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The aim of this note is to construct a ψ-uniform domain G in the complex plane C
such that the identity mapping id: (G, jG) → (G, kG) is not an η-quasi-symmetric 
mapping for any homeomorphism η: [0, ∞) → [0, ∞). This result shows that the 
answer to the related open problem, posed by Hästö, Klén, Sahoo and Vuorinen, is 
negative.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

For a proper subdomain G of Rn and z1, z2 ∈ G, the distance ratio metric jG is defined by

jG(z1, z2) = log
(
1 + |z1 − z2|

min{δG(z1), δG(z2)}
)
,

where δG(z1) denotes the Euclidean distance from z1 to the boundary ∂G of G. We remark that the above 
form of jG, introduced in [10], is obtained by a slight modification of a metric that was studied in [2,3].

For a rectifiable arc or a path γ in G, its quasihyperbolic length of γ in G is the number:

�kG
(γ) =

∫
γ

|dz|
δG(z) .
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The quasihyperbolic metric kG(z1, z2) between z1 and z2 is defined by

kG(z1, z2) = inf{�kG
(γ)},

where the infimum is taken over all rectifiable arcs γ joining z1 and z2 in G. It is well-known that for z1
and z2 ∈ G, we have kG(z1, z2) ≥ jG(z1, z2) (cf. [3]).

The class of uniform domains was introduced by Martio and Sarvas in 1979 [6]. The precise definition is 
as follows.

Definition 1.1. Given c ≥ 1, a domain G in Rn is called c-uniform provided that each pair of points z1, z2
in G can be joined by a rectifiable arc γ in G satisfying

(1) min{�(γ[z1, z]), �(γ[z2, z])} ≤ c δG(z) for all z ∈ γ;
(2) �(γ) ≤ c|z1 − z2|,

where �(γ) denotes the length of γ and γ[zj , z] stands for the part of γ between zj and z. An arc γ with 
the above properties is called a double c-cone arc. A domain is called uniform if it is c-uniform for some 
constant c ≥ 1.

The following convenient characterization of uniform domains, by means of the quasihyperbolic and 
distance ratio metrics, was given by Gehring and Osgood [2]: a proper subdomain G of Rn is uniform if and 
only if there exists a constant μ ≥ 1, depending only on c, such that for all z1 and z2 in G,

kG(z1, z2) ≤ μjG(z1, z2).

We remark that the above characterization is again slightly different from the one given in [2], as the 
original result had an additive constant on the right hand side. Later, it was shown by Vuorinen [10] that 
this constant is not necessary. Motivated by this observation, Vuorinen [10] gave the following more general 
definition of ϕ-uniform domains:

Definition 1.2. Let ϕ: [0, ∞) → [0, ∞) be a homeomorphism. A domain G ⊂ Rn is said to be ϕ-uniform if 
for all z1, z2 ∈ G,

kG(z1, z2) ≤ ϕ
( |z1 − z2|

min δG(z1), δG(z2)

)
.

Obviously, uniformity implies ϕ-uniformity with ϕ(t) = μ log(1 + t) for t > 0 with μ ≥ 1. It is easy to see 
that the converse is not true.

Interesting results on the above classes of domains have been obtained by Väisälä [7] (see also [8]). In 
particular, he observed that the class of ϕ-uniform domains coincides with the class of uniform domains if 
ϕ is a slow function, i.e.,

lim
t→∞

ϕ(t)
t

= 0.

Recently, the geometric properties of this class of domains have been investigated in [4]. The stability of 
ϕ-uniform domains has been established [5].

Definition 1.3. A homeomorphism f : Rn → Rn is said to be η-quasi-symmetric if there is a homeomorphism 
η : [0, ∞) → [0, ∞) such that

|x− a| ≤ t|x− b| implies |f(x) − f(a)| ≤ η(t)|f(x) − f(b)|

for each t > 0 and for all points x, a and b in Rn.
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Fig. 1. The points an, zn and bn in G.

With the aid of quasi-symmetric mappings, the authors in [4] provided a sufficient condition for a domain 
in Rn to be ϕ-uniform, whose precise statement is as follows.

Theorem A. ([4, Proposition 2.5]) If the identity mapping id: (G, jG) → (G, kG) is η-quasi-symmetric, then 
G is ϕ-uniform for some homeomorphism ϕ: [0, ∞) → [0, ∞) depending only on η.

In the same paper, the following open problem was presented:

Open problem 1.1. ([4, Question 2.6]) Is the converse of Theorem A true?

In the next section, we shall construct an example to show that the answer to the question of Open 
Problem 1.1 is negative.

2. An example

Example 2.1. Let G = {z = x + iy ∈ C : 0 < y < 1} (see Fig. 1). Then

(1) G is ϕ-uniform with ϕ(t) = t;
(2) the identity mapping id: (G, jG) → (G, kG) is not η-quasi-symmetric for any homeomorphism η: 

[0, ∞) → [0, ∞).

Proof. The proof of the assertion (1) in the example easily follows from [9, Remarks 2.19(2)] or [8, Re-
mark 6.17]. In the following, we prove the assertion (2). We shall show this assertion by contradiction. 
Suppose the identity mapping id: (G, jG) → (G, kG) is η-quasi-symmetric for some homeomorphism η: 
[0, ∞) → [0, ∞). It follows that for all a, z and b in G,

kG(a, z)
kG(z, b) ≤ η

(jG(a, z)
jG(z, b)

)
. (2.1)

In order to get a contradiction, for any integer n ≥ 16, we let (see Fig. 1)

an =
(
n, 1 − 1)

, zn =
(
0, 1 − 1) and bn =

(
0, 1 )

.

n n n3
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Fig. 2. The partition of G.

Then an, zn and bn ∈ G, and further, we have the following:

Claim 2.1. jG(an,zn)
jG(zn,bn) < 1.

Because n > 3, the proof of this claim easily follows from the following two facts:

jG(an, zn) = log
(
1 + |an − zn|

min{δG(an), δG(zn)}
)

= log(1 + n2)

and

jG(zn, bn) = log
(
1 + |zn − bn|

min{δG(zn), δG(bn)}
)

= log(n3 − n2).

Claim 2.2. kG(an,zn)
kG(zn,bn) >

√
n

8 log n .

To prove the inequality in the claim, let γn be a quasihyperbolic geodesic in G connecting an and zn, i.e.

�kG
(γn) = kG(an, zn). (2.2)

Note that the existence of such a γn follows from Lemma 1 in [2]. Obviously,

�(γn) ≥ n. (2.3)

To continue the proof, we need a partition of G. For each m ∈ {1, . . . , [√n]}, we let (see Fig. 2)

Gm = {z = x + iy ∈ C : λm−1 < y ≤ λm}

and

G[
√
n]+1 = {z = x + iy ∈ C : λ[

√
n] < y < λ[

√
n]+1 = 1},

where [
√
n] denotes the integer part of 

√
n and λm = (1 − 1 ) m√ . Clearly,
n [ n]
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G =
[
√
n]+1⋃

m=1
Gm,

and then there is at least an m ∈ {1, . . . , [√n] + 1} such that

�(γn ∩Gm) ≥ m,

because otherwise, we get

�(γn) =
[
√
n]+1∑

m=1
�(γn ∩Gm) <

[
√
n]+1∑

m=1
m < n,

since n ≥ 16, which contradicts (2.3).
Since for any z ∈ Gm,

δG(z) ≤

⎧⎨
⎩

λm, if m ∈ {1, . . . , [
√
n]},

1
n
, if m = [

√
n] + 1,

it follows from (2.2) that

kG(an, zn) = �kG
(γn) ≥ �kG

(γn ∩Gm) > 1
2
√
n. (2.4)

Moreover, we have

kG(zn, bn) ≤
∫

[bn,zn]

|dz|
δG(z) =

1
2∫

1
n3

dt

t
+

1− 1
n∫

1
2

dt

1 − t
= 4 logn− 2 log 2, (2.5)

where [bn, zn] stands for the segment in G with the endpoints bn and zn. Then we can easily conclude the 
inequality in Claim 2.2 from (2.4) and (2.5).

Now, we are ready to reach a contradiction. It follows from (2.1) together with Claims 2.1 and 2.2 that
√
n

8 logn <
kG(an, zn)
kG(zn, bn) ≤ η

(jG(an, zn)
jG(zn, bn)

)
≤ η(1),

which is impossible since 
√
n

8 log n → ∞ as n → ∞, and thus, the proof is complete.

It is well-known that simply connected domains in plane are quasidisks [6] (or [1]), and then the comple-
ment of such a uniform domain also is uniform. Naturally, we propose the following problem [11].

Suppose G � Rn is a ϕ-uniform domain. Find the condition on ϕ such that the complement Rn\G of G
in Rn is also a ϕ1-uniform domain for some ϕ1.
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