
IFAC-PapersOnLine 49-30 (2016) 001–005

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2016.11.113

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Quantification of the quality characteristics for the calculation of software

reliability

N. Jazdi, Senior Member IEEE, N. Oppenlaender, M. Weyrich


University of Stuttgart, Institute of Industrial Automation and Software Engineering

Pfaffenwaldring 47, 70569 Stuttgart, Germany

e-mail: {nasser.jazdi; niels.oppenlaender; michael.weyrich}@ias.uni-stuttgart.de

Abstract: This paper presents a method to describe and increase the software quality of automation systems

by a quantitative determination of the software reliability. Therefore, the software development process

has been analyzed to identify the essential factors influencing the software reliability. These are the usage

of a procedure model, the test factor and the human factor of the software developers themselves. These

factors have been considered to create a neuro-fuzzy-based concept, which characterizes and consolidates

them to realize an estimation of the software quality. The possibility to estimate the software quality,

especially dynamically already during the software development process, will entail a huge benefit to

programmers and manufacturers. Effects, methods or circumstances influencing the software quality in a

negative or positive way can be numerically described and rated. On basis of that, necessary optimizations

in the development process can be performed in time to guarantee a high quality of the software.

Keywords: Quality characteristics; Quantification, IoT, Reliability, Human factor



1. INTRODUCTION

Every new development in technology leads to new

challenges. To be successful on global market, high-quality

products and processes are fundamental (Bauer 2011),

(Hillmann 2014). In conclusion, the qualitative properties in

particular determine the success of modern automation

systems. The characteristics of reliability or availability are

therefore driving innovations for future applications. For

automation technology, especially for smart systems in the

context of "Industry 4.0" or the internet of things, it is very

important to determine the quality at an early stage. If feasible,

already during the software development process to prevent

high costs of in field error fixing. Adapted methods for

reliability analysis are necessary to provide this possibility.

The reason of that is, that future automation systems are highly

flexible e.g. in adapting to changing conditions as well as

because these systems are increasingly realized of intelligent

components (Jazdi 2014). Two key aspects of this are the

autonomous character and the interaction with humans. These

interactions are not only taking place during the start-up, the

operation, the maintenance or the shut-down of a system. The

human influence starts already during the development.

Software development follows requirements which are defined

by humans and furthermore software programmers implement

the code. Therefore, the human factor has to be considered in

the reliability analysis as well as the procedures within the

development process itself to achieve a high qualitative

software.

2. STATE OF THE ART

Quality in general is defined as the degree to which a set of

inherent characteristics of an object fulfils requirements (ISO

2015). In the context of globalized competition and smart

systems, more and more complex systems on basis of high-

demanding requirements have to be developed.

These systems contain mechanical, electrical and information

processing components which gain intelligence and

autonomous characteristics by the integration of, for example,

smart sensors and actors (Jazdi 2014). Especially the software

has to be designed for the special needs of "Industry 4.0" and

the internet of things (Weyrich 2016). These needs differ from

those of conventional systems in general purpose (Lee 2008).

The aspect of inherence in the quality definition describes the

fact that these characteristics are always present and can be

measured. This leads to the need that the essential quality

characteristics have to be quantified. Without measurement

and quantification no statement about quality is possible. For

example a high-quality software shows fewer errors and has a

high reliability. On basis of that, the software reliability can be

considered as a metric for the software quality (Jazdi 2012).

The possibility to quantitatively estimate the software

reliability is therefore an important aspect to develop high

qualitative systems.

The reliability of a system is defined as the ability of a system

or a component to function under stated conditions for a

specific period of time (IEEE 1990). A smart system in the

context of "Industry 4.0" is an automated systems that enables

connection of the operations of the physical reality, in

hardware, with computing and communication infrastructures,

in software (Lee 2008), (Bahati, 2011), (GNACE 2011).

Therefore a separated view for the hardware and the software

is necessary.

Hardware reliability is determined by the consideration of

influencing factors like temperature, overvoltage, overcurrent

4th IFAC Symposium on Telematics Applications
November 6-9, 2016. UFRGS, Porto Alegre, RS, Brazil

Copyright © 2016 IFAC 1

Quantification of the quality characteristics for the calculation of software

reliability

N. Jazdi, Senior Member IEEE, N. Oppenlaender, M. Weyrich


University of Stuttgart, Institute of Industrial Automation and Software Engineering

Pfaffenwaldring 47, 70569 Stuttgart, Germany

e-mail: {nasser.jazdi; niels.oppenlaender; michael.weyrich}@ias.uni-stuttgart.de

Abstract: This paper presents a method to describe and increase the software quality of automation systems

by a quantitative determination of the software reliability. Therefore, the software development process

has been analyzed to identify the essential factors influencing the software reliability. These are the usage

of a procedure model, the test factor and the human factor of the software developers themselves. These

factors have been considered to create a neuro-fuzzy-based concept, which characterizes and consolidates

them to realize an estimation of the software quality. The possibility to estimate the software quality,

especially dynamically already during the software development process, will entail a huge benefit to

programmers and manufacturers. Effects, methods or circumstances influencing the software quality in a

negative or positive way can be numerically described and rated. On basis of that, necessary optimizations

in the development process can be performed in time to guarantee a high quality of the software.

Keywords: Quality characteristics; Quantification, IoT, Reliability, Human factor



1. INTRODUCTION

Every new development in technology leads to new

challenges. To be successful on global market, high-quality

products and processes are fundamental (Bauer 2011),

(Hillmann 2014). In conclusion, the qualitative properties in

particular determine the success of modern automation

systems. The characteristics of reliability or availability are

therefore driving innovations for future applications. For

automation technology, especially for smart systems in the

context of "Industry 4.0" or the internet of things, it is very

important to determine the quality at an early stage. If feasible,

already during the software development process to prevent

high costs of in field error fixing. Adapted methods for

reliability analysis are necessary to provide this possibility.

The reason of that is, that future automation systems are highly

flexible e.g. in adapting to changing conditions as well as

because these systems are increasingly realized of intelligent

components (Jazdi 2014). Two key aspects of this are the

autonomous character and the interaction with humans. These

interactions are not only taking place during the start-up, the

operation, the maintenance or the shut-down of a system. The

human influence starts already during the development.

Software development follows requirements which are defined

by humans and furthermore software programmers implement

the code. Therefore, the human factor has to be considered in

the reliability analysis as well as the procedures within the

development process itself to achieve a high qualitative

software.

2. STATE OF THE ART

Quality in general is defined as the degree to which a set of

inherent characteristics of an object fulfils requirements (ISO

2015). In the context of globalized competition and smart

systems, more and more complex systems on basis of high-

demanding requirements have to be developed.

These systems contain mechanical, electrical and information

processing components which gain intelligence and

autonomous characteristics by the integration of, for example,

smart sensors and actors (Jazdi 2014). Especially the software

has to be designed for the special needs of "Industry 4.0" and

the internet of things (Weyrich 2016). These needs differ from

those of conventional systems in general purpose (Lee 2008).

The aspect of inherence in the quality definition describes the

fact that these characteristics are always present and can be

measured. This leads to the need that the essential quality

characteristics have to be quantified. Without measurement

and quantification no statement about quality is possible. For

example a high-quality software shows fewer errors and has a

high reliability. On basis of that, the software reliability can be

considered as a metric for the software quality (Jazdi 2012).

The possibility to quantitatively estimate the software

reliability is therefore an important aspect to develop high

qualitative systems.

The reliability of a system is defined as the ability of a system

or a component to function under stated conditions for a

specific period of time (IEEE 1990). A smart system in the

context of "Industry 4.0" is an automated systems that enables

connection of the operations of the physical reality, in

hardware, with computing and communication infrastructures,

in software (Lee 2008), (Bahati, 2011), (GNACE 2011).

Therefore a separated view for the hardware and the software

is necessary.

Hardware reliability is determined by the consideration of

influencing factors like temperature, overvoltage, overcurrent

4th IFAC Symposium on Telematics Applications
November 6-9, 2016. UFRGS, Porto Alegre, RS, Brazil

Copyright © 2016 IFAC 1

Quantification of the quality characteristics for the calculation of software

reliability

N. Jazdi, Senior Member IEEE, N. Oppenlaender, M. Weyrich


University of Stuttgart, Institute of Industrial Automation and Software Engineering

Pfaffenwaldring 47, 70569 Stuttgart, Germany

e-mail: {nasser.jazdi; niels.oppenlaender; michael.weyrich}@ias.uni-stuttgart.de

Abstract: This paper presents a method to describe and increase the software quality of automation systems

by a quantitative determination of the software reliability. Therefore, the software development process

has been analyzed to identify the essential factors influencing the software reliability. These are the usage

of a procedure model, the test factor and the human factor of the software developers themselves. These

factors have been considered to create a neuro-fuzzy-based concept, which characterizes and consolidates

them to realize an estimation of the software quality. The possibility to estimate the software quality,

especially dynamically already during the software development process, will entail a huge benefit to

programmers and manufacturers. Effects, methods or circumstances influencing the software quality in a

negative or positive way can be numerically described and rated. On basis of that, necessary optimizations

in the development process can be performed in time to guarantee a high quality of the software.

Keywords: Quality characteristics; Quantification, IoT, Reliability, Human factor



1. INTRODUCTION

Every new development in technology leads to new

challenges. To be successful on global market, high-quality

products and processes are fundamental (Bauer 2011),

(Hillmann 2014). In conclusion, the qualitative properties in

particular determine the success of modern automation

systems. The characteristics of reliability or availability are

therefore driving innovations for future applications. For

automation technology, especially for smart systems in the

context of "Industry 4.0" or the internet of things, it is very

important to determine the quality at an early stage. If feasible,

already during the software development process to prevent

high costs of in field error fixing. Adapted methods for

reliability analysis are necessary to provide this possibility.

The reason of that is, that future automation systems are highly

flexible e.g. in adapting to changing conditions as well as

because these systems are increasingly realized of intelligent

components (Jazdi 2014). Two key aspects of this are the

autonomous character and the interaction with humans. These

interactions are not only taking place during the start-up, the

operation, the maintenance or the shut-down of a system. The

human influence starts already during the development.

Software development follows requirements which are defined

by humans and furthermore software programmers implement

the code. Therefore, the human factor has to be considered in

the reliability analysis as well as the procedures within the

development process itself to achieve a high qualitative

software.

2. STATE OF THE ART

Quality in general is defined as the degree to which a set of

inherent characteristics of an object fulfils requirements (ISO

2015). In the context of globalized competition and smart

systems, more and more complex systems on basis of high-

demanding requirements have to be developed.

These systems contain mechanical, electrical and information

processing components which gain intelligence and

autonomous characteristics by the integration of, for example,

smart sensors and actors (Jazdi 2014). Especially the software

has to be designed for the special needs of "Industry 4.0" and

the internet of things (Weyrich 2016). These needs differ from

those of conventional systems in general purpose (Lee 2008).

The aspect of inherence in the quality definition describes the

fact that these characteristics are always present and can be

measured. This leads to the need that the essential quality

characteristics have to be quantified. Without measurement

and quantification no statement about quality is possible. For

example a high-quality software shows fewer errors and has a

high reliability. On basis of that, the software reliability can be

considered as a metric for the software quality (Jazdi 2012).

The possibility to quantitatively estimate the software

reliability is therefore an important aspect to develop high

qualitative systems.

The reliability of a system is defined as the ability of a system

or a component to function under stated conditions for a

specific period of time (IEEE 1990). A smart system in the

context of "Industry 4.0" is an automated systems that enables

connection of the operations of the physical reality, in

hardware, with computing and communication infrastructures,

in software (Lee 2008), (Bahati, 2011), (GNACE 2011).

Therefore a separated view for the hardware and the software

is necessary.

Hardware reliability is determined by the consideration of

influencing factors like temperature, overvoltage, overcurrent

4th IFAC Symposium on Telematics Applications
November 6-9, 2016. UFRGS, Porto Alegre, RS, Brazil

Copyright © 2016 IFAC 1

Quantification of the quality characteristics for the calculation of software

reliability

N. Jazdi, Senior Member IEEE, N. Oppenlaender, M. Weyrich


University of Stuttgart, Institute of Industrial Automation and Software Engineering

Pfaffenwaldring 47, 70569 Stuttgart, Germany

e-mail: {nasser.jazdi; niels.oppenlaender; michael.weyrich}@ias.uni-stuttgart.de

Abstract: This paper presents a method to describe and increase the software quality of automation systems

by a quantitative determination of the software reliability. Therefore, the software development process

has been analyzed to identify the essential factors influencing the software reliability. These are the usage

of a procedure model, the test factor and the human factor of the software developers themselves. These

factors have been considered to create a neuro-fuzzy-based concept, which characterizes and consolidates

them to realize an estimation of the software quality. The possibility to estimate the software quality,

especially dynamically already during the software development process, will entail a huge benefit to

programmers and manufacturers. Effects, methods or circumstances influencing the software quality in a

negative or positive way can be numerically described and rated. On basis of that, necessary optimizations

in the development process can be performed in time to guarantee a high quality of the software.

Keywords: Quality characteristics; Quantification, IoT, Reliability, Human factor



1. INTRODUCTION

Every new development in technology leads to new

challenges. To be successful on global market, high-quality

products and processes are fundamental (Bauer 2011),

(Hillmann 2014). In conclusion, the qualitative properties in

particular determine the success of modern automation

systems. The characteristics of reliability or availability are

therefore driving innovations for future applications. For

automation technology, especially for smart systems in the

context of "Industry 4.0" or the internet of things, it is very

important to determine the quality at an early stage. If feasible,

already during the software development process to prevent

high costs of in field error fixing. Adapted methods for

reliability analysis are necessary to provide this possibility.

The reason of that is, that future automation systems are highly

flexible e.g. in adapting to changing conditions as well as

because these systems are increasingly realized of intelligent

components (Jazdi 2014). Two key aspects of this are the

autonomous character and the interaction with humans. These

interactions are not only taking place during the start-up, the

operation, the maintenance or the shut-down of a system. The

human influence starts already during the development.

Software development follows requirements which are defined

by humans and furthermore software programmers implement

the code. Therefore, the human factor has to be considered in

the reliability analysis as well as the procedures within the

development process itself to achieve a high qualitative

software.

2. STATE OF THE ART

Quality in general is defined as the degree to which a set of

inherent characteristics of an object fulfils requirements (ISO

2015). In the context of globalized competition and smart

systems, more and more complex systems on basis of high-

demanding requirements have to be developed.

These systems contain mechanical, electrical and information

processing components which gain intelligence and

autonomous characteristics by the integration of, for example,

smart sensors and actors (Jazdi 2014). Especially the software

has to be designed for the special needs of "Industry 4.0" and

the internet of things (Weyrich 2016). These needs differ from

those of conventional systems in general purpose (Lee 2008).

The aspect of inherence in the quality definition describes the

fact that these characteristics are always present and can be

measured. This leads to the need that the essential quality

characteristics have to be quantified. Without measurement

and quantification no statement about quality is possible. For

example a high-quality software shows fewer errors and has a

high reliability. On basis of that, the software reliability can be

considered as a metric for the software quality (Jazdi 2012).

The possibility to quantitatively estimate the software

reliability is therefore an important aspect to develop high

qualitative systems.

The reliability of a system is defined as the ability of a system

or a component to function under stated conditions for a

specific period of time (IEEE 1990). A smart system in the

context of "Industry 4.0" is an automated systems that enables

connection of the operations of the physical reality, in

hardware, with computing and communication infrastructures,

in software (Lee 2008), (Bahati, 2011), (GNACE 2011).

Therefore a separated view for the hardware and the software

is necessary.

Hardware reliability is determined by the consideration of

influencing factors like temperature, overvoltage, overcurrent

4th IFAC Symposium on Telematics Applications
November 6-9, 2016. UFRGS, Porto Alegre, RS, Brazil

Copyright © 2016 IFAC 1

Quantification of the quality characteristics for the calculation of software

reliability

N. Jazdi, Senior Member IEEE, N. Oppenlaender, M. Weyrich


University of Stuttgart, Institute of Industrial Automation and Software Engineering

Pfaffenwaldring 47, 70569 Stuttgart, Germany

e-mail: {nasser.jazdi; niels.oppenlaender; michael.weyrich}@ias.uni-stuttgart.de

Abstract: This paper presents a method to describe and increase the software quality of automation systems

by a quantitative determination of the software reliability. Therefore, the software development process

has been analyzed to identify the essential factors influencing the software reliability. These are the usage

of a procedure model, the test factor and the human factor of the software developers themselves. These

factors have been considered to create a neuro-fuzzy-based concept, which characterizes and consolidates

them to realize an estimation of the software quality. The possibility to estimate the software quality,

especially dynamically already during the software development process, will entail a huge benefit to

programmers and manufacturers. Effects, methods or circumstances influencing the software quality in a

negative or positive way can be numerically described and rated. On basis of that, necessary optimizations

in the development process can be performed in time to guarantee a high quality of the software.

Keywords: Quality characteristics; Quantification, IoT, Reliability, Human factor



1. INTRODUCTION

Every new development in technology leads to new

challenges. To be successful on global market, high-quality

products and processes are fundamental (Bauer 2011),

(Hillmann 2014). In conclusion, the qualitative properties in

particular determine the success of modern automation

systems. The characteristics of reliability or availability are

therefore driving innovations for future applications. For

automation technology, especially for smart systems in the

context of "Industry 4.0" or the internet of things, it is very

important to determine the quality at an early stage. If feasible,

already during the software development process to prevent

high costs of in field error fixing. Adapted methods for

reliability analysis are necessary to provide this possibility.

The reason of that is, that future automation systems are highly

flexible e.g. in adapting to changing conditions as well as

because these systems are increasingly realized of intelligent

components (Jazdi 2014). Two key aspects of this are the

autonomous character and the interaction with humans. These

interactions are not only taking place during the start-up, the

operation, the maintenance or the shut-down of a system. The

human influence starts already during the development.

Software development follows requirements which are defined

by humans and furthermore software programmers implement

the code. Therefore, the human factor has to be considered in

the reliability analysis as well as the procedures within the

development process itself to achieve a high qualitative

software.

2. STATE OF THE ART

Quality in general is defined as the degree to which a set of

inherent characteristics of an object fulfils requirements (ISO

2015). In the context of globalized competition and smart

systems, more and more complex systems on basis of high-

demanding requirements have to be developed.

These systems contain mechanical, electrical and information

processing components which gain intelligence and

autonomous characteristics by the integration of, for example,

smart sensors and actors (Jazdi 2014). Especially the software

has to be designed for the special needs of "Industry 4.0" and

the internet of things (Weyrich 2016). These needs differ from

those of conventional systems in general purpose (Lee 2008).

The aspect of inherence in the quality definition describes the

fact that these characteristics are always present and can be

measured. This leads to the need that the essential quality

characteristics have to be quantified. Without measurement

and quantification no statement about quality is possible. For

example a high-quality software shows fewer errors and has a

high reliability. On basis of that, the software reliability can be

considered as a metric for the software quality (Jazdi 2012).

The possibility to quantitatively estimate the software

reliability is therefore an important aspect to develop high

qualitative systems.

The reliability of a system is defined as the ability of a system

or a component to function under stated conditions for a

specific period of time (IEEE 1990). A smart system in the

context of "Industry 4.0" is an automated systems that enables

connection of the operations of the physical reality, in

hardware, with computing and communication infrastructures,

in software (Lee 2008), (Bahati, 2011), (GNACE 2011).

Therefore a separated view for the hardware and the software

is necessary.

Hardware reliability is determined by the consideration of

influencing factors like temperature, overvoltage, overcurrent

4th IFAC Symposium on Telematics Applications
November 6-9, 2016. UFRGS, Porto Alegre, RS, Brazil

Copyright © 2016 IFAC 1

2	 N. Jazdi et al. / IFAC-PapersOnLine 49-30 (2016) 001–005

or erosion. On basis of empirical data and the associated

available knowledge about the error rate of mechanical and

electrical components, the hardware reliability can be

calculated with the usage of a probability model (Jazdi 2012).

In contrast to hardware, the software reliability is exposed to

many variables which requires another methods to calculate.

Due to the fact, that software errors has no physical causes and

no empirical data is available, especially in early development

stages, there are no probability models which can provide a

reliable estimation of the software reliability. Furthermore, an

error which leads to a failure of the software is depending on

various additional conditions in the execution context.

Therefore, the software reliability depends on many

uncertainties. It is only possible to collect data during test

phase of the software and calculate the reliability by the

following Formula (Jazdi 2016):

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (1)

For the above given method, it has to be observed if an inherent

error has been activated during the test execution (Jazdi 2012).

By this definition, the hypothesis can be derived, that the

software reliability is estimated by the consideration of the

error frequency and the related number of executed test cases.

Error frequency and the related number of test cases lead to the

assumption, that the development of the software itself has the

highest influence on the software reliability. Software errors

are either made by the developer during the design phase

(specification errors) or during the implementation

(programming errors).

The method, which will be presented in the following chapter,

uses fuzzy logic and neural networks to estimate the software

reliability. With the help of fuzzy logic uncertainties, so called

fuzzy factors, can be described as linguistic variables and

linguistic hedges (IEC 1997). There are also patterns and

relationships between these factors which have to be

recognized and considered. The recognition can be ensured by

the help of an artificial neural network, which is used as a state-

of-the art in scenarios of pattern recognition or classification

techniques for data mining (Gosch 2014). With the help of a

neural network, the dependencies of the factors can be

identified by a learning process.

The use of neuro-fuzzy-based concepts in the context of

software reliability is already used in a way to predict the

software reliability based on growth models by considering

software failure data, which can be applied during the test

phase (Roy 2015), or by considering given software failure

data sets (Lakshmanan 2015). But in these corresponding

works, the software reliability estimation is only based on the

information about failed or correct executions, like given in the

equation above. Due to the fact, that software errors depend on

uncertainties, these uncertainties has to be considered

necessarily as influencing factors. The influencing factors of

the development procedure can be identified as the usage of a

procedure model during software development, the test factor

of the software examination and the human factor. By

quantifying these influencing factors, an estimation of the

software reliability is possible.

Reusability is furthermore another important aspect of

software development. By using reusable components,

empirical data and information can be available which has to

be included in the method to estimate the reliability as accurate

as possible (Jazdi 2012).

3. APPROACH OF QUANTIFICATION OF THE

QUALITY CHARACTERISTICS

The first step on this approach was to identify the factors

influencing the software quality. On the next step a

methodology was defined to quantify these factors. In the

following the most important factors are introduced.

1.1 Usage of a procedure model

There are several procedure models which are used to control

the complexity of the software and to apply methods during

the software development. The usage of a procedure model

enables the developer to implement high-quality software and

to decrease the costs and time (Jazdi 2012). Every procedure

model, e.g. the waterfall model or an agile process like

SCRUM, divides the development in defined phases. These

phases are different in time and level of detail, depending on

the kind of the procedure model. In every phase a software part

is developed and evaluated. Only if the evaluation of the

software part at the end of a phase is successful and the part is

released, the next phase will start. Therefore, it is necessary, to

use a general reference model which can be adapted to

quantify every kind of procedure model. The CMMI

(Capability Maturity Model Integration) for development can

be used as an example to show this is possibility (SEI 2010).

With the help of five maturity levels the process can be

quantified by referring the corresponding values to the stages.

The lowest maturity level represents the absence of a

procedure model with the value 1. The next stage, level 2, is

related to a managed procedure model containing for example

project or configuration management aspects. If these

processes can be adapted to the current project, e.g. by

validation or verification techniques or the further education

of the developers, the procedure model can be rated with level

3. If statistical control metrics are used, for example for the

project management, the 4th level is reached. The level and

value 5 is referred to the highest maturity level, which

represents an optimized procedure. This means, on basis of a

statistical control, the procedure is improved by analysis and

eliminating the causes of errors.

1.2 Test factor

Test is defined as a determination according to requirements

(ISO 2015). With the help of testing many errors within a

software can be identified and corrected. In conclusion, the

estimation of the reliability is based on data of tests which

provides information about error or a failure. The reduction of

errors in software leads therefore to a higher reliability and

quality of that software. Due to the increasing complexity of

software, complete testing is not possible.

2016 IFAC TA
November 6-9, 2016. Porto Alegre, Brazil

2

	 N. Jazdi et al. / IFAC-PapersOnLine 49-30 (2016) 001–005	 3

or erosion. On basis of empirical data and the associated

available knowledge about the error rate of mechanical and

electrical components, the hardware reliability can be

calculated with the usage of a probability model (Jazdi 2012).

In contrast to hardware, the software reliability is exposed to

many variables which requires another methods to calculate.

Due to the fact, that software errors has no physical causes and

no empirical data is available, especially in early development

stages, there are no probability models which can provide a

reliable estimation of the software reliability. Furthermore, an

error which leads to a failure of the software is depending on

various additional conditions in the execution context.

Therefore, the software reliability depends on many

uncertainties. It is only possible to collect data during test

phase of the software and calculate the reliability by the

following Formula (Jazdi 2016):

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (1)

For the above given method, it has to be observed if an inherent

error has been activated during the test execution (Jazdi 2012).

By this definition, the hypothesis can be derived, that the

software reliability is estimated by the consideration of the

error frequency and the related number of executed test cases.

Error frequency and the related number of test cases lead to the

assumption, that the development of the software itself has the

highest influence on the software reliability. Software errors

are either made by the developer during the design phase

(specification errors) or during the implementation

(programming errors).

The method, which will be presented in the following chapter,

uses fuzzy logic and neural networks to estimate the software

reliability. With the help of fuzzy logic uncertainties, so called

fuzzy factors, can be described as linguistic variables and

linguistic hedges (IEC 1997). There are also patterns and

relationships between these factors which have to be

recognized and considered. The recognition can be ensured by

the help of an artificial neural network, which is used as a state-

of-the art in scenarios of pattern recognition or classification

techniques for data mining (Gosch 2014). With the help of a

neural network, the dependencies of the factors can be

identified by a learning process.

The use of neuro-fuzzy-based concepts in the context of

software reliability is already used in a way to predict the

software reliability based on growth models by considering

software failure data, which can be applied during the test

phase (Roy 2015), or by considering given software failure

data sets (Lakshmanan 2015). But in these corresponding

works, the software reliability estimation is only based on the

information about failed or correct executions, like given in the

equation above. Due to the fact, that software errors depend on

uncertainties, these uncertainties has to be considered

necessarily as influencing factors. The influencing factors of

the development procedure can be identified as the usage of a

procedure model during software development, the test factor

of the software examination and the human factor. By

quantifying these influencing factors, an estimation of the

software reliability is possible.

Reusability is furthermore another important aspect of

software development. By using reusable components,

empirical data and information can be available which has to

be included in the method to estimate the reliability as accurate

as possible (Jazdi 2012).

3. APPROACH OF QUANTIFICATION OF THE

QUALITY CHARACTERISTICS

The first step on this approach was to identify the factors

influencing the software quality. On the next step a

methodology was defined to quantify these factors. In the

following the most important factors are introduced.

1.1 Usage of a procedure model

There are several procedure models which are used to control

the complexity of the software and to apply methods during

the software development. The usage of a procedure model

enables the developer to implement high-quality software and

to decrease the costs and time (Jazdi 2012). Every procedure

model, e.g. the waterfall model or an agile process like

SCRUM, divides the development in defined phases. These

phases are different in time and level of detail, depending on

the kind of the procedure model. In every phase a software part

is developed and evaluated. Only if the evaluation of the

software part at the end of a phase is successful and the part is

released, the next phase will start. Therefore, it is necessary, to

use a general reference model which can be adapted to

quantify every kind of procedure model. The CMMI

(Capability Maturity Model Integration) for development can

be used as an example to show this is possibility (SEI 2010).

With the help of five maturity levels the process can be

quantified by referring the corresponding values to the stages.

The lowest maturity level represents the absence of a

procedure model with the value 1. The next stage, level 2, is

related to a managed procedure model containing for example

project or configuration management aspects. If these

processes can be adapted to the current project, e.g. by

validation or verification techniques or the further education

of the developers, the procedure model can be rated with level

3. If statistical control metrics are used, for example for the

project management, the 4th level is reached. The level and

value 5 is referred to the highest maturity level, which

represents an optimized procedure. This means, on basis of a

statistical control, the procedure is improved by analysis and

eliminating the causes of errors.

1.2 Test factor

Test is defined as a determination according to requirements

(ISO 2015). With the help of testing many errors within a

software can be identified and corrected. In conclusion, the

estimation of the reliability is based on data of tests which

provides information about error or a failure. The reduction of

errors in software leads therefore to a higher reliability and

quality of that software. Due to the increasing complexity of

software, complete testing is not possible.

2016 IFAC TA
November 6-9, 2016. Porto Alegre, Brazil

2

The test cases which have the highest possibility to identify the

most errors have to be executed. The best possible testing of

the software can be guaranteed by that. A prioritization and

selection of test cases is needed. But even in case of an optimal

and almost fully-tested software, no statements about an error

or a failure of the system is possible (Jazdi 2012). Even if a

huge amount of errors have been corrected. This depends on

the already described circumstance, that a software failure is

linked to the execution context. There is no metric available

considering these facts, so the test factor has to be divided in

the parts of the complexity of the tested software and the test

execution itself to enable a quantification.

The more complex a software is, the more likely it is that the

software has errors. A software which is too complex to

understand cannot be tested sufficiently. In case of that, the

metric of the cyclomatic complexity is used for a long time to

evaluate the complexity of a software (McCabe 1976). It is

suggested by experience, to split a software into parts

whenever the cyclomatic complexity is equal to 10 or higher

(Watson 1996). Consequently, a cyclomatic complexity under

10 can be considered as a good manageable, and therefore

testable, software. To quantify the complexity of a software,

the cyclomatic complexity will be calculated and linked to the

already introduced rating system of the previous section. A

cyclomatic complexity less than 10 is equal to a good testable

software, which corresponds to the value 5. A cyclomatic

complexity of more than 25 can be equal to a level of 1, which

represents a very complex software which is barely testable.

The levels in between decrease in steps of 5 cyclomatic

complexity values until level 5 is reached.

The other part of the testing factor is the test execution itself

containing the test specification techniques and the type of

testing, e.g. a black-box or white-box test. The quantification

is performed by the same rating system with a range of levels

/ values from 1 to 5. A random test execution is rated with the

level 1. For example a C1-coverage can be rated with the level

5. The levels 2-4 in between can be related for example to a

C0-coverage (level 2), the use of a test specification (level 3)

or the traceability between requirements and test cases (level

4). The detailed characteristics of a level have to be

investigated and defined in further work.

1.3 Human factor

Software errors are made by humans during specification or

implementation. The human factor is therefore an important

influencing factor for the software reliability. To estimate the

human factor, an analysis of the abilities of a software

developer has to be performed (Jazdi 2012). Development

experience can reduce the number of errors. In fact there are

many other individual factors which have to be considered, to

describe the productivity and efficiency of a developer. For

example should the developer be able to work under

consideration of a procedure model. On the basis of the other

quality characteristics, the developer experience can also be

classified by the levels 1-5 which represents the development

factor (dev-factor).

A dev-factor of 1 represents a low development experience

which is linked to higher number of errors. The highest

productivity and the lowest number of errors is assigned to

level 5. There are several possible aspects which have to be

considered to determine the dev-factor, for example the

development experience containing the knowledge and the

further education of the developer. Other influencing factors

can be the working conditions like the available resources and

the teamwork, the complexity of the software to develop

consisting of the difficulty of the problem and the lines of

code.

4. APPROACH OF QUANTIFICATION OF THE

QUALITY CHARACTERISTICS

In this section the determination of the software reliability on

basis of the quantified quality characteristics is presented by

introducing an iterative concept in figure 1.

Fig. 1. Flow graph for the determination of the software

reliability.

In the first step of the method, the use of reusable components

is checked. If reusable components are used, empirical data is

available and the software reliability can be calculated by this

information with the help of reliability models. If there are no

reusable components, the quality characteristics of the project

under consideration has to be quantified in the introduced

form. These are the quantification of the usage of a procedure

model, the test factor consisting of the complexity and

execution as well as the dev-factor as quantified description of

the human factor. To describe the human factor as a value, a

neuro-fuzzy concept is used which is shown in figure 2.

Fig. 2. Fuzzy system for imprecise statements according to the

human factor.

2016 IFAC TA
November 6-9, 2016. Porto Alegre, Brazil

3

4	 N. Jazdi et al. / IFAC-PapersOnLine 49-30 (2016) 001–005

As an example of the fuzzy determination of the human factor,

the development experiences of the developer, the working

conditions within the project environment and the, by the

developers perceived, complexity of the software are given.

These factors are directly influencing the human factor and

contain further additional factors which have to be considered,

too. For example the development experience can be divided

into the terms of knowledge and further education of the

developers themselves. There are also patterns and

relationships between the influencing factors, which also have

to be taken in account. The recognition of them can be ensured

by the neural network, so that dependencies of the factors can

be identified by the learning process. Available information

about the input and output of a system and structural

relationship is provided as input of the neural net. The factors

like knowledge or education can be linked to the characteristic

factors, e.g. development experience, which is the input of the

above introduced fuzzy logic approach.

Fig. 3. Example of a neuronal net to recognize patterns and

relationships.

The adaption of the artificial neural network and the fuzzy

logic enables the calculation of the dev-factor, which

quantifies the human factor. The software reliability can be

estimated now as described in figure 1 by using the quantified

quality characteristics.

5. EVALUATION OF THE APPROACH

In the context of an industrial research cooperation, the

possibilities to evaluate the software quality as well as the

prioritization of quality characteristics of a vehicle

transmission system were examined. In particular individual

quality characteristics of the software system functionality

were evaluated. The quality evaluation was based on the ISO

9126 standard, but some quality characteristics were not

considered. On focus were the functionality, reliability and the

changeability of software. With the help of the "Goal-

Question-Metric" method, objectives were established to

evaluate the quality. Therefore questions were asked to obtain

the necessary metrics and data. After the identification of

relevant metrics, different rules for determining the relevant

attributes of individual factors as well as to evaluate the quality

characteristics were established. Based on a fuzzy logic control

system, a rule-based quality assessment was prepared. With

fuzzy systems, it is not only possible to use linguistically

formulated information directly, it is also possible to establish

a simple and comprehensible set of rules. A good supporting

tool for modelling such systems is MATLAB with the fuzzy

logic toolbox. After defuzzification, the values of various

quality characteristics were determined. To generate the

derived values of the different quality characteristics, different

weights were assigned to them. For weighting the individual

quality characteristics, the Analytic Hierarchy Process (AHP)

method is used. The AHP is a method of decision theory which

enables the simplification of a multi-criteria decision

systematically and thereby making the decision rational and

transparent. A fine-quality evaluation was conducted by this.

A statement about the quality of individual test subjects and of

the entire software system functionality can be made. For the

prioritization of the individual quality characteristics, another

set of rules was established on basis of identified factors. Using

the fuzzy logic and the AHP, the influencing factors could be

weighted differently during the test. The set of rules of the

prioritization was made dynamically adaptable by this.

In another industrial work, the opportunities for quality

assessment and the prioritization of quality characteristics

based on a real project were examined. The different raw data

were determined and collected from an 8HP automatic

transmission project by considering various development

departments. For that a prototype system has been developed

which is able to evaluate the quality characteristics of the

project and prioritize them. The evaluation results were

compared with statements of software developers. The results

of the prototype evaluation reflect the majority of the

statements made by the software developers. Especially the

results of the quality are rated as good. After the interview with

software developers, the advantages and disadvantages of the

prototype can be summarized as follows.

The following advantages were noted:

 Consideration of influencing factors: In the prototype

many factors influencing the quality and priority were

considered. Without tool support, e.g. the errors

which are discovered by the customers sometimes

cannot be considered by the software developers.

 Separation of quality and priority: Quality is a factor

influencing the priority. For priority determination

other metrics have to be considered, too, such as error

rates and security relevance.

 Independent weighting for the various test subjects:

In the prototype the weighting of the factors of quality

assessment and priority determination can be set. The

weighting affects only the result of an individual test

subject.

The following disadvantages were noted:

 Elaborate weighting by number of parameters: In this

project, over 300 influencing factors of the quality

were evaluated. To get a better result, the developer

has to set the weight of each factor for each test

subject individually, depending on the test

requirements. This is very costly.

 Overview of metrics by the developers: During the

review process of the prototype, many software

metrics were created which are shown as results,

partially in the result or in the console. It is difficult

for developers to get an overview of the metrics.

2016 IFAC TA
November 6-9, 2016. Porto Alegre, Brazil

4

	 N. Jazdi et al. / IFAC-PapersOnLine 49-30 (2016) 001–005	 5

As an example of the fuzzy determination of the human factor,

the development experiences of the developer, the working

conditions within the project environment and the, by the

developers perceived, complexity of the software are given.

These factors are directly influencing the human factor and

contain further additional factors which have to be considered,

too. For example the development experience can be divided

into the terms of knowledge and further education of the

developers themselves. There are also patterns and

relationships between the influencing factors, which also have

to be taken in account. The recognition of them can be ensured

by the neural network, so that dependencies of the factors can

be identified by the learning process. Available information

about the input and output of a system and structural

relationship is provided as input of the neural net. The factors

like knowledge or education can be linked to the characteristic

factors, e.g. development experience, which is the input of the

above introduced fuzzy logic approach.

Fig. 3. Example of a neuronal net to recognize patterns and

relationships.

The adaption of the artificial neural network and the fuzzy

logic enables the calculation of the dev-factor, which

quantifies the human factor. The software reliability can be

estimated now as described in figure 1 by using the quantified

quality characteristics.

5. EVALUATION OF THE APPROACH

In the context of an industrial research cooperation, the

possibilities to evaluate the software quality as well as the

prioritization of quality characteristics of a vehicle

transmission system were examined. In particular individual

quality characteristics of the software system functionality

were evaluated. The quality evaluation was based on the ISO

9126 standard, but some quality characteristics were not

considered. On focus were the functionality, reliability and the

changeability of software. With the help of the "Goal-

Question-Metric" method, objectives were established to

evaluate the quality. Therefore questions were asked to obtain

the necessary metrics and data. After the identification of

relevant metrics, different rules for determining the relevant

attributes of individual factors as well as to evaluate the quality

characteristics were established. Based on a fuzzy logic control

system, a rule-based quality assessment was prepared. With

fuzzy systems, it is not only possible to use linguistically

formulated information directly, it is also possible to establish

a simple and comprehensible set of rules. A good supporting

tool for modelling such systems is MATLAB with the fuzzy

logic toolbox. After defuzzification, the values of various

quality characteristics were determined. To generate the

derived values of the different quality characteristics, different

weights were assigned to them. For weighting the individual

quality characteristics, the Analytic Hierarchy Process (AHP)

method is used. The AHP is a method of decision theory which

enables the simplification of a multi-criteria decision

systematically and thereby making the decision rational and

transparent. A fine-quality evaluation was conducted by this.

A statement about the quality of individual test subjects and of

the entire software system functionality can be made. For the

prioritization of the individual quality characteristics, another

set of rules was established on basis of identified factors. Using

the fuzzy logic and the AHP, the influencing factors could be

weighted differently during the test. The set of rules of the

prioritization was made dynamically adaptable by this.

In another industrial work, the opportunities for quality

assessment and the prioritization of quality characteristics

based on a real project were examined. The different raw data

were determined and collected from an 8HP automatic

transmission project by considering various development

departments. For that a prototype system has been developed

which is able to evaluate the quality characteristics of the

project and prioritize them. The evaluation results were

compared with statements of software developers. The results

of the prototype evaluation reflect the majority of the

statements made by the software developers. Especially the

results of the quality are rated as good. After the interview with

software developers, the advantages and disadvantages of the

prototype can be summarized as follows.

The following advantages were noted:

 Consideration of influencing factors: In the prototype

many factors influencing the quality and priority were

considered. Without tool support, e.g. the errors

which are discovered by the customers sometimes

cannot be considered by the software developers.

 Separation of quality and priority: Quality is a factor

influencing the priority. For priority determination

other metrics have to be considered, too, such as error

rates and security relevance.

 Independent weighting for the various test subjects:

In the prototype the weighting of the factors of quality

assessment and priority determination can be set. The

weighting affects only the result of an individual test

subject.

The following disadvantages were noted:

 Elaborate weighting by number of parameters: In this

project, over 300 influencing factors of the quality

were evaluated. To get a better result, the developer

has to set the weight of each factor for each test

subject individually, depending on the test

requirements. This is very costly.

 Overview of metrics by the developers: During the

review process of the prototype, many software

metrics were created which are shown as results,

partially in the result or in the console. It is difficult

for developers to get an overview of the metrics.

2016 IFAC TA
November 6-9, 2016. Porto Alegre, Brazil

4

 Across projects data of the modules: The basic data

of the test subjects are recognized for specific

projects from Clear-Quest. The basic data of the

modules are recognized across projects from CMT

++. Therefore, the allocation does not fit completely.

 Feedback of test depth: In the prototype there is only

an indirect feedback of the quality of the conducted

test cases (test coverage of the software). But the

actual test depth is not taken into account.

6. CONCLUSION AND OUTLOOK

This paper presented a method to calculate the reliability of

industrial automation systems. Since the software reliability is

the crucial aspect that can influence the entire system

reliability, it deserves special attention. For this reason, this

paper discussed the influencing factors of the software

reliability as well, for example the software development

process was analysed to identify the most important

influencing factors. The mentioned factors have been

considered to create a neuro-fuzzy-based concept, which

characterizes and consolidates them to realize an estimation of

the software quality. In summary, the main messages are:

 Possibility to estimate the software quality, especially

dynamically already during the software

development process, which will entail a huge benefit

to programmers and manufacturers.

 Effects, methods or circumstances influencing the

software quality in a negative or positive way can be

numerically described and rated.

 Necessary optimizations in the development process

can be performed in time to guarantee a high quality

of the software.

However, the quality characteristics have to be quantified in

more details. For that, existing experiences have to be used e.g.

from more finished projects. Especially the human factor,

which is quantified by a development factor here, has to be

investigated more in detail. A fundamental examination of the

error frequency and the number of errors within the

development process has to be performed in consideration of

the identified influencing factors and conditions. To perform a

reliable verification of the concept, real development scenarios

have to be executed with a sufficient number of candidates.

REFERENCES

Baheti, R., Gill, H. (2011) "Cyber-physical systems," The

Impact of Control Technology, Pages 161-166

Bauer J.M., Bas; G., Durakbasa; M.N., Kopacek; P. (2015).

"Development Trends in Automation and Metrology,"

IFAC (International Federation of Automatic Control),

IFAC-PapersOnLine 48-24 (2015) 168–172

German National Academy of Science and Engineering –
GNACE (2011) "Cyber-Physical Systems - Driving force

for innovation in mobility, health, energy and production,

" Acatech Position Paper,

Gosh, S., Biswas, S., Sarkar, D., Sarkar, P.P. (2014) "A novel

Neuro-fuzzy classification technique for data mining,"

Egyptian Informatics Journals, Production and Hosting

by Elsevier B.V. on behalf of the Faculty of Computers

and Information, Cairo University

Hillmann M., Stühler, S., Schloske, A., Geisinger, D.,

Westkämper, E. (2014) "Improving Small-quantity

Assembly Lines for Complex Industrial Products by

Adapting the Failure Process Matrix (FPM) A Case

Study," 47th CIRP Conference on Manufacturing

Systems CIRP 17 (2014) 236 – 241

Jazdi, N. (2014) "Cyber Physical Systems in the Context of

Industry 4.0," IEEE International Conference on

Automation, Quality and Testing, Robotics, Cluj-

Napoca, Romania

Jazdi, N. (2016) "Lecture notes reliability and safety of

automation systems," Institute of Industrial Automation

and Software Engineering, University of Stuttgart

Jazdi, N., Maga, C. (2012) "Towards Reliability of

Mechatronic Systems," Automation Quality and Testing

Robotics (AQTR), 2012 IEEE International

Institute of Electrical and Electronics Engineers IEEE

Standard Computer Dictionary (1990)" A Compilation of

IEEE Standard Computer Glossaries," IEEE, New York

International Electrotechnical Commission (IEC) (1997), IEC

1131 - PROGRAMMABLE CONTROLLERS, Part 7 -

Fuzzy Control Programming

ISO 9000 (2015) "Quality management systems –
Fundamentals and vocabulary" ISO9000

Lakshmanan, I., Ramasamy, S. (2015) "An artificial neural-

network approach to software reliability growth

modelling," 3rd International Conference on Recent

Trends in Computing 2015, Ghaziabad, India

Lee, E. (2008) "Cyber Physical Systems: Design Challenges,"

University of California, Berkley Technical Report No.

UCB/EECS-2008-8

McCabe, T.J. (1976) "A Complexity Measure," IEEE

Transactions on Software Engineering, pages 308–320

Roy, P., Mahapatra, G.S., Dey, K.N. (2015) "Neuro-genetic

approach on logistic model based software reliability

prediction," University of Calcutta, India

Software Engineering Institute (SEI) Carnegie Mellon

University (2010), "CMMI® for Development, Version

1.3," SEI, Carnegie Mellon University

Watson, A.H., McCabe, T.J. (1996) "Structured Testing: A

Testing Methodology Using the Cyclomatic Complexity

Metric," NIST Special Publication

Weyrich, M., Ebert, C. (2016) "Reference Architectures for

the Internet of Things," IEEE Software Technology -

Computer Society

2016 IFAC TA
November 6-9, 2016. Porto Alegre, Brazil

5

