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In this paper, it is shown that every surjective isometry between the unit spheres of 
two finite dimensional C∗-algebras extends to a real-linear Jordan ∗-isomorphism 
followed by multiplication operator by a fixed unitary element. This gives an 
affirmative answer to Tingley’s problem between two finite-dimensional C∗-algebras. 
Moreover, we show that if two finite dimensional C∗-algebras have isometric unit 
spheres, then they are ∗-isomorphic.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, all C∗-algebras are assumed to be unital. For a Banach space X, let B(X) and 
S(X) be the unit ball and unit sphere of X, respectively. This paper is concerned with the following problem.

Tingley’s problem (Tingley [21] 1987). Let X and Y be Banach spaces. Suppose that T0 : S(X) → S(Y ) is a 
surjective isometry. Does there exist a real-linear isometric isomorphism T : X → Y satisfying T |S(X) = T0.

The origin of Tingley’s problem is the celebrated Mazur–Ulam theorem which states that every surjective 
isometry between normed spaces is automatically affine. This means, in a sense, that the (real) algebraic 
structure of a normed space is determined by its metric structure. Furthermore, in 1972, Mankiewicz [15]
generalized the Mazur–Ulam theorem by showing that every surjective isometry between open connected 
subsets of real normed spaces is uniquely extended to an affine isometry between the whole spaces. In 
particular, a surjective isometry between the unit balls of two normed spaces extends to a real-linear 
isometric isomorphism. Inspired from this, Tingley [21] considered surjective isometries between unit spheres 
of normed space; and then asked whether or not they extend to real-linear isometries. Many papers have been 
devoted to studying Tingley’s problem; see, e.g., [5,6,10] for recent development on the problem. However, 
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Tingley’s problem is still open even in the two-dimensional case. The survey of Ding [4] is one of the good 
starting points for understanding the problem.

There is another setting of Mazur–Ulam type problem important in this paper, that is, the case of unitary 
groups of C∗-algebras. In [8], Hatori and Molnár completely determined the forms of surjective isometries on 
the unitary group of the algebra of all bounded linear operators B(H ) on a complex Hilbert space H . From 
this result, in particular, it turned out that every surjective isometry on the unitary group of B(H ) extends 
to a real-linear isometry. Moreover, in 2014, Hatori and Molnár [9] generalized their result by proving that 
every surjective isometry between the unitary groups of two von Neumann algebras extends to a real-linear 
isometry. What is interesting is that, although the Mazur–Ulam type problem on unitary groups can be 
viewed as a localization of Tingley’s problem, the method used in [9] was completely different from those 
studied in the context of Tingley’s problem. Actually, the proof of the result in [9] mentioned above is based 
on C∗-algebraic techniques such as Stone’s theorem and the result of Kadison [11].

However, in the case of C∗-algebras, Tingley’s problem can be closely related to the Mazur–Ulam type 
problem on unitary groups. Indeed, recently, it was shown in [20] that Tingley’s problem has an affirmative 
answer for the case of X = Y = B(H ), where H is finite dimensional (that is, B(H ) is the algebra 
of all n × n complex matrices for some n ∈ N). The solution is strongly based on the above mentioned 
result of Hatori and Molnár [8]; and C∗-algebraic methods are still effective for Tingley’s problem on 
C∗-algebras.

The main purpose of this paper is to present, using both C∗-algebraic and Banach space geometric 
methods, a solution of Tingley’s problem for the case of finite dimensional C∗-algebras. More precisely, 
it is shown that every surjective isometry between the unit spheres of two finite dimensional C∗-algebras 
extends to a real-linear Jordan ∗-isomorphism followed by multiplied by a fixed unitary element. Then, 
furthermore, we study the impact of the existence of surjective isometries between the unit spheres of two 
finite dimensional C∗-algebras. It turns out that if two finite dimensional C∗-algebras have isometric unit 
spheres, then they are ∗-isomorphic.

2. Extensions of spherical isometries

We start with the following basic result. The proof is based on Eidelheit’s separation theorem [17, 
Theorem 2.2.26]; see, for example, [20] for the proof.

Lemma 2.1. Let X be a Banach space. Suppose that C is a maximal convex subset of the unit sphere S(X)
of X. Then C is a norm exposed face of B(X).

We need the following result shown in [2, Lemma 5.1] (and [19, Lemma 3.5]).

Lemma 2.2. Let X, Y be Banach spaces, and let T : S(X) → S(Y ) be a surjective isometry. Then C is a 
maximal convex subset of S(X) if and only if T (C) is that of S(Y ).

Let R be a von Neumann algebra. As was shown in [7, Theorem 5.3] (see also [1, Theorem 4.4]), every 
weak-operator closed face F of B(R) is associated with a (unique) partial isometry V ∈ R under the 
equation

F = V + (1 − V V ∗)B(R)(1 − V ∗V ) = {A ∈ B(R) : AV ∗ = V V ∗}.

In particular, if A is a finite dimensional C∗-algebra, it can be viewed as a von Neumann algebra (by 
considering any faithful representation). Hence each norm closed (hence compact) face of B(A) has such a 
form.

The following is a key ingredient for our main result.
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Lemma 2.3. Let A1 and A2 be C∗-algebras with dimA1 < ∞. Suppose that T is a surjective isometry from 
S(A1) onto S(A2). Then dimA2 < ∞ and T is locally affine, that is, if A, B, tA + (1 − t)B ∈ S(A1) for 
some t ∈ (0, 1), then sA + (1 − s)B ∈ S(A1) for all s ∈ [0, 1] and the equation

T (sA + (1 − s)B) = sT (A) + (1 − s)T (B)

holds for every s ∈ [0, 1].

Proof. Since dimA1 < ∞, its unit sphere S(A1) is norm compact; and so is its image S(A2) under the 
continuous mapping T . This shows that dimA2 < ∞.

Let A, B ∈ S(A1) be such that tA + (1 − t)B ∈ S(A1) for some t ∈ (0, 1). Then the interval [A, B] =
{sA + (1 − s)B : s ∈ [0, 1]} is a convex subset of S(A1); and, by Zorn’s lemma, it is contained in some 
maximal convex subset C1 of S(A1). By Lemma 2.2, the image T (C1) of C1 under T is also a maximal convex 
subset C2 of S(A2). Since C1 and C2 are both closed faces by Lemma 2.1, there exist partial isometries 
V1 ∈ A1 and V2 ∈ A2 corresponding to C1 and C2, respectively.

Letting Ej = V ∗
j Vj and Fj = VjV

∗
j yields Cj = Vj + (1 − Fj)B(Aj)(1 − Ej) for j = 1, 2. Since the 

translation Tj : A → A − Vj under −Vj is affine isometry on Aj , the face Cj is affinely isometric to the unit 
ball (1 −Fj)B(Aj)(1 −Ej) of a Banach subspace (1 −Fj)Aj(1 −Ej) of Aj . Now let T0 = T2TT

−1
1 . Then T0

is a surjective isometry from (1 −F1)B(A1)(1 −E1) onto (1 −F2)B(A2)(1 −E2). The Mankiewicz theorem 
guarantees that T0 is affine (as the restriction of the extended linear isometry), and so is T |C1 = T−1

2 T0T1. 
This shows that T is locally affine. �

Let A1 and A2 be C∗-algebras. We recall that a linear mapping J : A1 → A2 is called a Jordan 
∗-homomorphism if it satisfies J(A2) = J(A)2 and J(A∗) = J(A)∗ for each a ∈ A1. If J is real-linear, 
it is described as a real-linear Jordan ∗-homomorphism. By a (real-linear) Jordan ∗-isomorphism, we mean 
a bijective (real-linear) Jordan ∗-homomorphism.

Let J : A1 → A2 be a Jordan ∗-isomorphism. Then

(i) J(I) = I;
(ii) J(AB) = J(A)J(B) whenever AB = BA; and
(iii) J(E) is a projection if and only if E is a projection.

See, for example, [13, Exercise 10.5.22] and its solution in [14]. In particular, J preserves the centers and 
unitary groups. Moreover, by the Kadison–Pedersen theorem [12], each element in the open unit ball of a 
unital C∗-algebra can be written as the mean of finitely many unitary elements in it. From this, in particular, 
each Jordan ∗-isomorphism is an isometry; see also [18] for some other useful facts. Consequently, if J is 
a Jordan ∗-isomorphism, the formula T (A) = T (I)(PJ(A) + (I − P )J(A)∗) defines a real-linear isometric 
isomorphism.

The following is the main result in this paper, and provides an affirmative answer to Tingley’s problem 
for surjective isometries between the unit spheres of two finite dimensional C∗-algebras. The proof is based 
on the preceding lemma, and the result of Hatori and Molnár [9, Corollary 3].

Theorem 2.4. Let A1 and A2 be finite dimensional C∗-algebras. Suppose that T is a surjective isometry from 
S(A1) onto S(A2). Then there exist a central projection P ∈ A2 and a Jordan ∗-isomorphism J : A1 → A2

such that

T (A) = T (I)(PJ(A) + (I − P )J(A)∗)
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for each A ∈ S(A1). Consequently, the mapping T extends (uniquely) to a real-linear Jordan ∗-isomorphism 
followed by multiplication operator by a fixed unitary element.

Proof. We first note that the set of all extreme points extB(R) of the unit ball of a finite von Neumann 
algebra R coincides with its unitary group U ; see, for example, [16, Lemma 2]. Since finite dimensional 
C∗-algebras A1 and A2 can be viewed as finite von Neumann algebras, one has that extB(Aj) = Uj for 
j = 1, 2, where Uj is the unitary group of Aj .

We next show that T (U1) = U2. Let U ∈ U1, and let T (U) = 2−1(A + B) with A, B ∈ S(A2). Applying 
Lemma 2.3 (to T−1) yields

U = T−1
(
A + B

2

)
= T−1(A) + T−1(B)

2 ,

which implies that U = T−1(A) = T−1(B) by since U is an extreme point, and so T (U) = A = B. This 
proves that T (U) ∈ U2; and T (U1) ⊂ U2. Interchanging the roles of T and T−1 in the above argument, we 
have the reverse inclusion. Hence it follows that T (U1) = U2.

Now the result of Hatori and Molnár [9, Corollary 3] applies, and there exist a central projection P ∈ A1
and a Jordan ∗-isomorphism J : A1 → A2 such that

T (U) = T (I)(PJ(U) + (I − P )J(U)∗)(= S(U))

for each U ∈ U1. We note that T (I) is a unitary element since T (I) ∈ T (U1) = U2. It remains to show that 
this equation holds for each A ∈ S(A1). To see this, recall that each element in the unit ball of a finite von 
Neumann algebra can be represented as the midpoint of two unitaries. So each A ∈ S(A1) is written in the 
form A = 2−1(U + V ), where U, V ∈ U1. Then it follows that

T (A) = T (U) + T (V )
2 = S(U) + S(V )

2 = S(A)

since T is locally affine by Lemma 2.3. The proof is complete. �
We remark, by Theorem 2.4 (and Lemma 2.3), that if dimA1 < ∞ and there exists an isometry from 

S(A1) onto S(A2), then A1 and A2 are isomorphic as Jordan ∗-algebras (under a Jordan ∗-isomorphism J
derived in that theorem). Since the algebras under consideration are finite dimensional, in fact, they are 
∗-isomorphic. Thus we obtain the following consequence of the main theorem.

Corollary 2.5. Let A1 and A2 be finite dimensional C∗-algebras. Then A1 and A2 are ∗-isomorphic if and 
only if S(A1) and S(A2) are isometric as metric spaces.

Remark 2.6. It should be noted that Corollary 2.5 does not hold for general von Neumann algebras. Indeed, 
we have a von Neumann factor M that is not ∗-anti-isomorphic to itself (Connes [3]). Suppose that ρ is a 
faithful normal semi-finite weight on M . Then, by Tomita’s theorem (extended to weights; see, e.g., [13, 
Theorem 9.2.37]), there exist a faithful normal representation π : M → B(Hρ) and a conjugate-linear 
isometry J acting on Hρ satisfying J2 = I (hence J = J−1 = J∗) and Jπ(M )J = π(M )′. From this, the 
mapping A → JA∗J : π(M ) → π(M )′ is a ∗-anti-isomorphism. Let Ma be the von Neumann algebra π(M )′. 
Then M and Ma are ∗-anti-isomorphic. Let R1 = M ⊕M and R2 = M ⊕Ma. If ϕ is a ∗-anti-isomorphism 
from M onto Ma. Then the mapping A ⊕ B → A ⊕ ϕ(B) : R1 → R2 is a Jordan ∗-isomorphism. In 
particular, S(R1) and S(R2) are isometric as metric spaces. However, two von Neumann algebras R1 and 
R2 can not be ∗-isomorphic nor ∗-anti-isomorphic to each other.
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