
S

A
a

b

c

a

A
R
R
A
A

K
O
G
E
I
K

1

h
t
t
o
s
t
p
c
d

a
o
h
m
a
a
o
f
d
i

0
d

The Journal of Systems and Software 85 (2012) 77–86

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

elf-tuning of disk input–output in operating systems

. Santosa, J. Romeroa,∗, J. Taibob, C. Rodriguezc, A. Carballal a

Artificial Neural Networks and Adaptive Systems LAB, University of A Coruña, A Coruña, Spain
VideaLAB, University of A Coruña, A Coruña, Spain
Computing and Communications Service, University of A Coruña, A Coruña, Spain

r t i c l e i n f o

rticle history:
eceived 18 October 2010
eceived in revised form 23 May 2011
ccepted 13 July 2011
vailable online 26 July 2011

eywords:

a b s t r a c t

One of the most difficult and hard to learn tasks in computer system management is tuning the kernel
parameters in order to get the maximum performance. Traditionally, this tuning has been set using
either fixed configurations or the subjective administrator’s criteria. The main bottleneck among the
subsystems managed by the operating systems is disk input/output (I/O). An evolutionary module has
been developed to perform the tuning of this subsystem automatically, using an adaptive and dynamic
approach. Any computer change, both at the hardware level, and due to the nature of the workload itself,
perating system
enetic algorithms
volutionary computation
O optimization
ernel optimization

will make our module adapt automatically and in a transparent way. Thus, system administrators are
released from this kind of task and able to achieve some optimal performances adapted to the framework
of each of their systems. The experiment made shows a productivity increase in 88.2% of cases and an
average improvement of 29.63% with regard to the default configuration of the Linux operating system.
A decrease of the average latency was achieved in 77.5% of cases and the mean decrease in the request

s 12.
processing time of I/O wa

. Introduction

Computer system performance depends on three main factors:
ardware, operating system and applications. The system adminis-
rator cannot usually modify applications, so if he needs to increase
he global system performance he will have to improve some of the
ther two factors. Purchasing new hardware is generally expen-
ive and sometimes unnecessary, because a smart operating system
uning may often achieve a satisfactory increase in the system
erformance. Therefore, this option should be the first one to be
onsidered by a responsible administrator, since it is feasible and
oes not require any additional investment.

Tuning a system means making the most efficient use of the
vailable resources according to the workload supported. On the
ne hand, unnecessary tasks must be avoided and on the other
and, all the available options must be set for an optimal perfor-
ance (Musumeci and Loukides, 2002). The general way in which

n operating system configuration is tuned consists of making
performance measurement in the different system modules in

rder to spot the system’s bottleneck, that is, the point in which per-
ormance is limited. This limitation is usually caused by a resource

emand greater than its availability. Once the bottleneck is located,

t must be eliminated, either by increasing the availability of that

∗ Corresponding author.
E-mail address: jjrnasa@gmail.com (J. Romero).

164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2011.07.030
79%.
© 2011 Elsevier Inc. All rights reserved.

resource or by reducing the demand. This process continues until
it reaches a satisfactory performance or else, a deadlock.

There are several subsystems that can be tuned within an
operating system: process management and Central Processing
Unit (CPU) scheduling, system caches and memory, buses and
input/output (I/O) devices, file system and network. There are
specific performance measurement tools for every subsystem (i.e.
vmstat for virtual memory statistics), in addition to some of general
use, such as the SAR utility (System Activity Reporter) from UNIX
systems. Besides, most operating system manufacturers provide
software packages to ease the collection and analysis of perfor-
mance data, showing them in graphical format and including
Graphical User Interfaces (GUIs); for example SE Toolkit, by Solaris,
that has been released under General Public License (GPL), or Win-
dows Performance Analyzer by Microsoft (Microsoft, 2009). Solaris
has also developed a language named SymbEL (Setoolkit, 2009)
devised to simplify the access to the data Kernel, both performance
statistics and configuration parameters.

Although all these tools make tuning easier, success in this
task still depends on the personal administrator’s skills. There are
several studies about automatic methods for specific parameter
tuning, such as the Transmission Control Protocol (TCP) buffer size
(Semke et al., 1998; Fisk and chun Feng, 2000; Oak et al., 2002),
or Data Base Management System (DBMS) optimization (Oracle,

2008). The development of new tools that automate the whole tun-
ing process in a dynamic and adaptive way that depends on time
and architecture will provide our operating systems with a certain
degree of intelligence.

dx.doi.org/10.1016/j.jss.2011.07.030
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:jjrnasa@gmail.com
dx.doi.org/10.1016/j.jss.2011.07.030

7 ystems

p
s
t
t
v

o
t
h
b

t
h
s
p

c
s

d
w
L
a
a
p
o
S
a

2

m
a
i
a
t
i

d
u
H
t
f
i
u
r
o
(
s
l
s

c
w
r
t
s
s
a
c
a
t
a

8 A. Santos et al. / The Journal of S

Standard tuning techniques are not able to obtain the maximum
erformance from the system, since they are based almost exclu-
ively on the administrator’s experience and they are hard to adapt
o the different software and hardware configurations of each sys-
em. They do not take into account that there are some factors that
ary through time, such as the workload.

We propose an automatic intelligent tuning module for system
ptimization. Due to the great amount of subsystems involved in
uning, it would be desirable to initially treat them separately. We
ave chosen the disk I/O subsystem because it is usually the main
ottleneck in our systems.

The Linux operating system has been chosen for the experimen-
ation tasks, due to the great number of existing platforms and its
uge versatility. Implementing our environment in other operating
ystem will only entail its adaptation to the appropriate adjustable
arameters.

Our work is an attempt to set the foundations so that those
orporations and bodies developing operating systems start con-
idering the benefits posed by the inclusion of adaptive systems.

The paper has been structured as follows: Section 2 describes the
isk I/O subsystem. The parameters which can be modified together
ith their impact on the system performance are analyzed. The

inux mechanisms for subsystem monitoring are included, as well
s some of the tools available. Section 3 presents the state of the
rt on automatic tuning of IO systems. Section 4 describes the pro-
osed GA system, while Section 5 tackles the implementation of
ur IOPerf self-tuning module for the disk I/O subsystem. Finally,
ections 6 and 7 present those aspects related to the experiment
nd the results achieved, as well as the work conclusions.

. Disk I/O system description

The hard disk is the main non-volatile information storage ele-
ent in an information system. It plays a key role in our computer

rchitectures (Hennessy and Patterson, 2007) and this may directly
mpact the system’s global performance. The development of stor-
ge devices has constantly aimed at improving performance. One of
he latest innovations enhancing accountability and performance
n recent years were the disk arrays.

The relevance of the performance of the disk I/O subsystem is
etermined to a great extent by the way in which the system is
sed, the applications running, as well as their hard-disk usage.
ard disks and their controllers can be compared by checking

he numerous technical specifications provided by their manu-
acturers. Knowing and analyzing hard-disk specifications is vital
n order to understand its performance and to be able to eval-
ate and optimize it. Among them, we should highlight those
elated to positioning and transfer, as well as factors depending
n memory management, the file systems or the disk interface
Tanenbaum, 2007). Therefore, the performance of the disk I/O
ubsystem is ruled by a variety of factors. Some of them are techno-
ogical; others depend on the operating system and its management
trategies.

Quantifying the performance of the disk I/O subsystem is a
omplex task. There are several parameters in order to evaluate
hether the storage system function at the level required by the

emaining system. One of our goals could be the optimization of
he whole set of parameters, bearing in mind the I/O subsystem
pecifications (positioning, transfer, memory management, files
ystem, disk interface, etc.). Nevertheless, some of these attributes

re contradictory depending on the requirement type of the appli-
ations running in the system. Determining and focusing on those
ttributes which make a greater impact on performance is essen-
ial. The following parameters must be highlighted among those
llowing the measurement of the disk I/O:
and Software 85 (2012) 77–86

• Throughput: the amount of work completed within a period of
time. It can be measured according to the number of data which
can be moved through the system in a given time, or accord-
ing to the I/O operations completed per time unit. The context
will determine which one is the fittest. For instance, in a system
oriented towards the transfer of big files, the most appropriate
thing will be measuring the number of transferred bytes. In case
the system performs a great number of small independent access
operations, then the number of operations per time unit will be
more relevant.

• Response or latency time: total amount of time needed in order
to complete a particular task. In the I/O subsystem, it reflects the
time of a specific request. In environments with extremely big I/O
requests, the response time will basically depend on the transfer
speeds. In other contexts, with many small access operations, it
will be marked by the requests management and their access
times.

• Fairness: ability to process the tasks-requests uniformly.

The throughput and the response time are two hugely impor-
tant metrics in a disk I/O system. Usually, some compromises
are reached between them. For instance, the response time is
minimized, processing the request as soon as possible, while
productivity may be increased if those requests accessing near posi-
tions are grouped together. In the latter case, the response time
would increase, since they must wait for a longer time.

I/O schedulers will usually try to maximize productivity. With
that goal, they will re-organize requests by keeping in wait those
which have not been served for the longest time, and they process
new requests soliciting disk blocks that minimize the access time.
This system enhances the system performance by sacrificing the
fairness of the disk requests set. Current I/O schedulers do take
this circumstance into account and they usually assign life times to
requests so as to avoid their eventual inanition. In order to maintain
a good system performance, it is basic to keep certain fairness.

The huge variety of existing hardware components has helped
operating systems to evolve from monolithic environments to
module-based models. The purpose is to obtain a kernel that is as
light as possible. New functions can be added thanks to the loading
of new modules. Linux operating systems are a clear example of
that evolution.

The Linux operating system facilitates information export from
the kernel space to the user one, as well as the other way round. The
file system /proc (ProcFS) constitutes a system information point
for the user’s space. It makes it possible to modify dynamically the
determining parameters in the management of the various modules
in the operating system, simply by the administrator’s writing in
the files (Bovet and Cesati, 2005). Thus, the disk I/O system can
be tuned by a set of parameters, which can be modified by the
system’s administrator or by a dynamic and adaptive automatic
tuning module.

We performed a study of the Linux I/O disk management sub-
system and the parameters that can be modified. The study was
divided into three of its elements: the disk I/O schedulers, the vir-
tual memory management and the file systems. The parameters
involved in our system are presented next. A thorough description
of the total parameters is available in Love (2005). This section is
completed with a description of some of the subsystem monitoring
tools.

The first element analyzed is the disk I/O scheduler. It collects
the I/O requests and sends them to the device hardware controller
for their processing.
The 2.6 kernels integrate four I/O schedulers: Anticipatory (AS),
Deadline, Noop and Completely Fair Queuing (CFQ) (Love, 2004).
Linux tends to use by default the CFQ. Users have the chance to
select among them manually. A different one may be selected

ystems

f
s
s

a
t
n
l
m
d
n
w
t
w

f
m
N
s
m
t
r
a
c
s
d
w
I
t
a
o

o
2
b
t
r
p
n
a

n
t
t
a
T
R

i
t
f
a
fi
a

p
L
p
m
(
o
o

v
a
t

A. Santos et al. / The Journal of S

or each disk, while the I/O scheduler can be changed on hot
wapping. Choosing the ideal one will depend on each system’s
cenario.

The Deadline scheduler operates with 5 I/O queues and it links
maximum life time to each request. It re-organizes requests with

he goal of improving the I/O performance, always making sure that
one of the requests undergoes inanition. The nature of the Dead-

ine (Love, 2005, 2004) queue and request management focuses on
inimizing the average response time of reading operations, thus

amaging disk productivity and mean response time to the total
umber of requests. Its goal is the attention of reading requests
ithin a given time, while writing requests have no associated life

ime. This scheduler is oriented to servers trying to minimize the
aiting time of a request.

The AS scheduler aims at decreasing the reading response time
or each thread. A controlled delay is included in the equation deter-

ining the next I/O request to be assisted (Iyer and Druschel, 2001;
agar et al., 2003). Once each I/O reading request is completed, the

cheduler starts a short waiting time allowing the thread which
ade the last access to the disk to issue a new reading request

hat can be immediately assisted. Thus, positioning times between
equests are shortened, while the spatial location between disk
ccess operations is the aim. This scheduler is oriented to appli-
ations that quickly generate another I/O request which could be
erved before the scheduler selects another task, thus avoiding the
eceptive idleness (Iyer and Druschel, 2001). The fact that the disk
astes that period of time does not necessarily entail a decrease in

/O performance. The balance between the decrease in positioning
ime and disk productivity is managed according to a cost-benefit
nalysis. The heuristics used in this analysis uses mainly estimates
f the positioning and access times.

The CFQ scheduler may be considered as an improved extension
f Stochastic Fair Queuing (SFQ) (McKenney, 1990; Shakshober,
005). Both schedulers are based on the concept of a fair distri-
ution of the I/O bandwidth for every process making access to
he disk. While the SFQ uses a fixed number of queues for the I/O
equests, normally 64, the CFQ uses as many queues as existing I/O
rocesses. This scheduler focuses on maintaining the process fair-
ess and it provides a good performance in those systems requiring
low latency and demanding a high productivity.

The Noop scheduler uses a very simple algorithm. It serves the
ext request without ordering the requests at all. Its main applica-
ion field is found in those devices not based on blocks, as well as
he specialized software-hardware integrating its own I/O policy,
nd it requires minimum kernel participation (Shakshober, 2005).
his scheduler may yield good results in big I/O subsystems with
AID controllers.

One of the parameters involved in the set of I/O schedulers is the
tem read ahead kb. It determines the amount of data requested to
he driver for each block required in a reading request. The data
ound in the disk are loaded in the memory subsequently to those
ctually requested. The performance of sequential reading of big
les is enhanced. In those systems with a majority of random access,
small read ahead kb value will usually yield better results.

Another relevant issue which is directly linked to our system’s
erformance is the virtual memory management (Hagen, 2002;
ind, 2003). Among all the adjustable parameters the swappiness
arameter controls the system’s trend towards using the swap
emory. Its value may range between 0 (no swap is used) and 100

swapping whenever possible). In case of intermediate values, the
ption executed will depend on certain factors, such as the memory
ccupied at each time.
Modifying any of the subsystem parameters will cause a certain
ariation in the I/O performance. Evaluating performance requires
monitoring process. Linux has a disk statistics system in order

o help measure its activity. Some of the information it provides
and Software 85 (2012) 77–86 79

consists of the number of reading and writing requests completed,
the amount of data read and written in the disk, the latencies of
each access type, as well as the number of requests currently in
progress (Lind, 2003).

In the case of virtual memory, the information provided includes
the RAM and swap memory in use, the amount of dirty memory and
the data related to the overcommit strategy (Nerin, 2009).

There are various freeware tools in order to measure the I/O disk
performance. Tools such as “iostat” or “sar” interpret that informa-
tion which is also directly accessible by means of any proprietary
development. These benchmarks are based on the creation of files
in the hard disks and the subsequent generation of requests to
them, trying to overload disk access. They will later analyze the
performance achieved and they will yield results such as the pro-
ductivity or mean latency. Tools such as Iozone (Norcott, 2006)
allow different measurements, such as productivity or latency, of
disk I/O workloads. The benchmark generates and measures a vari-
ety of file operations. Tiobench (Manning and Kuoppala, 2003)
is another available benchmark measuring productivity (reading
and writing) and mean latency (reading and writing) of a set
of sequential reading/writing operations, random reading/writing
and re-read. We have used the libraries in the latter tool for our
development.

3. State of the art

Several papers present new I/O Schedulers based on GAs
(Moilanen and Williams, 2005), self-learning methods (Zhang and
Bhargava, 2009), FIFO queue-based planners (Kim et al., 2009) or
optimizations of already-existing planners in virtualized systems
(Kesavan et al., 2010). There have also been approaches focusing
on Solid State Disks (SSD) (Dunn and Reddy, 2009).

Moilanen and Williams (2005) took an approach using GAs for
configuring the kernel. That work focuses on the Zaphod and the
Anticipatory I/O Scheduler.

The general genotype contains: read expire, write expire,
read batch expire, antic expire, and max thinktime y nr request.
They also use the so-called “placeholder for fitness measures”
genes, with the aim of “making sure all workloads are considered,
and not favoring one type of workload over another”.

They perform a series of comparisons between their system
for the Anticipatory I/O Scheduler and the default planners. They
generate various workloads by means of a Flexible File System
Benchmark Flexible (2008) (FFSB) and a system of ext3 files. They
use an OpenPower 710, with 2 CPUs and 2 GB RAM. Tests are made
with an SUSE Linux Enterprise Server 9 with a 2.6.11 kernel.

An 8.72% improvement was obtained in the Anticipatory Sched-
uler, taking into account the number of transactions-per-second
and the throughput. The highest increase was observed in the ran-
dom 256K block writing which achieved a 23.22% improvement.
On the other hand, the sequential reading performance suffered a
worsening of 0.74%.

Zhang and Bhargava (2009) propose universal self-learning disk
I/O scheduling schemes for automating the configuration of a disk
planner. Its main goal is adapting to different workloads so as
to make optimal decisions at any time as regards planning. For
that purpose, they take into account workloads, file systems, disk
systems, tunable parameters, CPU systems, and user preferences.
They possess four self-learning disk scheduling schemes: Two-
layer Learning, Change-sensing Round-Robin, Feedback Learning
and Per-request Learning. One of them, the Two-layer Learning

Scheme, achieves good results as compared to the other four
Linux default schedulers. “It integrates the workload-level and
request-level learning algorithms. It employs five feedback learn-
ing techniques to analyze workloads, change scheduling policy,

8 ystems

a
a

R
T

t
w
b
i
w
t
t

4

f
m
w
n
w
a
d
w

t
f
I
e

t
r
m
t
G
c
t
H

i
i
p
p
y
o
t
u
s

c
s
o
fi

v
(
s
i

v
t

a
o

0 A. Santos et al. / The Journal of S

nd tune scheduling parameters automatically”: C4.5 Decision tree
lgorithm, Logistic regression, Naive Bayes, ANN and SVM.

Experiments are carried out with a Pentium4 3.2 GHz with 1 GB
AM fitted with a Western Digital Caviar SE 250-Gbyte hard disk.
hey use Linux Kernel 2.6.13 and a Ext3 file system.

They generate several workload scenarios with Intel Iome-
er (Intel Iometer, 2008) under the heavy-loaded multithreaded
orkloads, the self-learning scheduler outperforms the second

est scheduler, the Anticipatory scheduler, by 14.5%, consider-
ng the average response time. Under the “maximum throughput”

orkload, which is generated to measure the maximum possible
hroughput of the system, the self-learning scheduler outperforms
he second best scheduler by 3.5%.

. GA system

The performance tuning of the disk I/O system must be tackled
rom the point of view of the resources control. Using a proactive

ethod through a control module carrying out preventive actions
ill avoid eventual negative states in disk I/O. Identifying some sig-
ificant and sufficient indicators leading to believe that those states
ill arise makes our solution execute a series of actions producing
more positive state. The goal is minimizing the chance of a non-
esirable situation in the I/O subsystem, instead of waiting for the
orst-case scenario in order to act up.

In the face of such an issue, we should be able to predict from
ime to time the approximate workload of our disks in the near
uture. Thus, we may determine the conditions under which the
/O system will operate. Tuning the I/O system working conditions
ntails a clear optimization problem.

Heuristic techniques are capable of finding solutions closet to
he optimal one. They also provide an appropriate performance and
educe the high costs associated to finding the best solution. Opti-
ization techniques cannot simply be evaluated by their capacity

o locate the optimal solution, but also according to their cost.
As are a very competitive alternative in terms of solution quality
ompared to cost. We used GAs due to their adequacy for solving
he problem to tackle (Davis and Mitchell, 1991; Goldberg, 1989;
olland, 1992).

The approach that we have developed obtains a population of
ndividuals (chromosomes) characterized by the parameters defin-
ng the various patterns of the disk I/O subsystem. The initial
opulation is integrated by a set of randomly generated disk access
rototypes. Benchmarking the individuals in the population will
ield a whole set that is characteristic of the performance results
f the I/O subsystem. Evaluating the results achieved and applying
he crossover and mutation operators will generate new individ-
als for the population that will be treated in the search for new
olutions.

One of the most important decisions is the individual coding
riterion. Building individuals is made by uniting the genes repre-
enting the characteristic parameters of disk I/O access, both those
f the scheduler and those of the virtual memory management and
le systems.

Two types of parameters are chosen to be integrated in the indi-
iduals: (i) those characterizing the nature and status of disk access
characterizing the problem), and (ii) with those integrating the
olution itself. The first type of parameters can be deemed as key
n order to determine the nature of disk access.

The second group of parameters will determine the new solution
alues provided there is a solution applicable which will define the

uning behavior of the disk I/O subsystem.

Another option that could be explored for optimizing the I/O
ccess disk would entail using an independent GA for each status
r problem nature. However, that option would not allow moving
and Software 85 (2012) 77–86

information from one status to the next. But our approach, being
based on a single GA coding both the problem and the solution
does allow this transfer. Thus, with a given solution for a particular
status, this solution or an evolution of it could be useful to others.
A similar approach was the one used by Moilanen and Williams
(2005).

The first group of parameters will be assigned a clearance fac-
tor (CF) to determine whether a new disk access pattern is similar
to that solution. Small values will be assigned to those parame-
ters in which a smaller variation entails a significant change in disk
performance.

This first group of parameters is used to select the individual in
the population which is the most similar to a given situation. The
following equation defines the distance between a given situation
and an individual:

Distance =
params∑

i=0

CFi · |Access Valuei − Individual Valuei|
Maximum(i) − Minimum(i + 1)

The clearance factor may range between 0 and 1. The greater
the clearance factor, the greater the weight if that distance for
calculating similitude.

Determining the number of parameters of the disk I/O pattern
raises several questions. Considering a great number of parame-
ters may seem attractive, since one can control all of the I/O system
variations. This scenario would create greater population variabil-
ity and an increase in convergence times. Moreover, it would force
one to increase the sampling frequency in order to achieve a bigger
individual’s population that would guarantee reaching some valid
solutions. Characterizing disk access by a huge set of parameters
generates a very wide space of solutions, which in turn renders find-
ing a solution more complex. We have decided to select a smaller
set of significant parameters, although we have risked not capturing
all the dynamism and complexity of disk I/O system.

The parameters characterizing the disk access patterns must
reflect the nature of the existing requests. We have chosen the
ones that represent those elements which may generate a greater
variation in disk access performance:

• Process number: number of processes that issue requests simul-
taneously to the disk being monitored.

• Percentage of reading vs. writing access operations: it regards the
chance for a reading request issued by a process.

• Percentage of random vs. sequential access operations: it regards
the chance for the occurrence of a disk request of a process not
being subsequent to the last one issued by it.

• Size of the disk requests: amount of data requested by each
reading and writing request. In the case of big requests, access
times increase and productivity is enhanced, given that the data
requested is located in adjacent positions.

The second group of parameters defines the tuning of the disk I/O
subsystem. These parameters will determine the solution space and
the parameter selection or tuning of the disk I/O system. We have
chosen the following ones:

• Scheduler: the scheduler is in charge of managing every I/O disk
request. A dynamic and correct scheduler selection will provide
a considerable increase in performance.

• Read ahead kb: amount of spare data brought to memory at
each reading request made to the disk. Those sectors which are

consecutive to the requested ones are loaded. It establishes the
assurance level that subsequent accesses will refer to neighboring
disk positions. In those cases, information would be readily avail-
able in memory.

A. Santos et al. / The Journal of Systems and Software 85 (2012) 77–86 81

Table 1
Individual coding.

Parameter No. of bits Minimum Maximum Clearance factor

No. of processes 3 1 8 0.8
%Reading access 7 0 100 1.0
%Random access 7 0 100 1.0
Request size 11 0 2047 0.7
Scheduler 2 Noop, AS, deadline, CFQ

•

A
t
t
p

4

v
a
o
t
i

o
c
e
b
a
a
a
t
p
p

v
f
p
d
m
t
m
[

t
f
E
i

a

p
e

fi

Read ahead kb 10 4 1023 –
Swappiness 7 0 100 –

Swappiness: it controls the tendency of the kernel to move
processes out of physical memory onto the swap disk. Setting
the right swappiness value may avoid a high and unnecessary
exchange of pages between memory and disk. It was decided
that this parameter should be added due to the strong impact
of virtual memory management in hard disk use, as well as its
significant impact on the performance expected by our systems
applications.

binary coding has been used for the individuals in the popula-
ion. Table 1 shows the number of bits assigned, the range of values
hey may take on and the clearance factor of the characteristic
arameters.

.1. Population

The population size determines the maximum number of indi-
iduals that may integrate a stable population ready to be used as
basis for solutions. It must be big enough to allow a wide variety
f solutions. Nevertheless, the greater the number of individuals is,
he longer the computing time, which may render the technique
nefficient.

The coding selected may lead us to an obvious problem of lack
f diversity. For instance, an access pattern with 100% readings
ompared to one where writings are predominant shows a clear
xample of enhanced productivity and decrease of access time. In
oth scenarios, regardless of the disk access parameters, the evalu-
tion function will always obtain the best results when readings
re predominant. The same scenario is true with the percent-
ge of random access operations. Thus, as new generations arise,
he population will become more homogeneous regarding these
arameters. As a result, the predominant individuals will have high
ercentages of reading and sequential access operations.

This problem is solved by keeping a minimum number of indi-
iduals within the ranges that are characteristically defined as
ostering diversity. 5 ranges were defined for each of the following
arameters: percentage of reading access and percentage of ran-
om access. Every range is assigned a fixed length, except for the
argins which have been reduced, given that a small variation in

he parameter value will have a greater impact on disk I/O perfor-
ance. The ranges selected for both parameters were: [0,4], [5,34],

35,64], [65,94], [95,100].
We worked with 25 possible combinations of ranges and tried

o maintain a minimum number of 2 individuals per range, there-
ore there will be a minimum of 50 individuals in the population.
A population size of 100 individuals has been used for the exper-
ments described in the present paper.

The initial population is generated at random considering the
lready mentioned specifications.

The evaluation function is applied to every individual from this
opulation. This function determines the performance linked to

ach individual by means of the following equation:

tness = total bytes transferred
mean latency

· factor
number of process
Fig. 1. Genetic algorithm.

where the factor is ruled by the following equation:

factor =
(

%readings + 1
100

)2

·
(

100 − (%random + 1)
100

)2

As regards the number of processes, it has been considered
that productivity should not be evaluated globally, but based on
the average number of bytes transferred per process. Therefore, as
show in the equation, the fitness will be divided for the number of
processes.

Moreover, each individual’s fitness is penalized according to a
factor depending on the value of the first group of parameters.
Selecting those individuals with the highest fitness while keeping a
minimum for each of the existing ranges will guarantee population
diversity.

A new population is generated from the initial one using
crossover, mutation and selection operators. One-point crossover
is used between randomly selected individuals. This pattern aims
at increasing the chance for crossover between individuals that are
as different as possible. Mutation consists of the deletion of one
random bit. The selection between individuals with the purpose of
mutation is also made at random (see Fig. 1).

These operators will add new individuals to the previous popu-
lation. A selection operator is applied using the fitness to determine
the best individuals to integrate the next population. This operator
will guarantee the already explained diversity criteria.

Initially, a crossover ratio of 0.9 is used and a 0.1 ratio is applied
to mutation. Since the population tends to converge generation
after generation, the mutation factor has been gradually increased
until reaching the value of 0.25, while the crossover ratio has been
decreased until 0.7. An increase/decrease of 0.02 has been used in
both cases.

The former specifies the percentage of individuals in the total
population that will constitute the set of parents of the next
generation, while the latter indicates the chance for a mutation
taking place in a given individuals. Generally speaking, mutation
causes diversity in the population; therefore it is applied less fre-

quently, while crossover is applied more often in order to foster the
exchange of genetic material between individuals.

82 A. Santos et al. / The Journal of Systems and Software 85 (2012) 77–86

erf arc

5

d
i
s

•

•

•

•

•

•

T
t
t
r
r
k

Fig. 2. IOP

. IOPerf: self-tuning module of disk I/O

The present section analyzes the software architecture of the
eveloped module, which is called IOPerf. Its modular design facil-

tates extending its functions to later uses and enhancements. Fig. 2
hows the architecture design.

The modules are described next:

A converter (Entity Access) defining the codification of the indi-
vidual structure into the integrating parameters and vice versa.
It also allows the modification of kernel parameters. It will con-
stitute the interface between the IOPerf and the kernel. If our
module was integrated in another operating system, then the
only change to be made would be related to these functions.
A simulator (Simulator) that translates the individuals in a state-
ment for the execution of selected benchmark. It is the only
interface with the benchmarking tool used. In the present case,
Tiobench (Manning and Kuoppala, 2003). It is also in charge of
hiding to the remaining application the mechanism for generat-
ing the disk workload.
A disk I/O workload generator (Monitor) which generates random
I/O workloads in order to evaluate the individual populations. It
generates random I/O workloads, it selects the solution individual
and it evaluates the results.
A disk I/O optimizer (Optimizer) using the GAUL library (Genetic
Algorithm Utility Library) (Gaul, 2009) to manage the individ-
ual populations and to obtain new generations integrates the GA
core.
A library (Tools) with implementation of several methods which
are common to several application modules. It has access to a log
file storing the sequence of all the events generated.
IOPerf defines the algorithm flow indicating, among other things,
the number of tests to be carried out for each generation or the
time at which a new generation must be obtained. This mod-
ule allows configuring and tuning several elements that have an
impact on the GA’s evolutionary mechanism.

he process is as follows: for each of the individuals in an ini-
ial population, a workload is generated which is determined by

he first group of parameters (number of processes, percentage of
eading vs. writing access operations, percentage of sequential vs.
andom access operations and disk request sizes). Previously, the
ernel will have been modified with those parameters in the second
hitecture.

group or solution (scheduler, read ahead kb and swappiness). The
performance achieved sets the evaluation function of each of the
individuals in the population. An increase in the transfer rate asso-
ciated to a reduction of the average access time clearly indicates an
enhanced performance.

The source code of IoPerf is available at http://www.tic.udc.es/
nino/ioperf/ioperf.zip.

6. Experimentation and results

The work environment in the experimentation phase is inte-
grated by an Athlon XP2800 PC with 1 GB of RAM and an ST340014A
hard disk of 40 GB, 7200 rpm, 2 MB of buffer-cache, internal transfer
speed of 683 Mbps, external transfer speed of 100 MBps and a posi-
tioning time of 8.5 ms. The operating system used is a Debian with
a 2.6.29 kernel. The file system mounted is an ext3 and the swap
space assigned in the disk is 1 GB. Tiobench-0.3.3 (Manning and
Kuoppala, 2003) has been used to measure disk I/O performance.

A 30 s simulation time is used to evaluate each individual in the
GA. During that time, it is possible to carry out a sufficient num-
ber of disk requests in order to evaluate the corresponding pattern
without generating a high computational cost.

With the goal of comparing the GA performance with that of
the default kernel, each new population is tested with 1000 work-
loads of disk access. Each of them runs for 300 s and it is defined
by the characteristic parameters (number of processes, percentage
of reading access, percentage of random access and request sizes).
Workloads are randomly generated. The same simulations are also
made, although using the default values of the kernel parameters.
An IOBad module was developed for that task. This application
issues the corresponding sentences without modifying the kernel
parameters. Various analyses are made about our module’s behav-
ior. The graphs of Figs. 3 and 4 used only show the first 160 tests
out of the 1000 that were made, with the purpose of enhancing
comprehension and visual analysis.

Fig. 3 shows the productivity in MBps of the initial 160 cases
of the eighth population. The IOperf graph represents productivity
under the adjustments made by our module to the kernel. The IObad
graph shows the results with the default kernel, without parameter

tuning.

The other goal of our work consists of decreasing the response
time of the I/O requests. Therefore, the purpose in this case is
decreasing the mean latency. Fig. 4 shows the average access time

http://www.tic.udc.es/~nino/ioperf/ioperf.zip
http://www.tic.udc.es/~nino/ioperf/ioperf.zip

A. Santos et al. / The Journal of Systems and Software 85 (2012) 77–86 83

ductiv

o
t

I
a
l
r

Fig. 3. Mean pro

f the first 160 cases of the eighth population. Both the IOperf and
he IObad graphs can be observed.

A significant performance difference is obtained in favor of the

OPerf module. Productivity increases at 88.2% of cases, with an
verage improvement of 29.63%. The goal of decreasing the mean
atency was also achieved in 77.5% of the cases, with an average
eduction in the I/O request processing time of 12.79%. The goal of

Fig. 4. Mean latency
ity per process.

trying to jointly increase productivity per process and decreasing
the request response time was achieved at 77.5%.

There are a minority of situations which do not yield the

expected result. Productivity decreases while latency increases in
11.8% of the cases, which is exactly the opposite of the desired
effect and entails an obvious loss of performance. In most cases, the
assigned scheduler was not AS, the kernel’s default one, and there

per request.

84 A. Santos et al. / The Journal of Systems and Software 85 (2012) 77–86

veme

i
b
a

c
h
i
i
s
a
f
d
l
p

t
v

Fig. 5. GA evolution. Percentage of impro

s considerable variation among the various patterns. We should
ear in mind that each scheduler’s specific parameters are not being
djusted.

An intermediate situation is one in which productivity per pro-
ess is enhanced at the expense of increasing the mean latency. This
appens in 10.7% of cases and, although it is not the ideal scenario,

t is possible that in those work environments where maximiz-
ng productivity is the main goal, it could be considered as a good
olution. There is a common pattern regarding these access oper-
tions, with a high number of processes linked to a higher chance
or random access requests which causes a higher movement in the
isk reading and writing head, thus increasing latency. Neverthe-

ess, productivity may be enhanced, given that a greater number of

rocesses will stop the disk from idling.

Another factor which has been analyzed is GA convergence
owards optimizing disk access. Fig. 5 shows the percentage of
ariation in average productivity per process achieved by the

Fig. 6. GA evolution. Percentage of improve
nt of the mean productivity per process.

IOPerf module vs. IOBad. Fig. 6 shows the percentage of variation in
average response time per request. The first 20 workloads of each
generation are shown. Each randomly generated workload runs for
300 s. Thus, the evolution of the algorithm in searching for better
solutions is checked. In the case of the average productivity, the goal
is increasing it and it appears above 0% in the graph. In the case of
the average latency, the goal is to decrease it, with a percentage
below 0%.

The experimentation stage has also used another environment
integrated by an Intel Core2 6320 1.86 Ghz with 2 GB of RAM and
an ST380215AS hard disk of 80 GB, 7200 rpm, 2 MB of buffer-cache,
with internal transfer speed of 930 Mbps, external transfer speed of
300 MBps and a positioning time of 4.16 ms. The operating system

used is a Debian 6.0.1 with a 2.6.32 kernel. The file system mounted
is an ext3 and the swap space assigned in the disk is 4 GB.

Under this new experimental configuration, a significant per-
formance difference is also obtained in favor of the IOPerf module,

ment of the mean latency per request.

ystems

t
P
m
a
r

t
w
t
o
o
t
t
r
i
r

7

t
t
t
a
t
h
G

i
e
d
i
d
a
s
a
a
t

a
a
t

t
b
c
m
o
s
A
f
e
s

t
t
i
o
s
i

A

f

A Coruña University in 1998. At present I am professor at University of A Coruña
A. Santos et al. / The Journal of S

aking into account the initial 20 cases of the eighth population.
roductivity increases in 95% of the cases, with an average improve-
ent of 39.8%. The goal of decreasing the mean latency was also

chieved in 75% of the cases, with an average reduction in the I/O
equest processing time of 17.4%.

Regarding the results of the different disk access types, sequen-
ial readings, random readings, sequential writings and random
ritings, we should note that IOPerf generally manages to reduce

he latency of writing operations, and not to reduce it in reading
nes. This result should not be striking, given that the default value
f the Linux read ahead kb parameter is relatively low, compared
o the possibilities allowed by our module IOPerf. In order to fos-
er an increase in productivity, IOPerf tends to assign a value to
ead ahead kb which is superior to the default one. Therefore, an
ncreased latency is normal, given that the amount of information
ead by each reading request is higher.

. Conclusions

One of the most complex tasks in the context of operating sys-
ems is getting an optimal performance of the kernel parameter
uning, because traditional techniques depend on the adminis-
rator’s experience and skills. Our IOPerf module performs the
utomatic and dynamic tuning of these parameters, focusing on
he disk I/O management subsystem. Adaptive system techniques
ave been applied to the development of the module, in particular
A.

The final module (IOPerf) automates the tuning process, elim-
nating the subjectivity introduced by manual configurations. The
xperiments carried out show a considerable increase in the pro-
uctivity of the disk I/O subsystem. In 88.2% of cases, productivity

ncreases, with an average enhancement of 29.63%. The average
ecrease in response time is 12.79% in 77.5% of cases. These results
re considerably better than those obtained in the works corre-
ponding to the state of the art. Moilanen and Williams (2005)
chieves an average enhancement of throughput of 8.72%. Zhang
nd Bhargava (2009) achieve a latency enhancement of 14.5% in
he best case scenario.

Besides, the GA provides a population of solutions, each of them
dapted to a workload scenario. Thus, the system is capable of
dapting dynamically and in real-time to the different configura-
ions and workloads that could appear.

This paper proves the advantages posed by integrating GAs in
he management subsystem of disk I/O. Our servers evolve quickly,
oth as regards workload and its nature. We could pinpoint some
ritical scenarios, such as the change of task in a system which
oves on from acting as an e-mail server to providing web services,

r as a database. GAs can quickly and automatically adapt them-
elves to these changes by means of an endless evolution scheme.
ccording to this approach, a new population would be generated

rom time to time. The current population would be used for its gen-
ration, together with those individuals achieved from a periodical
ystem monitoring.

Tuning many of the kernel parameters of the operating sys-
ems requires a certain degree of experience. Integrating automatic
uning modules in operating systems will allow a substantial
mprovement in the performance of the various subsystems. More-
ver, the adaptive nature of these modules will provide good
olutions, regardless of the working environment architecture and
ts evolution, both at hardware and software levels.
cknowledgements

The authors would like to thank the anonymous reviewers
or their constructive comments, suggestions and criticisms. This
and Software 85 (2012) 77–86 85

research is partially funded by: the Spanish Ministry for Science and
Technology, research project TIN200806562/TIN; Xunta de Galicia,
research project XUGAPGIDIT10TIC105008PR.

References

Bovet, D., Cesati, M., 2005. Understanding The Linux Kernel. O’reilly & Associates Inc.
Davis, L.D., Mitchell, M., 1991. Handbook of Genetic Algorithms. Van Nostrand Rein-

hold.
Dunn, M., Reddy, A.L.N., 2009. A New I/O Scheduler for Solid State Devices. Technical

Report. Texas A & M University.
Fisk, M., chun Feng, W., 2000. Dynamic Adjustment of TCP Window Sizes. Technical

Report. Los Alamos Unclassified Report (LAUR) 00-3221, Los Alamos National
Laboratory.

Flexible File System Benchmark, 2008. http://sourceforge.net/projects/ffsb/.
Gaul, 2009. Personal Home Page. http://gaul.sourceforge.net.
Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Longman Publishing Co. Inc., Boston, MA, USA.
Hagen, W.V., 2002. Linux Filesystems. Sams, Indianapolis, IN, USA.
Hennessy, J.L., Patterson, D.A., 2007. Computer Architecture. A Quantitative

Approach. Elsevier.
Holland, J.H., 1992. Adaptation in Natural and Artificial Systems. MIT Press, Cam-

bridge, MA, USA.
Intel Iometer, 2008. http://www.iometer.org/.
Iyer, S., Druschel, P., 2001. Anticipatory scheduling: a disk scheduling framework

to overcome deceptive idleness in synchronous i/o. In: SOSP ’01: Proceedings
of the Eighteenth ACM Symposium on Operating Systems Principles, ACM, New
York, NY, USA, pp. 117–130.

Kesavan, M., Gavrilovska, A., Schwan, K., 2010. On disk i/o scheduling in virtual
machines. In: Proceedings of the 2nd Conference on I/O Virtualization, USENIX
Association, Berkeley, CA, USA, p. 6.

Kim, J., Oh, Y., Kim, E., Choi, J., Lee, D., Noh, S.H., 2009. Disk schedulers for
solid state drivers. In: Chakraborty, S., Halbwachs, N. (Eds.), EMSOFT. ACM,
pp. 295–304.

Lind, R., 2003. Linux Kernel http://Documentation/iostats.txt. Accessible via
http://www.mjmwired.net/kernel/Documentation/iostats.txt.

Love, R., 2004. Kernel korner: I/O schedulers. Linux J. 2004, 10. Accessible via
http://www.linuxjournal.com/article/6931.

Love, R., 2005. Linux Kernel Development, 2nd edition. Novell Press.
Manning, J., Kuoppala, M., 2003. Tiobench Benchmark. Accessible via

http://sourceforge.net/projects/tiobench/.
McKenney, P., 1990. Stochastic Fairness Queueing.
Microsoft, 2009. Windows Performance Analyzer. Accessible via

http://msdn.microsoft.com/en-us/performance/cc825801.aspx.
Moilanen, J., Williams, P., 2005. Using genetic algorithms to autonomically tune the

kernel. In: Proceedings of the Ottawa Linux Symposium, Linux Symposium, Inc,
pp. 327–338.

Musumeci, G.P.D., Loukides, M., 2002. System Performance Tuning, 2nd edition
(O’Reilly System Administration). O’Reilly Media Inc.

Nagar, S., Franke, H., Choi, J., Seetharaman, R., Kaplan, S., Singhvi, N., Kashyap, V.,
Kravetz, M., 2003. Class-based prioritized resource control in Linux. In: Pro-
ceedings of the 2003 Ottawa Linux Symposium, p. 03.

Nerin, Feng, 2009. Linux Kernel Documentation/Filesystems/Meminfo. Accessible
via http://www.mjmwired.net/kernel/Documentation/filesystems/proc.txt.

Norcott, W.D., 2006. IO Zone Filesystem Benchmark. Accessible via
http://www.iozone.org.

Oak, T.D., Dunigan, T., Mathis, M., Tierney, B., 2002. A TCP tuning Daemon. In: Pro-
ceedings of SuperComputing: High-Performance Networking and Computing,
pp. 1–16.

Oracle, 2008. Using Automatic Memory Management, Oracle Database Admin-
istrator’s Guide. Accessible via http://download.oracle.com/docs/cd/
B28359 01/server.111/b28310/memory003.htm.

Semke, J., Mahdavi, J., Mathis, M., 1998. Automatic TCP buffer tuning. In: SIGCOMM,
pp. 315–323.

Setoolkit, 2009. The Symb EL Language Reference Manual. Accessible via
http://www.setoolkit.org/cms/node/3.

Shakshober, D., 2005. Choosing an I/O Scheduler for Red Hat Enterprise Linux 4 and
the 2.6 Kernel.

Tanenbaum, A.S., 2007. Modern Operating Systems. Prentice Hall Press, Upper Sad-
dle River, NJ, USA.

Zhang, Y., Bhargava, B.K., 2009. Self-learning disk scheduling. IEEE Trans. Knowl.
Data Eng. 21, 50–65.

Antonino Santos del Riego received the B.S. degree in Computer Science from A
Coruña University (Spain) in 1992 and the Ph.D. degree in Computer Science from
(Spain). Since 1991 I have worked with several research groups in Artificial Neu-
ral Networks, Genetic Algorithms and Internet servers and services. Dr. Santos has
authored and edited more than 25 articles, 7 books, and participated as researcher in
12 funded research proposals concerning to Artificial Intelligence, Adaptive Systems
and Internet Security.

http://sourceforge.net/projects/ffsb/
http://gaul.sourceforge.net
http://www.iometer.org/
http://Documentation/iostats.txt
http://www.mjmwired.net/kernel/Documentation/iostats.txt
http://www.linuxjournal.com/article/6931
http://sourceforge.net/projects/tiobench/
http://msdn.microsoft.com/en-us/performance/cc825801.aspx
http://www.mjmwired.net/kernel/Documentation/filesystems/proc.txt
http://www.iozone.org
http://download.oracle.com/docs/cd/B28359_01/server.111/b28310/memory003.htm
http://download.oracle.com/docs/cd/B28359_01/server.111/b28310/memory003.htm
http://www.setoolkit.org/cms/node/3

8 ystems

J
v
U
“
a
1
M

F
U
2
i
C
s

6 A. Santos et al. / The Journal of S

uan Romero received the B.S. degree in Computer Science from A Coruña Uni-
ersity (Spain) in 1996 and the Ph.D. degree in Computer Science from A Coruña
niversity in 2002. He is associate professor at University of A Coruña. He edited a

Natural Computing” Springer book, published 6 papers in international ISI journals
nd chaired 5 events published as Springer LNCS. He directed and participated in
0 European and Spanish research projects and research contracts with firms such
icrosoft Spain.

rancisco Javier Taibo Pena received the B.S. degree in Computer Science from

niversity of A Coruña (Spain) in 1998, and the Ph.D. degree in Computer Science in
010. He is currently an assistant professor in this University. He has collaborated

n several courses about Computer Science, System Administration, Multimedia,
omputer Generated Imagery and Interaction. Since 1995 he has collaborated in
everal research projects. His research interests are oriented towards Computer
and Software 85 (2012) 77–86

Graphics, working in the Architecture, Engineering and Urbanism Visualization
Group (VideaLAB) since 1998.

Carlos Rodríguez Díaz received the B.S. Degree in Computer Science from A Coruña
University (Spain) in 2005. I am currently a software developer at Information Sys-
tems at University of A Coruña. I’ve been developing several applications using the
lastest.NET technologies for 5 years and building a Java-based Content Management
System for a significant printed Spanish media.
Adrian Carballal Mato received the B.S. degree in Computer Science from the Uni-
versity of A Coruña (Spain) in 2009, and the Ph.D. degree in Computer Science in
2011. He is currently working as research associate at the Department of Informa-
tion Technologies and Communications and participates in several Spanish research
projects.

	Self-tuning of disk input-output in operating systems
	1 Introduction
	2 Disk I/O system description
	3 State of the art
	4 GA system
	4.1 Population

	5 IOPerf: self-tuning module of disk I/O
	6 Experimentation and results
	7 Conclusions
	Acknowledgements
	References

