model, where flows on each line are
subject to an upper capacity limit; see (1c). In all industries where firms’ interaction is limited
by network constraints those constraints are crucially relevant. Depending on the specifically
considered industry also further constraints might be imposed on the market interaction of
firms. Our results do not cover cases where such further constraints do play a central role. This
is, for instance, the case when the physical transport laws need to be considered as mentioned
in the introduction. In this case, e.g., the assumption of strict convexity of the cost structure or
specifically tailored equilibrium selection procedures could be applied to restore uniqueness.
An explicit and direct application of our results in the case of liberalized electricity markets
is the case of firms’ interaction in different price zones where congestion between zones is
managed by implicit or explicit auction procedures; see, e.g., [10, 11].

We remark that we choose to state our peak-load pricing model (1) in continuous time for
two reasons. First, it allows for a technically easier derivation and exposition of the results
presented in Sect. 3; see, e.g., Assumptions 3 and 4. Second, the setting also allows for an
easy extension to a nondeterministic setting. We may assume that we are given an additional
probability measure on the set T ; in this case the integral over T in (1a) transforms into

Et


∑

n∈N

∫ dn(t)

0
pn(t, x) dx −

∑

n∈N

cvar
n yn(t)

 −
∑

n∈N

cinv
n ȳn,

where the expectation is taken over the given measure. For our results to hold in this case, one
only has to make the technical assumption that the probability measure in question has a square-
integrable density. Moreover, the measure is not restricted to only describe fluctuating demand
over time but can also be used to model uncertainty about the demand (and possibly renewable
supply) situation in the future. This argument illustrates that our approach is able to capture the
incentives to install peak-load plants that respond to shortage events. In this respect, we have
to note that our model captures investment incentives that origin from market prices resulting
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from market clearing at the spot market. Ceteris paribus, for smaller invested capacities market
prices raise; see Assumption 1. The peak-load pricing framework considered is thus not suited
to model the total breakdown of market clearing due to a shortage of installed capacities as it
might occur during a blackout. The analysis of mechanisms to address such problems can thus
not be in the focus of our analysis. Finally, another reason for the consideration of the model in
continuous time is that it is more general than the setting of discrete time: All our assumptions
and theoretical results carry over to the case of discrete time.

Model (1) is a concave optimization problem over a polytopal feasible set, where the
boundedness follows from the production constraints (1d). Note again that in the considered
setting the competitive market outcome can also be obtained equivalently from the welfare
maximization problem. Next to the assumption of price taking behavior (this assumption is
dropped in Sect. 3.3) this requires the absence of externalities and the completeness of markets.
In the context of investment in electricity markets the assumption of complete markets has been
challenged recently by observing that different agents typically tend to have different discount
rates which gives rise to inefficiencies. For a recent analysis of this issue see, e.g., [13, 14].
The present results do not include the case of diverging discount rates, however.

2.2. Model Reformulation
Our goal is to show that the presented peak-load pricing framework has a unique solution.

To this end, we equivalently reformulate Model (1) as

max
ȳ

ψ(ȳ) :=
∫

T
φ(t, ȳ) dt −

∑

n∈N

cinv
n ȳn, (2)

where φ(t, ȳ) is defined as the optimal value function of the subproblem for fixed time t:

φ(t, ȳ) := max
dt ,yt , ft

∑

n∈N

∫ dn(t)

0
pn(t, x) dx −

∑

n∈N

cvar
n yn(t) (3a)

s.t.
∑

a∈δin(n)

fa(t) −
∑

a∈δout(n)

fa(t) − dn(t) + yn(t) = 0, n ∈ N, (3b)

− f̄a ≤ fa(t) ≤ f̄a, a ∈ A, (3c)

0 ≤ yn(t) ≤ ȳn, n ∈ N, (3d)

0 ≤ dn(t), n ∈ N. (3e)

Here and in what follows, quantities without node or arc indices denote the vector of the corre-
sponding quantities; e.g., d := (dn(·))n∈N is the vector of demand functions at all nodes n ∈ N.

Note that the master problem (2) is an unconstrained optimization problem and does not
explicitly depend on the network flow model. Subproblem (3) is again a concave maximization
problem over a polytopal feasible set in which the capacity investments are fixed.

This reformulated model has a strong similarity to a two-stage stochastic program. If we
interpret the time integral (after normalization) as the expected welfare we see that in the first
stage we choose long-term capacity investments which then parameterize the second stage, in
which production and demand realize in dependence on the scenarios.

3. Existence and Uniqueness

Since existence of solutions is trivial (e.g., (d, y, f ) = (0, 0, 0) is always feasible), we focus
on uniqueness of the solution. To this end, we exploit the decomposition into a master- and
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a subproblem introduced in Sect. 2.2. First, we prove uniqueness of the Subproblem (3) in
Sect. 3.1 and then show, using this result, the uniqueness of the master problem (2) in Sect. 3.2.
By this, it directly follows that the original model (1) has a unique solution.

We remark that we choose a proof strategy that heavily relies on the specific formulation
of the problem at hand. The reason is that this way it is possible to gain more insight into the
structure of the solution compared to proof strategies that rely on more general results from the
literature: For instance, the results from [32] could be used to prove uniqueness of demands in
the subproblem but it would not allow for the insight of the existence of price clusters within
every solution.

Before we start by proving the uniqueness of the solution of Problem (1), we note that
replacing the linear cost functions

∑

n∈N

∫

T
cvar

n yn(t) dt,
∑

n∈N

cinv
n ȳn,

in the Objective (1a) by convex cost functions

∑

n∈N

∫

T
ĉvar

n (yn(t)) dt,
∑

n∈N

ĉinv
n (ȳn) (4)

would yield a maximization problem that is strictly concave in d, y, and ȳ and that thus obviously
has a unique solution:

Theorem 1. Consider Problem (1) with strictly convex cost functions (4) and suppose that
Assumption 1 holds. Then, Problem (1) has a unique solution in (d, y, ȳ).

Proof. See, e.g., the results from [32].

Note that the solution does not have to be unique w.r.t. to flows.

3.1. The Subproblem

We begin our considerations about the subproblem with the repetition of the simple
observation that the subproblem is a concave maximization problem over a flow polyhedron
with additional restrictions on the production variables y. The latter implies that the feasible
set is a polytope.

For the sake of simplicity, we drop the argument t in this section. That is, e.g., y =

(yn(t))n∈N ∈ RN denotes the finite vector of production at all nodes for the considered t ∈ T .
The first step is to show that it is sufficient to prove that there is a unique solution if we fix

the binding inequalities. For this, we define sets of active indices in dependence of a feasible
point z := (d, y, f ):

A−f (z) := {a ∈ A : fa = − f̄a}, A+
f (z) := {a ∈ A : fa = f̄a},

A−y (z) := {n ∈ N : yn = 0}, A+
y (z) := {n ∈ N : yn = ȳn},

A−d (z) := {n ∈ N : dn = 0}.

We can now state the following lemma:

Lemma 1. Suppose Assumption 1 holds. Then, exactly one of the two following cases occurs:
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1. There exist demands d∗ and productions y∗ such that every optimal solution of Subprob-
lem (3) is of the form (d∗, y∗, f ) for some flow f .

2. There exist two optimal solutions z′ := (d′, y′, f ′) and z′′ := (d′′, y′′, f ′′) of Subprob-
lem (3) with (d′, y′) , (d′′, y′′) and

A−y (z′) = A−y (z′′), A+
y (z′) = A+

y (z′′),

A−f (z′) = A−f (z′′), A+
f (z′) = A+

f (z′′),

A−d (z′) = A−d (z′′).

As with every two distinct solutions the whole segment between them lies in the feasible
set, the lemma is a consequence of the following observation: In the interior of this segment,
the binding patterns coincide. Hence we can always choose suitable solutions. More formally,
the lemma can be deduced from the following proposition.

Proposition 1. Let zλ := (dλ, yλ, f λ) be an infinite family of optimal solutions for λ ∈ [0, 1] of
the form

(dλ, yλ, f λ) := λ(d1, y1, f 1) + (1 − λ)(d0, y0, f 0).

Let cT z ≤ r be a linear inequality such that cT zλ ≤ r holds for all λ ∈ [0, 1]. Then, exactly one
of the following cases occurs:

1. cT zλ = r for all λ ∈ [0, 1],

2. cT zλ < r for all λ ∈ (0, 1).

Proof. By the definition of zλ we can write cT zλ = λcT z1 + (1 − λ)cT z0. This leads to the
following observations: If cT z0 = cT z1 = r, we are in Case 1 and if cT z0 < r and cT z1 < r both
hold, we are in Case 2. Hence, it remains to treat the case where exactly one of cT z0 = r or
cT z1 = r holds. Without loss of generality we assume that cT z0 = r and cT z1 < r hold. Then,
for λ > 0 we have

cT zλ = λcT z1 + (1 − λ)cT z0 = λcT z1 + (1 − λ)r < λr + (1 − λ)r = r.

Thus, we are in Case 2.

For the following it is advantageous to use the concept of price clusters.

Definition 1. Given a solution z of Subproblem (3), we say that a partition C = {Ci}Ii=1
partitions the node set N into price clusters, if for all C ∈ C holds, that for all nodes in the
cluster C the shadow prices of the flow conservation constraints (i.e., the dual variables of
Constraints (3b)) are equal. We also write C(z) to emphasize the dependence on the solution z.
An arc a = (n,m) is called an inter-cluster arc, if n ∈ Ci and m ∈ C j with i , j and we denote
the set of inter-cluster arcs by Ainter.

We now want to use a result shown by [38] in a slightly different situation; namely that
price clusters of the network are characterized by the binding constraints in (3c). For this we
introduce another partition.

Definition 2. Given a solution z of Subproblem (3), we say that the partition C = {Ci}Ii=1 of
the node set N is the flow-induced partition, if each Ci is a connected component of the graph
G̃(z) = (V, A \ Asat), where Asat := {a ∈ A : | fa| = f̄a}.
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With this definition, the required result reads as follows:

Theorem 2. Let z∗ := (d∗, y∗, f ∗) be an optimal solution of Subproblem (3) and let C(z∗) be
the corresponding flow-induced partition. Then,

φ(ȳ) = max
d,y

∑

n∈N

∫ dn

0
pn(x) dx −

∑

n∈N

cvar
n yn (5a)

s.t.
∑

n∈C
dn −

∑

n∈C
yn = f̂C , C ∈ C(z∗), (5b)

0 ≤ yn ≤ ȳn, n ∈ N, (5c)

0 ≤ dn, n ∈ N, (5d)

where f̂C =
∑

a∈δin(C) f ∗a −
∑

a∈δout(C) f ∗a is the total in- or outflow of zone C. This implies that
C(z∗) is a partition into price clusters.

Proof. The proof is given in AppendixA.

Thus, Lemma 1 combined with the cited result states that whenever there exist two different
optimal solutions, there also exist two different solutions with the same price clusters. Moreover,
the flows between these clusters are unique since they are at their bounds.

Lemma 2. Suppose Assumption 1 holds. Then, exactly one of the two following cases occurs:

1. There exist demands d∗ and productions y∗ such that every optimal solution of Subprob-
lem (3) is of the form (d∗, y∗, f ) for some flow f .

2. There exist two optimal solutions z′ := (d′, y′, f ′) and z′′ := (d′′, y′′, f ′′) of Subprob-
lem (3) with (d′, y′) , (d′′, y′′) such that

(a) C(z′) = C(z′′) and

(b) for z′ and z′′ it holds that Constraint (3c) is tight for an arc a if and only if a is an
inter-cluster arc.

Proof. The lemma follows directly from Lemma 1 with the following additional argument:
Assume there exists an arc a = (n,m) with a ∈ A+

f (z′) and a is not an inter-cluster arc, i.e.,
n,m ∈ C for some C ∈ C. We show that we can modify solution z′ so that we obtain an optimal
solution z̃′ with the same activity pattern with the exception thatA+

f (z̃′) = A+
f (z′) \ {a}. As a

is not an inter-cluster arc, there must exist a path P connecting n and m completely lying in
cluster C such that for all a ∈ P it holds that a < A+

f (z′) ∪A−f (z′), i.e., no flow bound on P is
active. That means it must be possible to send an additional amount of flow ε along P without
violating any bounds. Hence, we can reduce the amount of flow sent along a by ε/2 and send
the same amount along path P. This gives us a new flow f̃ ′. Set z̃′ := (d′, y′, f̃ ′), then the flow
bound for arc a is no longer active. As a was an arbitrary non-inter-cluster arc, we can iterate
this procedure until only flow bounds on inter-cluster arcs are attained. This can be done with
both z′ and z′′ and thus we obtain the desired result.

The last lemma implies that the ambiguity of solutions has to be “inside” the price clusters.
Thus, we only have to consider these clusters in the following. Since the network constraints
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do not play a role within the price clusters, Subproblem (3) for a single cluster reduces to the
concave maximization problem

max
d,y

∑

n∈C

∫ dn

0
pn(x) dx −

∑

n∈C
cvar

n yn (6a)

s.t.
∑

n∈C
dn −

∑

n∈C
yn = f̂C , (6b)

0 ≤ yn ≤ ȳn, n ∈ C, (6c)

0 ≤ dn, n ∈ C, (6d)

where C ⊆ N is the set of nodes of the considered price cluster and f̂C is total in- or outflow of
this cluster; see Theorem 2. The KKT conditions of this problem comprise the dual feasibility
conditions

pn(dn) + α + γn = 0 for all n ∈ C,

−cvar
n − α + β−n − β+

n = 0 for all n ∈ C,

where α ∈ R is the dual variable of Constraint (6b), β−n , β
+
n , n ∈ N, are the dual variables of

the lower and upper production bounds in (6c), and γn is the dual variable of the demand
bounds (6d). This immediately implies a single price pC := −α with pC = pn(dn) for all n ∈ C
with dn > 0. Nodes n with dn = 0 do not contribute to the objective value and hence their price
can be ignored. Moreover,

pC − cvar
n + β−n − β+

n = 0 (7)

holds for all n ∈ C with dn > 0.
Our goal is now to show that productions and demands inside a cluster are uniquely

determined. The flow values within the price clusters, however, are not unique, since we can
always modify a solution with a flow along a cycle as long as we stay inside the bounds. Since
we do not consider, e.g., transportation costs, these ambiguous flows do not interfere with the
optimal demand and production values and thus do not influence the objective function value.
We summarize our findings in the following theorem:

Theorem 3. Suppose Assumptions 1 and 2 hold. Then, there are unique demands d∗C and
production y∗C such that every optimal solution of Model (6) has the form (d∗C , y

∗
C , fC) for some

fC .

Proof. Assume that the price inside the price cluster is given by pC . As the demand functions
pn are strictly decreasing and thus bijective, there is a unique demand dn for every n ∈ C.
Hence, there exists a function dC(p) that maps every price p to the unique aggregate demand
at that price point. We define d̂C(p) := dC(p) − f̂C . As the demand function for each node is
strictly decreasing, the aggregated function d̂C(p) is strictly decreasing as well.

On the production side we can see that given a pC we can immediately determine (by using
Condition (7)) which nodes n ∈ C are definitely not producing (cvar

n > pC), the ones definitely
producing at maximum capacity (cvar

n < pC), and the ones where the production amount is
indeterminate, i.e., between 0 and ȳn (cvar

n = pC). Under Assumption 2 there exists at most
one node such that cvar

n = pC . Hence for all nodes except at most one, the price pC uniquely
determines the production values of the nodes. Moreover, we obtain two functions ymin

C (p) and
ymax

C (p) which are the minimal, resp. maximal, production in the price cluster at a given price p.
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Both of these functions are monotonically increasing. If we intersect the functions d̂C and ymin
C ,

we observe that they have at most one intersection point and analogously for the functions
d̂C and ymax

C . From the construction of ymin
C and ymax

C it then follows that there is exactly one
price p∗C such that ymin

C ≤ d̂C(p∗C) ≤ ymax
C . Hence, every optimal solution of our problem yields

the same price p∗C . From the discussion of the first paragraph the uniqueness of the demands
then follows directly. For the production the uniqueness is also clear for all nodes except at
most one. The production of this last node, however, is also uniquely determined by the market
clearing constraint.

The proof allows us also to conclude that the dual variables β are unique as well; see
Condition (7).

Corollary 1. Suppose Assumption 1 and 2 hold. Then, the difference β+
n − β−n is unique for all

nodes n ∈ N. If ȳn > 0, the values of the dual variables β±n themselves are unique as well.

All in all, we have the following result concerning Subproblem (3):

Theorem 4. Suppose Assumption 1 and 2 hold. Furthermore, let C = {Ci}Ii=1 be the unique
partition of the node set into price clusters, let Ainter := {a = (n,m) ∈ A : n ∈ Ci,m ∈ C j, i , j}
be the set of inter-cluster arcs. Then, the solution (d, y, f ) of Subproblem (3) is unique in
(d, y, fAinter ).

Proof. By Lemma 2 we need to consider two cases. In the first case we are done. We need to
show that the second case cannot occur. This, however, follows directly from Theorem 3.

3.2. The Master Problem

In this section we prove that—given the results of the preceding section—the master
problem (2) has a unique solution. To this end, we prove that the Hessian H(ȳ) of ψ is negative
definite. Since the linear terms

∑
n∈N cinv

n ȳn in (2) vanish in second order, the Hessian of ψ is
completely given by the Hessian of the integral terms. Thus, we have to compute the second
derivative H(ȳ) w.r.t. ȳ of ∫

T
φ(t, ȳ) dt. (8)

We split this section into two parts: In Sect. 3.2.1, we determine the second derivative w.r.t. ȳ
of φ(t, ȳ) for a fixed time t. The subsequent Sect. 3.2.2 then considers the second derivative
of (8).

3.2.1. The Single-Scenario Case
In this section we compute the Hessian for a fixed time t, i.e., the Hessian

H(t, ȳ) = ∇2
ȳȳφ(t, ȳ)

of φ(t, ȳ). The first-order partial derivatives are known from standard sensitivity analysis (see,
e.g., [3]) of convex optimization:

∂

∂ȳn
φ(t, ȳ) = β+

n (t), n ∈ N,

where β+
n (t) is the dual variable corresponding to the upper bound in Constraint (3d). We

note that this condition only holds for ȳn > 0. We will later, however, make an assumption
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Table 1: Subsets of the node set and time horizon as well as (blocks of) considered Hessian matrices (all these sets
depend on ȳ)

Set Explanation

Ci(t) ⊆ N ith price cluster at time t
C(t) = {Ci(t)}It

i=1 Partition of the node set into price clusters for time t
Ai(t) ⊆ Ci(t) Nodes of price cluster i ∈ {1, . . . , Iτ} in time t

with βn(t) > 0

T̂ Times t where solutions of Problem (9) do not satisfy
strict complementarity

Tτ ⊆ T Times t with equal price clusters Ci(t)
T = {Tτ}τ Price cluster specific time horizon partition
Tτ, j ⊆ Tτ times t with equal price clusters and

equal binding production nodes
{Tτ, j} j Price cluster and active production nodes specific

time horizon subset partition

H Hessian of ψ
H(t) Hessian of ψ for a single time t
Hτ Hessians of ψ for the time t ∈ Tτ
Hτ,i Submatrix (block) of Hτ induced by price cluster i
Hτ,i, j Submatrix (block) of Hτ,i induced

by active production nodes

(Assumption 4) that implies this for all nodes n ∈ N. Thus, we now have to compute the
derivative of β+

n (t) with respect to ȳm for all n,m ∈ N. In the following we require a series of
partitions of the node set and the time horizon. An overview over all partitions and subsets
is given in Table 1. For a fixed time t, we obtain a partition C(t, ȳ) = {Ci(t, ȳ)}It

i=1 of the node
set N into price clusters as described in the last section. Now, we consider a single price
cluster Ci(t, ȳ), i.e., we fix some i ∈ {1, . . . , It} for the moment. It can be easily verified that the
first-order conditions of Subproblem (3) imply

β+
n (t) =


pi(t) − cvar

n , if yn(t) = ȳn,

0, if yn(t) < ȳn,

where pi(t) is the price of cluster Ci(t, ȳ). The derivative of β+
n (t) w.r.t. ȳm is obviously zero

for every node m ∈ N in the second case. The first case, i.e., the case in which yn(t) = ȳn with
n ∈ Ci(t, ȳ) holds, is more complicated. Let Ai(t, ȳ) ⊆ Ci(t, ȳ) ⊆ N be the set of nodes of the
price cluster Ci(t, ȳ) that are strictly active, i.e., all nodes m ∈ N with β+

m(t) > 0, which implies
ym(t) = ȳm. As an auxiliary result we first need to compute the derivative of the total demand
of a single cluster with respect to the capacity of a single node of that cluster. To this end, we
first rewrite Model (6) for cluster Ci(t, ȳ) using the aggregated demand function Pi(t, ·) and the
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total demand Di(t):

φCi(t)(ȳ) := max
Di(t),yi(t)

∫ Di(t)

0
Pi(t, x) dx −

∑

n∈Ci(t)

cvar
n yn(t) (9a)

s.t. Di(t) −
∑

n∈Ci(t)

yn(t) = f̂i(t), (9b)

0 ≤ yn(t) ≤ ȳn, n ∈ Ci(t), (9c)

Di(t) ≥ 0. (9d)

Proposition 2. Let t ∈ T and let (D(t), y(t);α(t), β±(t), γ−(t)) be an optimal primal-dual
solution of Problem (9) such that strict complementarity holds. Let n∗ ∈ Ci(t, ȳ) be the node
with largest variable costs in cluster Ci(t, ȳ) with yn∗ (t) > 0. If γ−(t) > 0 or β+

n∗ (t) = 0 then

∂D(t)
∂ȳn

= 0, n ∈ Ci(t, ȳ).

If, however, γ−(t) = 0 and β+
n∗ (t) > 0 holds, then for all n ∈ Ci(t, ȳ), we have

∂D(t)
∂ȳn

=


1, if yn(t) > 0,

0, otherwise.

Proof. After elimination of the dual variables of Constraint (9b), the KKT conditions of
Problem (9) contain the following equations:

P(t,D(t)) − cvar
n + β−n (t) − β+

n (t) + γ−(t) = 0, n ∈ Ci(t, ȳ),

D(t) −
∑

n∈C
yn(t) − f̂i(t) = 0,

β−n (t)yn(t) = 0, n ∈ Ci(t, ȳ),

β+
n (t)(ȳn − yn(t)) = 0, n ∈ Ci(t, ȳ),

γ−(t)D(t) = 0.

This is a system F(x; ȳn) = 0 of equations with x = (D(t), y(t), β±(t), γ−(t)). Since strict
complementarity holds we may apply the implicit function theorem, yielding

JxF · Jȳn x = −Jȳn F,

where, e.g., JxF denotes the Jacobian of F with respect to x. Solving this system of equations
yields the claim.

We observe that

φ(t, ȳ) =

It∑

i=1

φi(t, ȳ) (10)

holds. Now we are able to compute the second partial derivatives of φ(t, ȳ).

Lemma 3. Let ȳ and t be given and assume that the solutions of Problem (9) fulfill strict
complementarity for all i ∈ {1, . . . , It}. If n ∈ Ci(t, ȳ) and m ∈ C j(t, ȳ) with i , j, then

∂

∂ȳm

∂

∂ȳn
φ(t, ȳ) = 0. (11)
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P(D)

cvar
n1

cvar
n2

cvar
n3

Ȳn1 Ȳn2 Ȳn3

D

P(D)

Ȳn1 Ȳn2 Ȳn3

D

P(D)

Ȳn1 Ȳn2 Ȳn3

Figure 1: Illustration of Proposition 2 and Assumption 3; Ȳi :=
∑i

k=1 ȳk. Strict complementarity holds in the left and
right figure, whereas it is violated in the middle case.

If n,m ∈ Ci(t, ȳ) and γ−(t) > 0 or β+
n∗ (t) = 0, where γ−(t), β+

n∗ (t) are the respective dual variables
of Problem (9) for cluster Ci(t, ȳ) and n∗ is defined as in Proposition 2, then

∂

∂ȳm

∂

∂ȳn
φ(t, ȳ) = 0. (12)

Otherwise, i.e., γ−(t) = 0 and β+
n∗ (t) > 0, we have

∂

∂ȳm

∂

∂ȳn
φ(t, ȳ) =


Bi(t, ȳ), if n,m ∈ Ai(t, ȳ),

0, otherwise,
(13)

where Bi(t, ȳ) < 0 is the negative slope of the aggregated demand function Pi(t, ȳ) at the total
demand Di(t, ȳ) of price cluster Ci(t, ȳ).

Proof. Equation (11) follows directly from Equation (10). For the remaining cases we make
the following observation:

∂

∂ȳm

∂

∂ȳn
φ(t, ȳ) =

∂

∂ȳm
β+

n (t).

The KKT conditions of Problem (9) imply

β+
n (t) = Pi(t,Di(t, ȳ)) − cvar

n , n ∈ Ci(t, ȳ) with yn(t) > 0.

Thus, for n ∈ Ci(t) with yn(t) > 0 we can write

∂

∂ȳm
β+

n (t) =
∂

∂ȳm
Pi(t,Di(t, ȳ))

=
∂

∂Di(t)
Pi(t,Di(t, ȳ))

∂

∂ȳm
Di(t, ȳ) = Bi(t, ȳ)

∂

∂ȳm
Di(t, ȳ),

where Di(t, ȳ) is the (unique) total demand in an optimal solution of Model (9) for price cluster
Ci(t, ȳ) in dependence on ȳ.

The remaining Equations (12) and (13) follow directly from Proposition 2.

We write down the necessary property from the preceding lemma.
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Assumption 3. For ȳ let T̂ (ȳ) be the set of all t ∈ T such that there exists a price cluster i ∈
{1, . . . , It} where the unique solution of Problem (9) does not satisfy strict complementarity. We
assume that T̂ (ȳ) has measure zero for all ȳ.

Before we turn to the multi-scenario case, we briefly discuss the mathematical necessity of
Assumption 3 and illustrate the economic interpretation of Proposition 2 and strict complemen-
tarity (or its violation) using the example of the production constraints yn ≤ ȳn and their dual
variables β+

n ≥ 0. We again drop the time index for better readability. Figure 1 illustrates three
possible aggregated demand functions (continuous and strictly decreasing curves) and a single
aggregated supply function for a price cluster. Total demand is positive in all three cases. The
price cluster equilibrium in the first case (left figure) is characterized by the intersection of the
aggregated demand curve and the variable production costs of the second cheapest producer,
say n2. In this case the production of n2 fulfills yn2 ∈ (0, ȳn2 ), i.e., β−n = β+

n = 0, and strict
complementarity holds. Dual feasibility then yields P(D) = cvar

n2
, which can also be seen in the

left figure. Moreover, it can be seen that ∂ȳn D = 0 for all nodes n. The other case satisfying
strict complementarity is illustrated in the right figure: For all producing nodes m it holds
that ym = ȳm. Moreover, β+

n2
= P(D) − cvar

n2
> 0 (dashed line) is the earning of node n2. The

right figure also illustrates that ∂ȳnk
D = 1 for all k ≤ 2 and ∂ȳnk

D = 0 for all k > 2 holds; see
Proposition 2. The only problematic case is shown in the middle figure: Aggregated demand
intersects aggregated supply at the rightmost point (Ȳn2 ) of producer n2 thus yielding yn2 = ȳn2

and β+
n2

= 0, i.e., strict complementarity does not hold. The mathematical severity of this case
is that ∂ȳnk

D does not exist; only directional derivatives exist and equal cvar
n3
− cvar

n2
> 0 and 0,

respectively. Finally, the middle figure suggests that this is a rare event because it only appears
if the aggregated demand curve intersects the supply curve in a finite number of special points,
i.e., Ȳni , i = 1, 2, . . . , out of a continuum of points.

To further illustrate Ass. 3 we consider the case without network constraints. Then, for
every fixed capacity investment there are only finitely many total demand values for which
strict complementarity does not hold. The assumption now states that the set of scenarios in
which these total demand values realize must have zero measure. This is for instance the case if
all scenario sets with equal total demand have zero measure, which is, e.g., the case if D′t , Dt

for all t , t′.

3.2.2. The Multi-Scenario Case
Up to this point, we have computed the second derivative for a fixed time t. We now show

that the complete Hessian

H(ȳ) =

∫

T
H(t, ȳ) dt

of (2) is negative definite. To this end, we partition the time horizon T in

T (ȳ) = {Tτ(ȳ)}τ ∪ T̂ (ȳ)

such that for all τ all times t ∈ Tτ(ȳ) have the same price clusters C(t, ȳ). We remark that there
only exist finitely many τ since there also exist only finitely many price cluster configurations.
This allows us to state the following proposition:

Proposition 3. Suppose Assumption 3 holds. Then, the Hessian H(ȳ) can be written as

H(ȳ) =

∫

T
H(t, ȳ) dt =

∑

τ

∫

Tτ(ȳ)
H(t, ȳ) dt.
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Note that the definition of T (ȳ) requires that the sets Tτ(ȳ) in T are measurable. Under this
assumption the definition permits the notations Hτ(ȳ) and Cτ(ȳ). The following proposition
readily follows from (11) and states that an entry of Hessian H(t, ȳ) corresponding to two
nodes n,m is zero for all nodes in different price clusters and t ∈ Tτ(ȳ).

Proposition 4. Let (H(t, ȳ))n,m denote the entry in row n and column m of the matrix H(t, ȳ).
Then for all n,m ∈ N and for all τ we have that

(H(t, ȳ))n,m = 0, t ∈ Tτ(ȳ),

if n ∈ Cτ,i(ȳ) and m ∈ Cτ, j(ȳ) with i , j.

Note that this proposition yields a block structure of H(t, ȳ), t ∈ Tτ(ȳ), induced by the price
clusters Cτ(ȳ) = {Cτ,i(ȳ)}Iτi=1 at these times. The corresponding matrix block is denoted by
Hτ,i(ȳ) and, after re-ordering of the nodes, we obtain

H(t, ȳ) = diag(Hτ,i(ȳ))Iτ
i=1.

We now partition the times Tτ(ȳ) further into {Tτ, j(ȳ)} j such that Ai(t, ȳ) = Ai(t′, ȳ) holds for
all t, t′ ∈ Tτ, j(ȳ). We denote the corresponding activity patterns by Ai, j(ȳ). The following
proposition is a direct consequence of these partitions.

Proposition 5. For all t, t′ ∈ Tτ, j(ȳ) it holds that

H(t, ȳ)
∣∣∣
Cτ,i

= H(t′, ȳ)
∣∣∣
Cτ,i
,

where H(t, ȳ)
∣∣∣
Cτ,i

denotes the restriction of H(t, ȳ) to the block corresponding to Cτ,i.

This proposition allows us to introduce the notation

Hτ,i, j(ȳ) := H(t, ȳ)
∣∣∣
Cτ,i

for all t ∈ Tτ, j(ȳ). Moreover, note that Hτ,i, j(ȳ) is a matrix with a left-upper block with values
Bτ,i, j(ȳ) < 0 of size |Ai, j(ȳ)| and zeros elsewhere.

The rest of the proof is split up into two parts. First, we show that all Hessians Hτ,i(ȳ) are
negative semi-definite. Second, we show that under additional assumptions, there exist some
Hτ,i(ȳ) that are negative definite. Both results together finally imply the negative definiteness of
the overall Hessian for all ȳ and thus that the peak-load pricing model (1) has a unique solution.

Proposition 6. For all τ and all i, the corresponding block Hτ,i(ȳ) is negative semi-definite.

Proof. Let τ and i be given. Then, by Proposition 5

Hτ,i(ȳ) =
∑

j

∫

Tτ, j(ȳ)
H(t, ȳ)

∣∣∣
Cτ,i

dt =
∑

j

µ(Tτ, j(ȳ))Hτ,i, j(ȳ)

holds with Hτ,i, j(ȳ) being rank-1-matrices in which all non-vanishing entries equal Bτ,i, j(ȳ) < 0.
Here, µ(Tτ, j(ȳ)) is the Lebesgue measure of Tτ, j(ȳ) in T . Since Hτ,i(ȳ) is now shown to be a sum
of negative semi-definite matrices, this shows that Hτ,i(ȳ) itself is negative semi-definite.

Note that from the latter proposition directly follows that Hτ(ȳ) is negative semi-definite
for all τ, since Hτ(ȳ) is a block-diagonal matrix with blocks Hτ,i(ȳ)
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Proposition 7. Let τ and i be given. If the partition {Tτ, j(ȳ)}Jj=1, J = |Cτ,i(ȳ)|, of Tτ(ȳ) can be
chosen so that

Ai, j+1(ȳ) = Ai, j(ȳ) ∪ {n j+1}, Ai,1(ȳ) = {n1}
holds, where the nodes n1, . . . , nJ are ordered in such a way that cvar

nk
< cvar

n` if and only if k < `
for all 1 ≤ k, ` ≤ J, and if µ(Tτ, j(ȳ)) > 0 holds for all j, then Hτ,i(ȳ) is negative definite.

Proof. The partition of the set of times and nodes readily implies

Hτ,i(ȳ) =
∑

j

µ(Tτ, j(ȳ))Hτ,i, j(ȳ) =:
∑

j

H̃τ,i, j(ȳ).

We now define B̃τ,i, j := µ(Tτ, j(ȳ))Bτ,i, j(ȳ). With this notation the following holds:

(H̃τ,i, j(ȳ))ν,ξ =


B̃τ,i, j, if ν, ξ ≤ j,

0, otherwise.

We now apply Gaussian elimination: In the kth step we subtract row J − k + 1 from all rows 1
to J − k + 2. After J − 1 steps this yields the matrix



B̃τ,i,1
B̃τ,i,2 B̃τ,i,2
...

. . .

B̃τ,i,J−1 · · · B̃τ,i,J−1

B̃τ,i,J · · · B̃τ,i,J



.

Since all diagonal elements B̃τ,i, j of the resulting matrix are strictly negative the matrix is
negative definite.

The last proposition leads us to the following assumption:

Assumption 4. There exists a time partition index τ such that for all i = 1, . . . , It, Tτ(ȳ) can
be partitioned as {Tτ, j(ȳ)}Jj=1, J = |Cτ,i(ȳ)|, with

Ai, j+1(ȳ) = Ai, j(ȳ) ∪ {n j+1}, Ai,1(ȳ) = {n1},
where the nodes n1, . . . , nJ are ordered in such a way that cvar

nk
< cvar

n` if and only if k < ` for all
1 ≤ k, ` ≤ J and µ(Tτ, j(ȳ)) > 0 holds for all j.

This assumption is violated if there exist two nodes n, n′ for which the following holds:
For almost all time periods in which the nodes are part of the same price cluster C either both
yt,n = ȳn and yt,n′ = ȳn′ or both yt,n = 0 and yt,n′ = 0 hold. As such, this assumption can be seen
as a natural extension of Assumption 2. Not only do the variable costs need to be distinct, but
there must exist enough scenarios where this matters. If our scenario set does not fulfill the
assumption, i.e., informally speaking, that given two different nodes the following situation
occurs: In almost all scenarios where they are part of the same price cluster they are always
both producing at full capacity or both do not produce at all. In other words, the scenario set is
not large enough to distinguish between these two nodes. Then, it is clear that the solution may
not be unique. With realistic data, however, this should not occur as producers are sufficiently
different and scenario sets are sufficiently large to ensure this condition. An assumption like
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this is also needed in the classical peak-load-pricing setting without consideration of network
constraints: The difference between the variable costs of two producers needs to be large
enough such that there actually exist scenarios where this matters. Assumption 4 is a weaker
formulation since we only need to consider nodes that share price clusters. Summing up all
results of the last sections, we obtain the following main theorem:

Theorem 5. Suppose Assumptions 1–4 hold. Then, the matrix H(ȳ) is negative definite and,
thus, Model (1) has a unique solution in (d, y, fAinter ).

3.3. The Case of Market Power

As we have argued earlier, it is impossible to meaningfully analyze the proposed framework
using a rigorous game theoretic approach to strategic interaction among firms. Various papers
have shown that multiple equilibria already arise in a setup with strategic interaction in the
absence of networks; see, e.g., [45]. In our contribution we thus choose to approximate the
case of strategic interaction by a conjectural variations approach, similar to the one applied
recently by [43], which allows to establish a unique solution. While this approach and its
outcome cannot be related to a proper game structure, it nevertheless might be suitable to
capture important aspects of an environment where firms manage to charge significant markups.

To this end, we replace objective function (1a)

ψ1 :=
∑

n∈N

∫

T

∫ dn(t)

0
pn(t, x) dx dt −

∑

n∈N

∫

T
cvar

n yn(t) dt −
∑

n∈N

cinv
n ȳn

by
ψλ := λψ1 + (1 − λ)ψ0, λ ∈ [0, 1], (14)

where

ψ0 :=
∑

n∈N

∫

T
pn(t, dn(t))dn(t) dt −

∑

n∈N

∫

T
cvar

n yn(t) dt −
∑

n∈N

cinv
n ȳn.

Note that this extension is a convex combination of the situation, in which competitive firms
trade on a market (ψ1) and the case of a monopoly (ψ0). It is easily seen that this extension
only affects the demand terms, i.e.,

ψλ = λ
∑

n∈N

∫

T

∫ dn(t)

0
pn(t, x) dx dt + (1 − λ)

∑

n∈N

∫

T
pn(t, dn(t))dn(t) dt

−
∑

n∈N

∫

T
cvar

n yn(t) dt −
∑

n∈N

cinv
n ȳn

holds. In the following, we show that all results presented so far are also valid for the case of
Objective (14) under the following additional assumption:

Assumption 5. All demand functions pn(t, ·) fulfill Assumption 1 and the additional condition
p′n(t, d) + p′′n (t, d)d < 0, where the derivatives are taken with respect to d.

We note that in the common case where pn(t) is a linear function, Assumption 1 directly
implies Assumption 5.
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Lemma 4. It holds that

ψλ =
∑

n∈N

∫

T

∫ dn(t)

0
pλn(t, x) dx dt −

∑

n∈N

∫

T
cvar

n yn(t) dt −
∑

n∈N

cinv
n ȳn,

where
pλn(t, x) := pn(t, x) + (1 − λ)p′n(t, x)x.

If pn(t) fulfills Assumption 5, then pλn(t) fulfills Assumption 1.

Proof. We only have to consider the demand terms for fixed time t and node n separately. Then,
the proof is a straight forward application of integration by parts:

∫ dn(t)

0
pλn(t, x) dx =

∫ dn(t)

0
pn(t, x) + (1 − λ)p′n(t, x)x dx

=

∫ dn(t)

0
pn(t, x) dx + (1 − λ)

∫ dn(t)

0
p′n(t, x)x dx

=

∫ dn(t)

0
pn(t, x) dx

+ (1 − λ)

(
[pn(t, x)x]dn(t)

0 −
∫ dn(t)

0
pn(t, x) dx

)

= λ

∫ dn(t)

0
pn(t, x) dx + (1 − λ)pn(t, dn(t))dn(t).

The second claim is immediately clear.

This lemma shows that the model using the modified objective (14) is simply the basic peak-
load pricing model (1) with demand functions pn(t) replaced by pλn(t), which are again strictly
decreasing. Thus, all results from Section 3 also apply to the model using Objective (14).

3.4. Characterization and Discussion

We now discuss how the optimal solution of Problem (1) can be characterized. If we
analyze the situation of a single scenario, we observe that prices in neighboring clusters differ
by the shadow price of their saturated connecting arcs. Assume we are given two clusters CP

and CC, where CP supplies more than it demands and CC demands more than it supplies. Then,
the first-order conditions of Problem (3) directly imply that on all arcs connecting CP with CC

the flow direction is from CP to CC and that pCP < pCC . Thus, flow goes from the lower to the
higher price.

Focusing on the full problem, we are interested in how investments are taken. We observe
from the first-order conditions of Problem (2) that for the optimal solution holds that

cinv
n =

∫

T
β+

n (t, ȳ) dt. (15)

This means that only those scenarios contribute to the investment costs of a node, in which the
node has variable costs that are strictly lower than the price in its price cluster, i.e., β+

n (t, ȳ) > 0.
Combining these observations we see that the network structure induces investment in-

centives to install capacity close to consumers: The prices for nodes that consume in many
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scenarios are high and thus it is interesting to invest there. If the network exhibits a persistent
bottleneck that manifests itself in most scenarios then investment in capacity on the demand
side of that bottleneck will be efficient even if variable costs for the respective technology is
higher.

It is also interesting to contrast the possibility of firms to earn money in the different
discussed settings. In the case of perfect competition, one can directly deduce from the KKT
conditions that the firms completely recover their investment and variable costs. The firms
are, however, not able to make a profit. Note that this also applies to multiple technologies per
node; see Sect. 2.1. Intuitively, in the market equilibrium under perfect competition, whenever
a production unit would make positive profits, then it is profitable to increase investment in that
unit such that positive profits finally disappear in equilibrium. This logic applies independently
whether technologies are located at different nodes of the network or at the same node. In the
case of a monopoly, however, the firms are able to make a profit. For firm n the profit is then
given by ∫

T
−p′(t, dn(t))dn(t)2 dt.

In the case where the parameter λ in our conjectural variations approach is between 0 and 1,
the profit is scaled by the factor 1 − λ accordingly.

The comparison to the classical peak-load pricing settings without a network is instructive.
Despite the difference in the respective subproblems (without network the subproblem reduces
to Problem (5) with a single cluster for all times t), the overall structure (15) of the investment
solution is similar. If we have only one price cluster for all times (i.e., we have “no network”),
the investment solution will strictly prefer nodes with low variable costs irrespective of their
position in the network. This can lead to wildly different investment solutions and may
especially lead to over- resp. underinvestment in the case of persistent bottlenecks.

This immediately suggests that zonal pricing could be used in order to solve the trade-off

between the local distribution of capacity investments and network expansion. The issue of
investment incentives and in particular the interdependence with the congestion management
regime has received increasing attention in recent years (see, e.g., [41]). Up to now, the
literature, however, has focused mainly on important issues arising in the short run; see, e.g.,
[10, 12, 19, 26]. The present contribution now helps to link congestion management and
generation investment. Contributions that use the uniqueness result derived in this paper
show that price clusters might adjust incentives in the right direction (see, e.g., [21] and the
references therein). In this context, policy makers and stakeholders are particularly interested
in the proper configuration of price clusters to achieve a welfare improvement (see, for instance,
[9, 15, 16, 41]). In this respect, [22] shows that price clusters need to be configured carefully
in order to actually achieve a welfare improvement. A multilevel mixed-integer model for the
computation of optimal price zone configurations has been proposed very recently in [20].

The proper derivation of an ideal zone configuration with a limited number of zones is still
an open research problem, however.

We finally close this section with some technical remarks on the proven results. The results
are also valid for the case in which we replace the continuous time horizon T = [t0, te] ⊂ R
with a discrete set of time periods T = {t0, t1, . . . , te} with ti < ti+1. However, some of the
assumptions have to be adjusted accordingly.
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1

Generation: cvar = 1 $/MWh, cinv = 2 $/MW
Demand: t1 : p = 8 − d, t2 : p = 8 − d, t3 : p = 4 − d

2

Generation:
cvar = 0.75 $/MWh
cinv = 4 $/MW
Demand:
t1 : p = 30 − d
t2 : p = 16 − d
t3 : p = 8 − d

3

Generation:
cvar = 0.5 $/MWh
cinv = 6 $/MW
Demand:
t1 : p = 16 − d
t2 : p = 30 − d
t3 : p = 8 − d

f +12 = 10 MW

f +23 = 2 MW

f +13 = 10 MW

Figure 2: Three-Node Network

4. Illustrative Example: Three-Node Network

In this section we consider a three-node network that illustrates our concepts and theoretical
results. The network and the scenario set are chosen such that they allow us to discuss all
relevant structural effects that are outcome of our theoretical analysis, but still have manageable
size. Important features of this example are that the price clusters change over time and one
scenario has non-unique flows. The changing price clusters can be directly observed in the
structure of the Hessians corresponding to the different scenarios. As depicted in Fig. 2, the
three nodes are connected by three arcs. At the three nodes investment in production capacity
can take place with investment and production costs as shown in the figure. It can be directly
seen that Assumption 2 holds, i.e., variable costs are pairwise distinct. We consider three
scenarios and, for the ease of presentation, use linear demand functions that vary across these
scenarios and fulfill Assumption 1. The scenarios last 1 h and all data of the corresponding
scenarios are constant during that time. Observe that demand at node 1 is relatively low in all
scenarios. Scenario 1 (scenario 2) is characterized by the high (low) demand at node 2 and a
comparatively low (high) demand at node 3. In scenario 3 overall demand is low.

Table 2 and 3 list parts of the primal and dual solutions. The optimal solution shows that it
is efficient to install 18.12 MW of new capacity at node 1, 14.29 MW at node 2, and 13.46 MW
at node 3. Thus, the amount of installed capacity is ordered with increasing investment costs.
In scenario 1, arcs (1, 2) and (2, 3) are saturated. Therefore, in scenario 1 there are two different
price clusters, which are formed by a flow-induced partition (see Definition 2): C1,1 = {2} and
C1,2 = {1, 3}. As it can be seen in Table 3, both prices (p) and dual variables of corresponding
flow balance constraints (α) are identical for nodes 1 and 3 (see Definition 1). In analogy to
scenario 1, in scenario 2 we also have two price clusters given the saturated lines (1, 3) and
(2, 3). Thus, we have C2,1 = {3} and C2,2 = {1, 2}.

Now consider the last scenario 3, in which no line is saturated. This yields a single price
cluster C3,1 = N. It can be easily seen that the intra-cluster flows are not unique (see Theorem 3)
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Table 2: Parts of the Primal Solution of the Three-Node Network

Scen. d1 d2 d3 y1 y2 y3 f12 f23 f13

1 5.79 26.29 13.79 18.12 14.29 13.46 10 −2 2.33
2 6.21 14.21 25.46 18.12 14.29 13.46 1.91 2 10
3 3.25 7.25 7.25 0 4.29 13.46 2.26 −0.7 −5.51

Table 3: Prices and Parts of the Dual Solution of the Three-Node Network

Scen. p1 p2 p3 α1 α2 α3 β+
1 β+

2 β+
3

1 2.21 3.71 2.21 2.21 3.71 2.21 1.21 2.96 1.71
2 1.79 1.79 4.54 1.79 1.79 4.54 0.79 1.04 4.04
3 0.75 0.75 0.75 0.75 0.75 0.75 0 0 0.25

since adding a small cycle flow is still feasible and does not change the objective function
value.

It can be also seen that the solution satisfies Assumption 3 since it is strictly
complementary—the case of the middle part of Figure 1 does not occur. Moreover, we
see that every node is the most expensive production node in its zone in at least one scenario:
For node 2 this holds in scenario 1, for node 3 in scenario 2, and for node 1 this holds in each
of the three scenarios. Thus, also the last Assumption 4 holds.

Regarding the profits of the firms one can easily check that all of them are zero; see
Section 3.4.

To show that optimal capacity investment is unique, we next compute the Hessian of the
master problem for the considered example. As stated in Proposition 3, the Hessian

H =



−1 − 1
2 − 1

2

− 1
2 − 3

2 0

− 1
2 0 − 11

6



can be expressed as the sum of the Hessians Ht, t = 1, 2, 3:

H1 =



− 1
2 0 − 1

2

0 −1 0

− 1
2 0 − 1

2


, H2 =



− 1
2 − 1

2 0

− 1
2 − 1

2 0

0 0 −1


, H3 =



0 0 0

0 0 0

0 0 − 1
3


.

The Hessian H is negative definite, i.e., Proposition 7 holds, and thus optimal production and
capacity investment is unique (see Theorem 5).

5. Conclusion

In this paper we have analyzed a framework of peak-load pricing on a network where com-
petitive firms take investment and production decisions facing network constraints expressed
by fixed inter-zonal capacities. We have shown existence and uniqueness of the solution and
characterized equilibrium investments. We also presented an approach that sheds light on a
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market where markups can be charged—although a full-fledged analysis of strategic interaction
is not possible in our setup.

As one of the results of our analysis we show that the consideration of network constraints
does not require any additional assumptions compared to those guaranteeing uniqueness of the
equilibrium in a standard peak-load pricing model that disregards network constraints. Our
results are an important prerequisite for the analysis of energy policy proposals using multilevel
computational equilibrium frameworks. These approaches can only be meaningfully used if
lower-level problems have unique solutions that restrict feasible solutions at higher levels. This
has been emphasized by various authors, e.g., [8], [5], or [17]. Our contribution provides such
a result for electricity market analyses. In [21] the result is already used in order to analyze
optimal transmission expansion in liberalized electricity markets under different regulatory
regimes.

However, there are still open issues for future research. For instance, it would be of impact
to establish comparable uniqueness results for different extensions of our model like the case
of transportation costs or a DC load flow model.

Acknowledgements

This research has been performed as part of the Energie Campus Nürnberg and supported
by funding through the “Aufbruch Bayern (Bavaria on the move)” initiative of the state
of Bavaria and the Emerging Field Initiative (EFI) of the Friedrich-Alexander-Universität
Erlangen-Nürnberg through the project “Sustainable Business Models in Energy Markets”.
The authors acknowledge funding through the DFG Transregio TRR 154, subprojects B07 and
B08. The authors would like to thank Miriam Schütte, Alexander Martin, and Vanessa Krebs
for their comments on an earlier version of this paper. Finally, we are also very grateful two
three anonymous referees, whose comments on the manuscript greatly helped to improve the
quality of the paper.

AppendixA. Proof of Theorem 2

For completeness, we sketch a self-contained proof of Theorem 2, which is a variant of a
result given in [38]. For this we need two observations: First, the max-flow-min-cut theorem
immediately allows to us to write down an alternative characterization of the feasibility of
Subproblem (3). This is a restatement of the well-known theorems of Gale and Hoffman for
our particular case, see [39, Chapter 11].

Proposition 8. The vector (d, y, f ) is a feasible solution of Problem (3) if and only if
∑

n∈N dn =∑
n∈N yn and for all C ⊆ N, it holds that

∑

n∈C
dn −

∑

n∈C
yn ≤ f̂C ,

where f̂C =
∑

a∈δin(C) f̄a +
∑

a∈δout(C) f̄a.

The second observation states that if two non-disjoint sets are tight at the upper bound, its
union and intersection are as well. As a byproduct we obtain that in this case the connecting
arcs between these two sets are unused. This result is also well-known, see again [39].
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Proposition 9. Let (d, y, f ) be a feasible solution of Problem (3) and let X,Y ⊆ N with
X ∩ Y , ∅ such that ∑

n∈X

(dn − yn) = f̂X ,
∑

n∈Y
(dn − yn) = f̂Y .

Then the following equations hold as well:
∑

n∈X∩Y

(dn − yn) = f̂X∩Y ,
∑

n∈X∪Y

(dn − yn) = f̂X∪Y .

Now, we are ready to prove Theorem 2.

Proof of Theorem 2 . Set z0 := (d∗, y∗) and let z1 = (d1, y1) be a solution of Problem (5). As
z0 is feasible for Problem (5), φ(z0) ≤ φ(z1) holds. It remains to show that φ(z0) ≥ φ(z1)
holds. If there exists a flow f 1 such that (d1, y1, f 1) is feasible for Problem (3), φ(z1) ≤ φ(z0)
holds and we obtain the desired inequality. Assume no such flow exists. Then it follows from
Proposition 8 that there exists a set U ⊂ N with U , ∅ such that

∑

n∈U
d1

n −
∑

n∈U
y1

n > f̂U .

From the construction of C it follows from Proposition 9 that we may assume that U ⊂ C for a
C ∈ C. SetU to be the set of all such sets U and define zλ := (1 − λ)z0 + λz1 for λ ∈ [0, 1]. It
now follows that there exists a λU > 0 for each U ∈ U such that zλ satisfies

∑

n∈U
dλn −

∑

n∈U
yλn ≤ f̂U .

Set ρ := minU∈U λU . Then, it again follows from Proposition 8 that there exists a flow f such
that (zρ, f ) is feasible for Problem (3). Since ρ > 0, it also follows φ(zρ) > φ(z0), which is a
contradiction to the optimality of z∗. Hence, φ(z0) ≥ φ(z1) holds.
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