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a b s t r a c t

The financial lease is an important financing tool by which the lessee can acquire ownership of equipment

upon the expiration of the lease after making a series of rent payments for the use of the equipment. In this

paper, we consider an online version of this financial lease decision problem in which the decision maker (the

lessee) does not know how long he/she will use the equipment. By assuming, the lessee can use the equip-

ment through two options: financial lease or lease; we define and solve this online financial lease decision

problem using the competitive analysis method. The optimal online strategies are discussed in each financial

lease case with or without down payment. Finally, the optimal strategies are summarized as simple decision

rules.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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. Introduction

The leasing industry has significant impacts on other indus-

ries, and has catalysed economic development in different coun-

ries (Peck, 2014; Vance, 2003). To decide if leasing is a profitable fi-

ancing option, the decision maker should first determine the length

f time the equipment will be used. However, in practice, the ex-

ct length of time for use of some equipment is usually unavail-

ble, so researchers explore well-established techniques in the fully

istribution-free model, i.e., the online model and competitive anal-

sis (Albers, 2003; Borodin & El-Yaniv, 1998), to evaluate their strate-

ies. This technique compares the results obtained with an online

trategy to the result that could have been obtained if one had known

he exact length of time in advance, with the latter scenario repre-

ented by an optimal offline strategy. Thus, the competitive analysis

ims is to design an online strategy with the best possible worst-

ase guarantees. Competitive analysis has been used to study many

roblems within the fields of finance (El-Yaniv, 1998), operations re-

earch (Chen & Wang, 2015; Liu, Chu, Xu, & Zheng, 2010; Zheng,

heng, Xu, & Liu, 2013) and management science (Larsen & Wøhlk,

010).

Karp first formulated the classic “leasing problem” (a.k.a. the Ski-

ental problem) using the following online model and competitive

nalysis method (Karp, 1992): assume the decision maker has two
∗ Corresponding author. Tel.: +86 2885416013.

E-mail address: ycdong@scu.edu.cn (Y. Dong).

t

c

d

ttp://dx.doi.org/10.1016/j.ejor.2015.10.020

377-2217/© 2015 Elsevier B.V. and Association of European Operational Research Societies (

ll rights reserved.
ptions, to lease or purchase the equipment. In the purchase option,

one-time cost is incurred, and thereafter usage is free of charge; in

he lease option, the cost is proportional to usage time, and there is

o one-time cost. The solution is straightforward with competitive

atio 2, i.e., the strategy never pays more than twice the optimum.

here have been many generalizations of this simple problem. For ex-

mple, El-Yaniv, Kaniel, and Linial (1999) incorporated interest rates

nto the model and determined the optimal online strategies. Irani

nd Ramanathan (1998) examined a situation in which the price of

he equipment fluctuates while the rental cost stays constant. More

ecently, Lotker, Patt-Shamir, and Rawitz (2008a, 2008b) and Zhang,

onn, and Xu (2011) proposed the multi-slope ski-rental problem and

he multiple discount option ski-rental problem, respectively. Other

lassic variations of the problem include the replacement problem

El-Yaniv & Karp, 1997), the capital investment problem (Azar et al.,

999) and the Bahncard problem (Fleischer, 2001).

The lease option in all of the above research is an operating lease.

perating leases are contracts for rent. At the end of the contract pe-

iod, the ownership of the rented equipment remains with the rental

ompany. In practice, there is another important leasing category: the

nancial lease. Typically, in a financial lease, the lessee will find re-

uired equipment, and then contact a leasing company (the lessor)

o arrange financing. Legal ownership of the equipment remains with

he lessor until lease ends, at which time the ownership is transferred

o the lessee (Vance, 2003).

In this paper, the decision maker has two options, a lease or finan-

ial lease, to acquire required equipment. In the former option, the

ecision maker pays a rental fee for the equipment, whose ownership
EURO) within the International Federation of Operational Research Societies (IFORS).
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remains with the rental company at any time. In the latter option,

the decision maker either makes or does not make a down payment,

and then pays financial lease fees during the length of time of the

lease for the equipment, whose ownership will be transferred to the

lessee upon the expiration of the lease. The problem then is how

to decide the time to switch to a financial lease when the decision

maker does not know how long he/she will use the equipment. We

will call this problem the online financial lease problem. In this paper,

the optimal strategies to solve the online financial lease problem in

cases with and without a down payment will be presented, and the

optimal strategies will be summarized as simple decision rules.

The following example illustrates a typical result based on the

analysis presented in this paper.

Example

Consider someone wants to use a repertory. There are two op-

tions: lease with a rental fee at $2000 per month, or a financial lease

with a fee of $3000 per month plus a down payment of $10000 and

in 24 months, the ownership will transfer to the lessee. Which policy

guarantees the best performance for any possible length of time it is

used in terms of a competitive analysis?

Answer

The following lease strategy guarantees a cost at most of 141.5 per-

cent of the minimal possible cost, for any possible length of time:

lease this repertory from the first to the 17th month and use the fi-

nancial lease thereafter. On the other hand, if the lessee could nego-

tiate with the rental company to decrease the down payment from

$10000 to zero, then the strategy to lease this repertory for one year

and then use the financial lease the next year can guarantee a maxi-

mum cost of 133.3 percent of the minimum possible cost. In addition,

the above two percentages are the minimum for each case, i.e., the

two strategies are optimal. The details are provided in Sections 5 and

6. Note that there are no assumptions about the distribution of the

length of time in use.

The rest of the paper is organized as follows. Section 2 provides

the precise definition of the online financial lease problem, the com-

petitive strategy, and the competitive ratio. Section 3 then presents

the competitive strategy and the matching lower bound proof for the

problem of a financial lease without down payment. Thus, the com-

petitive strategy obtained in this section is optimal. Next, Section 4

describes the optimal competitive strategies for the problem of a fi-

nancial lease with down payment. We discuss this problem with dif-

ferent cases, and for each we obtain the optimal strategy and opti-

mal competitive ratio. Subsequently, Section 5 summarizes all results

and provides simple decision rules for different cases of the online fi-

nancial leasing problem. The following Section 6 provides numerical

analysis results to illustrate the proposed models and strategies. Fi-

nally, Section 7 presents the concluding remarks and areas for future

research.

2. Problem definition and notations

In this section, we present the precise definition of and notations

for the online financial lease problem.

Formally, in our problem, the decision maker (the lessee) can use

the equipment by lease or financial lease. That is to say, the lessee

can lease the equipment at a cost of c per unit time, or can choose

to use this equipment with a financial lease and pay b ≥ 0 as a down

payment, plus r for each unit time.

The following basic assumptions are used in the online financial

lease problem,
• In financial lease, the lessee will obtain ownership of the

equipment after z payments, and then no longer needs to pay

the financial lease fees;
• The lessee can end a financial lease at any time, even just be-

fore obtaining ownership of the equipment. When the lessee

decides to stop using the equipment within the lease period,

the lease is terminated and the lessor is still the legal owner

of the equipment, and the lessee does not need to pay the re-

maining fees;
• The length of time t for the use of the equipment is unknown.

Let A(T) define the strategy wherein the decision maker leases the

quipment from the start to time T, and uses a financial lease there-

fter, so A(0) represents the strategy that uses a financial lease from

he start, and A(∞) indicates a perpetual lease. Note that this notation

defines all possible strategies.

For an (unknown) length of time to use the equipment t ≥ 0, de-

fine CostA(T)(t) as all costs paid by strategy A(T) from the start to t,

ncluding, if any, the cost of the financial lease fees at time t. We de-

ne Costopt(t) as the minimum cost needed to cover the period from

he beginning to t. A strategy A(T) is said to be α-competitive if there

xists two constants α, β such that

ostA(T)(t) ≤ αCostopt(t) + β (1)

or all possible t, and this strategy is called an online strategy or a com-

etitive strategy. Thus, our task is to acquire the equipment with min-

mal α in (1) for any unknown used time length t. All results in this

aper hold under the stricter form of competitive analysis in which

= 0.

Since strategy A(T) is only determined by parameter T, then our

roblem returns to how to determine the decision variable T. All no-

ations introduced above are summarized in Table 1.

. Financial lease without down payment

In this section, we examine the online financial lease problem

ithout down payment, i.e., down payment b = 0. The analysis here

llustrates the basic ideas for the subsequent general cases. Without

oss generality, we consider r > c, otherwise the lessee should always

hoose to use the equipment via financial lease. Now, the cost of the

ptimal offline strategy is

ostopt(t) =
{

ct, t < rz/c
rz, t ≥ rz/c

Before providing the optimal competitive strategy result, we

resent Lemmas 1 and 2 as follows.

emma 1. Let T ∗ = (r/c − 1)z, the competitive ratio of online strategy

(T∗) is 2 − c/r.

roof. Recall that A(T∗) represents the strategy using a lease during

ime T∗ and then switching to a financial lease from then on. Thus,

he cost of strategy A(T∗) is

ostA(T ∗)(t) =
{

ct, t < T ∗

cT ∗ + r(t − T ∗), T ∗ ≤ t < T ∗ + z
cT ∗ + rz, t ≥ T ∗ + z

Then the ratio of costs between the online strategy A(T∗) and op-

imal offline strategy is

CostA(T ∗)(t)

Costopt(t)
=

⎧⎨
⎩

1, t < T ∗

1
t
(1 − r

c
)T ∗ + r

c
, T ∗ ≤ t < z + T ∗

2 − c
r
, t ≥ z + T ∗

.

The above ratio function is a piecewise continuous function, since

> c, the second function is an increasing function of t; thus, when t =
+ T ∗, that is t = rz/c, the above ratio approaches its greatest value
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Table 1

Notations used in the online financial lease problem.

c Lease cost per unit time

b Down payment

r Financial lease cost per unit time

z Payment duration time when the lessee obtains the equipment

t Length of time the equipment will be needed

A(T) Online strategy to lease the equipment from the start to time T and switch to financial lease

CostA(T)(x) Total cost paid with strategyA(T) from the start to momentx

Costopt(x) Total cost paid with the optimal strategy from the start to momentx
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Fig. 1. Optimal offline cost when b + rz < cz.
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− c/r, meaning the competitive ratio of the online strategy A(T∗) is

− c/r. �

emma 2. The lower bound for the online financial lease problem with-

ut down payment is 2 − c/r.

roof. For all possible online strategies, set the costs of A(T) as

ostA(T)(t) =

⎧⎨
⎩

ct, t < T

cT + r(t − T), T ≤ t < T + z

cT + rz, t ≥ T + z

Let λT (t) = CostA(T)(t)

Costopt (t)
and λT = suptλT (t). According to the defini-

ion of competitive ratio, λT is the competitive ratio of online strategy

(T). We divide the value of T into three cases to discuss the lower

ound.

Case 1: If T < T∗, then

T (t) =

⎧⎪⎪⎨
⎪⎪⎩

1, t < T

T(c−r)+rt
ct

, T ≤ t < T + z
cT+rz

ct
, T + z ≤ t < rz

c

1 + cT
rz

, t ≥ rz
c

This is a piecewise continuous function. When t = z + T, the ra-

io function λT(t) attains its greatest value by the monotonicity of

ach section. Therefore, the competitive ratio of online algorithm A(T)

s λT (z + T) = cT+rz
c(z+T)

. If T < T∗, the smallest value of λT approaches

T∗ = 2 − c/r, which implies that the competitive ratios of all online

trategies A(T) with T < T∗ have a lower bound of 2 − c/r.

Case 2: If T ∗ ≤ T < rz
c , then the cost ratio of the online strategy

ver the offline strategy is

T (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, t < T

T(c−r)+rt
ct

, T ≤ t < rz
c

T(c−r)+rt
rz

, rz
c

≤ t < T + z

1 + cT
rz

, t ≥ T + z

According to the monotonicity of each section of this piecewise

ontinuous function, the above ratio attains its greatest value at t =
+ T, so the competitive ratio is λT = λT (z + T) = 1 + cT

rz . If T∗ ≤ T <

z/ c, the least value of λT approaches λT∗ = 2 − c/r, which implies

hat in the case of T∗ ≤ T < rz/ c), all online strategies A(T) will have a

reater competitive ratio than 2 − c/r.

Case 3: If T ≥ rz
c , similarly,

T (t) =

⎧⎪⎪⎨
⎪⎪⎩

1, t < rz
c

ct
rz

, rz
c

≤ t < T

T(c−r)+rt
rz

, T ≤ t < T + z

1 + cT
rz

, t ≥ T + z

This is also a piecewise continuous function. By analyzing the

onotonicity of each section, we know that λT(t) has its great-

st value at t = z + T, and the competitive ratio of strategy A(T) is

T = λT (z + T) = 1 + cT . If T ≥ rz , the lowest value is λT (z + rz ) = 2,
rz c c
hich implies all strategies A(T) will have a greater competitive ratio

han 2 when T ≥ rz
c .

In summary, the lower bound of the problem in the financial lease

ithout down payment case is 2 − c
r . �

From Lemmas 1 and 2, we obtain Theorem 1 as the optimal com-

etitive strategy result.

heorem 1. For the online financial lease problem without down pay-

ent, let T ∗ = (r/c − 1)z . The strategy A(T∗) is the optimal online strat-

gy with competitive ratio (2 − c
r ).

Theorem 1 tells us that for a financial lease without down pay-

ent, if the exact length of time t the equipment will be needed is

nknown, then the optimal strategy is to lease the equipment from

he start to the moment (r/c − 1)z and use the financial lease there-

fter. This strategy can guarantee a cost of at most (2 − c
r ) of the min-

mum possible cost, for any possible length of time the equipment is

sed.

. Financial lease with down payment

Section 3 analyzes the model for a financial lease without down

ayment, though there is a more realistic version of the problem in

hich most financial lease contracts require a down payment. For

onvenience, let t0 = (b + rz)/c represent the moment that the lease

nd financial lease are equal.

First, it is apparent that the offline optimal cost is as follows (See

igs. 1 and 2):

(1) If b + rz < cz, we have,

Costopt(t) =

⎧⎨
⎩

ct, t < b
c−r

b + rt, b
c−r

≤ t < z

b + rz, t ≥ z

(2)

(2) If b + rz ≥ cz, we have,

Costopt(t) =
{

ct, t < t0

b + rz, t ≥ t0

(3)

Second, the analysis always presumes the following:
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Fig. 2. Optimal offline cost when b + rz ≥ cz.
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Lemma 3. Let g(x) = max{1 + b
cx , 1 + cx

b+rz
} on a feasible set [ a1, a2)

(a1, a2 may be infinity), and let x∗ =
√

b(b+rz)
c . Then, if x∗ ∈ [ a1, a2),

minx∈[a1,a2) g(x) = 1 +
√

b
b+rz

; if x∗ < a1, minx∈[a1,a2) g(x) = 1 + ca1
b+rz

;

if x∗ ≥ a2, minx∈[a1,a2) g(x) = 1 + b
ca2

.

Proof. It is clear that the inner function 1 + b
cx is a decreasing func-

tion of x, while the inner function 1 + cx
b+rz

is an increasing function.

To find the minimum value of g(x), let 1 + b
cx = 1 + cx

b+rz
to obtain x∗ =√

b(b+rz)
c . Thus, if x∗ ∈ [ a1, a2), minx∈[a1,a2) g(x) = g(x∗) = 1 +

√
b

b+rz
.

By monotonicity, we know that if x∗ < a1, minx∈[a1,a2) g(x) = 1 + ca1
b+rz

;

and if x∗ ≥ a2, minx∈[a1,a2) g(x) = 1 + b
ca2

. This proves Lemma 3. �

Now, for any fixed T, the cost of online strategy A(T) is described

in Eq. (4):

ostA(T)(t) =

⎧⎨
⎩

ct, t < T

cT + b + r(t − T), T ≤ t < T + z

cT + b + rz, t ≥ T + z

(4)

We first analyze the case b < (c − r)z and then discuss the case

b ≥ (c − r)z. Note that the case b < (c − r)z implies c > r, b
c−r < z, and

(c−r)2z
2c−r < (c − r)z.

Theorem 2. If b < (c − r)z, then

(1) when (c−r)2z
2c−r < b < (c − r)z, the online strategy A(T) with T =√

b(b+rz)
c is the optimal strategy with competitive ratio 1 +√
b

b+rz
;

(2) when b ≤ (c−r)2z
2c−r , the online strategy A(T) with T = b

c−r is the

optimal strategy with competitive ratio 2 − r
c .

Proof. By (2) and (4), let λT = suptλT (t) = supt
CostA(T)(t)

Costopt (t)
. There are

three cases.

Case 1. 0 ≤ T < b
c−r . In this case, by T < b

c−r < z < T + z,

λT (t) = CostA(T)(t)

Costopt(t)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, t < T

cT+b+r(t−T)
ct

, T ≤ t < b
c−r

cT+b+r(t−T)
b+rt

, b
c−r

≤ t < z

cT+b+r(t−T)
b+rz

, z ≤ t < T + z

cT+b+rz
b+rz

, t ≥ T + z

For fixed T, this piecewise function represents the constants on

t in both the first and the last intervals, λT(t) are decreasing func-

tions of t in both the second and the third intervals, while this func-

tion in the fourth interval is an increasing function of t, thus by the

continuous property of this function, the maximal value of λ (t),
T
.e., the competitive ratio of A(T), is λT = max{1, λT (T), λT (T + z)} =
ax{1 + b

cT , 1 + cT
b+rz

}.

Case 2. b
c−r ≤ T < z. By b

c−r ≤ T < z < T + z, we have:

T (t) = CostA(T)(t)

Costopt(t)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, t < b
c−r

ct
b+rt

, b
c−r

≤ t < T

cT+b+r(t−T)
b+rt

, T ≤ t < z

cT+b+r(t−T)
b+rz

, z ≤ t < T + z

cT+b+rz
b+rz

, t ≥ T + z

Similarly, the piecewise function λT(t) in both the first and last in-

ervals are constants of t, and in both the second and fourth intervals

re increasing functions of t, while in the third interval is a decreasing

unction of t, thus by the continuous property, the maximal value of

T(t) is λT = max{ b+cT
b+rT

, cT+b+rz
b+rz

}.

Case 3. T ≥ z; b
c−r < z < T < T + z, and thus:

T (t) = CostA(T)(t)

Costopt(t)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, t < b
c−r

ct
b+rt

, b
c−r

≤ t < z
ct

b+rz
, z ≤ t < T

cT+b+r(t−T)
b+rz

, T ≤ t < T + z

cT+b+rz
b+rz

, t ≥ T + z

Similarly, in the first and last intervals, the piecewise function is

he constant of t, and in all other intervals, λT(t) are increasing func-

ions of t. Thus, by the continuous property, the maximum value of

T(t) is λT = λT (T + z) = 1 + cT
b+rz

.

In summary, given T, the competitive ratio for strategy A(T) is

T =

⎧⎨
⎩

max{1 + b
cT

, 1 + cT
b+rz

}, 0 ≤ T < b
c−r

max{ b+cT
b+rT

, 1 + cT
b+rz

}, b
c−r

≤ T < z

1 + cT
b+rz

, T ≥ z

(5)

To determine the optimal competitive strategy, we must compute

he minimum value of λT. In the first interval 0 ≤ T < b
c−r of (5), by

emma 3, if 0 ≤
√

b(b+rz)
c < b

c−r , which is equivalent to b >
(c−r)2z

2c−r , the

inimum value in this interval is 1 +
√

b
b+rz

, while if

√
b(b+rz)

c ≥ b
c−r ,

hich is equivalent to b ≤ (c−r)2z
2c−r , the minimum value in this interval

s 1 + b

c b
c−r

= 2 − r
c .

In the second interval b
c−r ≤ T < z of (5), both inner functions

re increasing functions of T. Thus, their minimal solutions must

e the same (left) point b
c−r , and the minimum value in this inter-

al is max{ b+c b
c−r

b+r b
c−r

, 1 + c b
c−r

b+rz
} = max{2 − r

c , 1 + bc
(b+rz)(c−r)

}. That is, if

− r
c < 1 + bc

(b+rz)(c−r)
, which is equivalently to b >

(c−r)2z
2c−r , the mini-

um value is 1 + bc
(b+rz)(c−r)

, while if 2 − r
c ≥ 1 + bc

(b+rz)(c−r)
, which is

quivalently to b ≤ (c−r)2z
2c−r , the minimum value is 2 − r

c .

In the last interval T ≥ z of (5), the function 1 + cT
b+rz

is an increas-

ng function, so the minimum value in this interval is 1 + cz
b+rz

.

Above all, we have obtained the minimum value in each interval

or (5). Thus, the global minimum value for λT, denoted by λopt, is:

(1) if (c−r)2z
2c−r < b < (c − r)z, then

λopt = min

{
1 +

√
b

b + rz
, 1 + bc

(b + rz)(c − r)
, 1 + cz

b + rz

}

It is easy to confirm this using the conditions (c−r)2z
2c−r < b <

(c − r)z, 1 +
√

b
b+rz

< 1 + bc
(b+rz)(c−r)

< 1 + cz
b+rz

. Thus, λopt =
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√
p

t

T

h

L

P

b
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1 +
√

b
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and the optimal competitive strategy A(T) is to take

T =
√

b(b+rz)
c .

(2) if b ≤ z(c−r)2

2c−r , then

λopt = min

{
2 − r

c
, 2 − r

c
, 1 + cz

b + rz

}
Note that by b ≤ z(c−r)2

2c−r , we have cz
b+rz

≥ cz
z(c−r)2

2c−r
+rz

= 2 − r
c ,

thus λopt = 2 − r
c and the optimal competitive strategy A(T) is

to take T = b
c−r .

This completes the proof of Theorem 2. �

Theorem 2 tells us the optimal competitive strategies for a fi-

ancial lease with down payment 0 < b < (c − r)z. In the following,

e analyze the case when b ≥ (c − r)z. First, we have the following

losed-form competitive ratio for strategy A(T).

emma 4. If b + rz ≥ cz, then the competitive ratio for strategy A(T)

s:

T =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + cT
b+rz

, T > t0

max{1 + b
cT

, 1 + cT
b+rz

}, t0 − z < T ≤ t0 and b + (c − r)T ≥ 0

1 + cT
b+rz

, t0 − z < T ≤ t0 and b + (c − r)T < 0

1 + b
cT

, T ≤ t0 − z and b + (c − r)T ≥ 0

cT+b+rz
c(T+z)

, T ≤ t0 − z and b + (c − r)T < 0

roof. There are three cases in which to discuss λT = suptλT (t) =
upt

CostA(T)(t)

Costopt (t)
.

Case 1. t0 < T < T + z. The cost ratio of the online strategy A(T) to

he offline optimal strategy is:

T (t) = CostA(T)(t)

Costopt(t)
=

⎧⎪⎪⎨
⎪⎪⎩

1, t < t0
ct

b+rz
, t0 ≤ t < T

cT+b+r(t−T)
b+rz

, T ≤ t < T + z

cT+b+rz
b+rz

, t ≥ T + z

For a fixed T, the piecewise functions in both the first and last in-

ervals are constant, and in both the second and third intervals are

ncreasing functions; thus, the maximal value of λT(t), i.e., the com-

etitive ratio of A(T) in this case, is λT = cT+b+rz
b+rz

= 1 + cT
b+rz

.

Case 2. T ≤ t0 < T + z, or t0 − z < T ≤ t0. Now the cost ratio of the

nline strategy A(T) to the offline optimal strategy is:

T (t) = CostA(T)(t)

Costopt(t)
=

⎧⎪⎪⎨
⎪⎪⎩

1, t < T
cT+b+r(t−T)

ct
, T ≤ t < t0

cT+b+r(t−T)
b+rz

, t0 ≤ t < T + z

cT+b+rz
b+rz

, t ≥ T + z

In both the first and last intervals, these piecewise functions are

onstants, and in the third interval, the function is an increasing func-

ion, while in the second interval, note that cT+b+r(t−T)
ct = b+(c−r)T

ct +
r
c , the monotonicity of λT(t) depends on the sign of b + (c − r)T . If

+ (c − r)T ≥ 0, the function in the second interval is a decreasing

unction, thus λT(t) has a maximal value at t = T or t = T + z, and the

ompetitive ratio is max{λT (T), λT (T + z)} = max{1 + b
cT , 1 + cT

b+rz
}.

owever, if b + (c − r)T < 0, the function in the second interval is

n increasing function, and λT(t) has a maximal value at t = T + z,

ith competitive ratio factor λT (T + z) = 1 + cT
b+rz

. Hence, the com-

etitive ratio of A(T) in this case is λT = max{1 + b
cT , 1 + cT

b+rz
} if

+ (c − r)T ≥ 0 and λT = 1 + cT
b+rz

if b + (c − r)T < 0.
Case 3. T < T + z ≤ t0. Now, the cost ratio of the online strategy

(T) to the offline optimal strategy is:

T (t) = CostA(T)(t)

Costopt(t)
=

⎧⎪⎪⎨
⎪⎪⎩

1, t < T
cT+b+r(t−T)

ct
, T ≤ t < T + z

cT+b+rz
ct

, T + z ≤ t < t0

cT+b+rz
b+rz

, t ≥ t0

Similarly, in the first and last intervals, these piecewise functions

re constants, and in the third interval, the function is a decreasing

unction, while in the second interval, similar to the discussion of

ase 2, this piecewise function is a decreasing function if b + (c −
)T ≥ 0 and is an increasing function if b + (c − r)T < 0. Thus, by the

ontinuous property of λT(t), if b + (c − r)T ≥ 0, λT(t) arrives its max-

mal value at t = T and if b + (c − r)T < 0, and λT(t) arrives its max-

mal value at t = T + z. That is, λT = 1 + b
cT if b + (c − r)T ≥ 0 and

T = cT+b+rz
c(T+z)

if b + (c − r)T < 0. These cases together conclude the

roof of Lemma 4. �

To determine the optimal competitive strategy, we must analyze

he minimum value of λT in Lemma 4, which depends on c and r. We

nalyze c ≥ r and present Theorem 3.

heorem 3. If b ≥ (c − r)z and c ≥ r, then the optimal competi-

ive strategy is A(T) with T =
√

b(b+rz)
c , and its competitive ratio is

+
√

b
b+rz

.

roof. If c ≥ r, b + (c − r)T > 0 always holds. Thus by Lemma 4, given

and b ≥ (c − r)z, the competitive ratio for strategy A(T) can be sim-

lified by:

T =

⎧⎨
⎩

1 + cT
b+rz

, T > t0

max{1 + b
cT

, 1 + cT
b+rz

}, t0 − z < T ≤ t0

1 + b
cT

, T ≤ t0 − z

In the first interval T > t0, the minimal value is 1 + ct0
b+rz

= 2

hen T approaches t0, and in the third interval T ≤ t0 − z, the min-

mal value is 1 + b
c(t0−z)

= 1 + b
b+rz−cz

. In the second interval, note

hat by b ≥ (c − r)z >
(c−r)2z

2c−r , we have

√
b(b+rz)

c > b+rz−cz
c = t0 − z,

nd

√
b(b+rz)

c ≤ b+rz
c = t0 always holds, thus by Lemma 3, the mini-

um value in the second interval is 1 +
√

b
b+rz

.

Thus, the global minimum competitive ratio is:

in

{
2, 1 +

√
b

b + rz
, 1 + b

b + rz − cz

}

Note that if c > r, and then by b ≥ (c − r)z >
(c−r)2z

2c−r , we have

b
b+rz

≤ b
b+rz−cz

, and the above value is 1 +
√

b
b+rz

, the optimal com-

etitive strategy is A(T) with T =
√

b(b+rz)
c .

This completes the proof of Theorem 3. �

We now analyze the case where b + rz ≥ cz and c < r. In this case,

he condition c < r autonomous guarantees the condition b + rz ≥ cz.

o simplify the following analysis, we highlight a simple algebraic fact

ere in Lemma 5.

emma 5. If c < r, then b(2c − r) < (c − r)2z is equivalent to b
r−c <√

b(b+rz)
c < t0 − z.

roof. If c < r, the identical relationship can be easily verified:

b
r−c <

√
b(b+rz)

c ⇐⇒ c
r−c <

√
1 + rz

b
⇐⇒ rz

b
>

c2−(r−c)2

(r−c)2 = r(2c−r)
(r−c)2 ⇐⇒

(2c − r) < (r − c)2z. Additionally,

√
b(b+rz)

c < t0 − z = b+rz−cz
c ⇐⇒

(b + rz) < (b + rz − cz)2 ⇐⇒ b(2c − r) < (r − c)2z. �
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Table 2

The optimal online strategy and competitive ratio for all cases.

b < (c − r)z b ≥ (c − r)z

b >
(c−r)

2
z

2c−r
b ≤ (c−r)

2
z

2c−r
c ≥ r c<r

b(2c−r)>(c−r)2 z b(2c−r)≥(c−r)2 z

Optimal online strategy

√
(b+rz)

c
b

c−r

√
(b+rz)

c

√
(b+rz)

c
b+rz−cz

c

A(T) with T

Optimal competitive ratio 1 +
√

b
b+rz

2 − r
c

1 +
√

b
b+rz

1 +
√

b
b+rz

2 − cz
b+rz

T

λ

i

b

t

t

a

1

b

1

c

s

t

f

λ

v

r

t

v

g

t

c

5

t

T

Theorem 4. If c < r, then

(1) when b(2c − r) ≤ (c − r)2z, the optimal competitive strategy is

A(T) with T = t0 − z = b+rz−cz
c , and its competitive ratio is 2 −

cz
b+rz

;

(2) when b(2c − r) > (c − r)2z, the optimal competitive strategy is

A(T) with T =
√

b(b+rz)
c , and its competitive ratio is 1 +

√
b

b+rz
.

Proof. If c < r, then b + rz > cz is satisfied. Note that for T ≥ 0, b +
(c − r)T ≥ 0 is equivalent to T ≤ b

r−c . This combined with Lemma 4

indicates that for any given T, the competitive ratio of A(T) is:

λT =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + cT
b+rz

, T > t0

max{1 + b
cT

, 1 + cT
b+rz

}, t0 − z < T ≤ t0 and T ≤ b
r−c

1 + cT
b+rz

, t0 − z < T ≤ t0 and T > b
r−c

1 + b
cT

, T ≤ t0 − z and T ≤ b
r−c

cT+b+rz
c(T+z)

, T ≤ t0 − z and T > b
r−c

(6)

We now discuss the piecewise function λT by analyzing the case
b

r−c , t0 and t0 − z.

Case 1. If b
r−c ≤ t0 − z, then it is equivalent to b(2c − r) ≤ (c − r)2z

by Lemma 5.

In this case, the second interval in the piecewise function of (6) is

omitted, the third interval is simplified as t0 − z < T ≤ t0, the fourth

interval is simplified as T ≤ b
r−c , and the last interval is b

r−c < T ≤ t0 −
z. Thus, λT is:

λT =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + cT
b+rz

, T > t0

1 + cT
b+rz

, t0 − z < T ≤ t0

1 + b
cT

, T ≤ b
r−c

cT+b+rz
c(T+z)

, b
r−c

< T ≤ t0 − z

For this new simplified formulation, in the first interval T > t0,

the minimal value is 1 + ct0
b+rz

= 2; in the second interval t0 − z <

T ≤ t0, the minimal value is 1 + c(t0−z)
b+rz

= 2 − cz
b+rz

; in the third inter-

val T ≤ b
r−c , the minimal value is 1 + b

c( b
r−c )

= r
c ; in the last interval

b
r−c < T ≤ t0 − z, the function cT+b+rz

c(T+z)
= 1 + b+rz−cz

cT+cz is a decreasing

function of T, and the minimal value is 1 + b+rz−cz
c(t0−z)+cz

= 2 − cz
b+rz

. Thus,

the global minimum value is min{2, 2 − cz
b+rz

, r
c , 2 − cz

b+rz
}, note that

2 − cz
b+rz

≤ r
c by b(2c − r) ≤ (c − r)2z. Therefore, in this case, the opti-

mal competitive ratio is 2 − cz
b+rz

, and the optimal competitive strat-

egy is A(T) with T = t0 − z = b+rz−cz
c .

Case 2. If t0 − z < b
r−c ≤ t0, it is equivalent to (c − r)2z < b(2c −

r) < r(r − c)z by Lemma 5 and simple algebra.

Here, in the piecewise function of (6), the second interval is t0 −
z < T ≤ b

r−c , the third interval is simplified to b
r−c < T ≤ t0, the fourth

interval is simplified to T ≤ t − z, and the last interval is omitted.
0
hus, λT is:

T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + cT
b+rz

, T > t0

max{1 + b
cT

, 1 + cT
b+rz

}, t0 − z < T ≤ b
r−c

1 + cT
b+rz

, b
r−c

< T ≤ t0

1 + b
cT

, T ≤ t0 − z

In this simplified formulation, in the first interval T > t0, the min-

mal value is 1 + ct0
b+rz

= 2; in the second interval t0 − z < T ≤ b
r−c , by

(2c − r) > (c − r)2z and Lemma 5, we have t0 − z <

√
b(b+rz)

c ≤ b
r−c ;

hus, by Lemma 3, the minimal value is 1 +
√

b
b+rz

. In the third in-

erval b
r−c < T ≤ t0, the minimal value is 1 + c( b

r−c )

b+rz
= 1 + bc

(b+rz)(r−c)
;

nd in the last interval T ≤ t0 − z, the minimal value is 1 + b
c(t0−z)

=

+ b
b+rz−cz

. Thus, the global minimum value is min{2, 1 +
√

b
b+rz

, 1 +
bc

(b+rz)(r−c)
, 1 + b

b+rz−cz
}. Note that bc

(b+rz)(r−c)
> b

b+rz−cz
>

√
b

b+rz
by

(2c − r) > (c − r)2z, so in this case, the optimal competitive ratio is

+
√

b
b+rz

with optimal strategy A(T) with T =
√

b(b+rz)
c .

Case 3. b
r−c > t0 > t0 − z, which is equivalent to b(2c − r) > r(r −

)z by Lemma 5. We will prove that both the optimal competitive

trategy and competitive ratio are the same as in Case 2.

In case 3, in the piecewise function of (6), the second interval is

0 − z < T ≤ t0 < b
r−c , both third and last intervals are omitted, the

ourth interval is simplified to T ≤ t0 − z, that is, λT is:

T =

⎧⎨
⎩

1 + cT
b+rz

, T > t0

max{1 + b
cT

, 1 + cT
b+rz

}, t0 − z < T ≤ t0

1 + b
cT

, T ≤ t0 − z

In this new formulation, in the first interval T > t0, the minimal

alue is 1 + ct0
b+rz

= 2. In the second interval t0 − z < T ≤ t0, by b(2c −
) > (c − r)2z and by Lemma 5, t0 − z ≤

√
b(b+rz)

c < t0 always holds,

hus, by Lemma 3, the minimal value is 1 +
√

b
b+rz

. In the third inter-

al T ≤ t0 − z, the minimal value is 1 + b
c(t0−z)

= 1 + b
b+rz−cz

. Thus, the

lobal minimum value is min{2, 1 +
√

b
b+rz

, 1 + b
b+rz−cz

}. Note that

b
b+rz−cz

>

√
b

b+rz
by b(2c − r) > r(r − c)z, thus, in this case, the op-

imal competitive strategy is A(T) with T =
√

b(b+rz)
c , and the optimal

ompetitive ratio is 1 +
√

b
b+rz

.

This completes the proof of Theorem 4. �

Note that case 1 in Theorem 4 reduces to Theorem 1 when b = 0.

. Decision rules for the online financial lease problem

We have obtained the optimal online strategy and competitive ra-

io for all cases from Theorems 1–4, which can be summarized in

able 2.
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To give a simpler decision rule for the optimal online strategy in

ifferent cases, we need to discuss the constraints further, as summa-

ized in Theorem 5.

heorem 5. Let π = cz
b+rz

. The optimal online strategy A(T) with its

ompetitive ratio for the online financial lease problem is

(1) When r
c ≥ 2, then T = b+rz−cz

c , and the competitive ratio is 2 −
cz

b+rz
;

(2) When r
c < 2 and 0 < π ≤ 2 − r

c , then T =
√

b(b+rz)
c , and the

competitive ratio is 1 +
√

b
b+rz

;

(3) When 0 < r
c < 1 and π > 2 − r

c , then T = b
c−r , and the compet-

itive ratio is 2 − r
c ;

(4) When 1 < r
c < 2 and π > 2 − r

c , then T = b+rz−cz
c , the competi-

tive ratio is 2 − cz
b+rz

.
 i

Table 3

Numerical examples of financial lease without down pa

t 30 31 32 33 34

Costopt(t) 60 62 64 66 68

T = 10 CostA(10)(t) 80 83 86 89 92

T = 11 CostA(11)(t) 79 82 85 88 91

T = 12 CostA(12)(t) 78 81 84 87 90

T = 13 CostA(13)(t) 77 80 83 86 89

T = 14 CostA(14)(t) 76 79 82 85 88

Table 4

Numerical examples of financial lease without down paym

t 36 37 38 39

Costopt(t) 72 74 76 78

T = 15 CostA(15)(t) 103 106 109 112

T = 16 CostA(16)(t) 102 105 108 111

T = 17 CostA(17)(t) 101 104 107 110

T = 18 CostA(18)(t) 100 103 106 109

T = 19 CostA(19)(t) 99 102 105 108
roof. In Table 2, there are three optional strategies: A(T) with T =√
b(b+rz)

c , b
c−r , and b+rz−cz

c . First, for optimal strategy T = b+rz−cz
c , the

onstraints are b > (c − r)z, c < r, and b(2c − r) ≤ (c − r)2z. b ≥ 0 and

< r implies b > (c − r)z, conditions equivalent to (i) c < r and 2 c ≤
or (ii) 2 c > r, b ≤ (c−r)2z

2c−r , and c < r. A crucial note here is that b ≤
(c−r)2z

2c−r is equivalent to cz
b+rz

≥ 2 − r
c . This leads to π = cz

b+rz
, and thus,

he constraints to ensure the optimal strategy A(T) with T =
√

b(b+rz)
c

re (i) r
c ≥ 2 or (ii) 1 < r

c < 2 and π ≥ 2 − r
c .

To ensure that the optimal strategy A(T) takes T = b
c−r , the condi-

ions are b ≤ (c−r)2z
2c−r and b < (c − r)z. Note that b ≥ 0 implies c > r, so

he constraints of this case are r
c < 1 and b ≤ min{ (c−r)2z

2c−r , (c − r)z} =
(c−r)2z

2c−r . Thus, we find that the optimal strategy A(T) will take T = b
c−r

f the constraints are r
c < 1 and π ≥ 2 − r

c .

Finally, the conditions for the optimal strategy A(T) takes T =√
b(b+rz)

c are either (i) b < (c − r)z and b >
(c−r)2z

2c−r , (ii) b ≥ (c − r)z

nd c ≥ r, or (iii) b ≥ (c − r)z, c < r and b(2c − r) > (c − r)2z. Note

hat the constraints b ≥ (c − r)z and c ≥ r imply b(2c − r) > (c − r)2z,

o the constraint for this optimal strategy in all cases is b(2c − r) >

c − r)2z, which can be simplified to r
c ≤ 2 and 0 < π ≤ 2 − r

c .

Theorem 5 thus summarizes the simple decision. �

We call the index π = cz
b+rz

the rent-to-value index, which presents

he ratios of the lease cost and financial lease cost. In addition, the

ecision rules in Theorem 5 can be illustrated as in Fig. 3, with three

reas in the first quadrant denoting various corresponding optimal

trategies.

. Numerical analysis

This section performs the numerical analysis to validate our theo-

etical results. We take the example used in Section 1: consider some-

ne with two options to use a repertory: lease with rental cost of

2000 per month, or use a financial lease with a cost of $ 3000 per

onth, with the ownership transferring to the lessee after 24 months.

ere, c = 2000, r = 3000, and z = 24.

We consider a financial lease without down payment, (b = 0). In

able 3, we present the numerical results for T = 10, 11, . . . , 14. For

ach T, assume the length of time the equipment will be used is

= 30, 31, . . . , 40, we compute the optimal offline cost and the cost of

trategy A(T). From Table 3, we see that, given T, the cost of the offline

trategy and A(T) are non-decreasing functions with t. However, they

ncrease at different rates. In Fig. 4 we illustrate the ratio functions
yment (expressed in thousands of units).

35 36 37 38 39 40

70 72 72 72 72 72

92 92 92 92 92 92

94 94 94 94 94 94

93 96 96 96 96 96

92 95Z 98 98 98 98

91 94 97 100 100 100

ent (expressed in thousands of units).

40 41 42 43 44 45

80 82 82 82 82 82

112 112 112 112 112 112

114 114 114 114 114 114

113 116 116 116 116 116

112 115 118 118 118 118

111 114 117 120 120 120
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Fig. 4. Ratio function λT(t) for a financial lease without down payment.
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Fig. 5. Ratio function λT(t) for financial lease with down payment.

o

i

w

A

λT (t) = CostA(T)(t)

Costopt (t)
for t ≥ 0. According to the competitive ratio defini-

tion, given T, λT = maxt λT (t) is the competitive ratio for the online

strategy A(T). Fig. 4 shows that the optimal strategy is the one with

the minimal maximum value 1.333, that is, A(T) with T = 12. Thus,

we see in our example of a financial lease without down payment, the
 i
ptimal online strategy A(T) is T = 12 with competitive ratio 1.333. It

s easy to verify that this solution is consistent with Theorem 1, as

ell as the generality formulation of Theorems 4.1 and 5.

We next consider the case of a financial lease with down payment.

ssume b = $10000. Table 4 presents the numerical results, and Fig. 5

llustrates the ratio functions λT(t) for t ≥ 0. As in the previous discus-
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ion, the results show that the optimal strategy is the one with the

inimal competitive ratio 1.415, that is, the optimal online strategy

(T) with T = 17. This solution is also consistent with Theorems 4.2

nd 5.

. Conclusion

As the modern leasing industry develops, leasing grows in popu-

arity. Since the decision maker usually cannot determine the exact

ength of time the equipment will be needed, we explore the well-

stablished techniques of the online competitive analysis method to

nd the optimal strategy. However, all of previous research into the

ease option considers only operating leases. In practice, there is an-

ther important type of lease: the financial lease. The key feature of a

nancial lease is that the lessee may obtain ownership of the equip-

ent after the lease period. This paper develops the optimal strategy

etween leasing and financial leasing using competitive analysis. We

ivide financial leasing according to whether there is a down pay-

ent and present the optimal competitive strategy for each case. Fi-

ally we summarize and present the optimal strategies with simple

ecision rules. In our future research, we plan to introduce the rate

actor and consider more general models.
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