Minireview

Mining iron: Iron uptake and transport in plants

Sun A. Kim, Mary Lou Guerinot*

Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA

Received 17 April 2007; accepted 18 April 2007
Available online 25 April 2007

Abstract Iron uptake in plants is highly regulated in order to supply amounts sufficient for optimal growth while preventing excess accumulation. In response to iron deficiency, plants induce either reduction-based or chelation-based mechanisms to enhance iron uptake from the soil. Genes involved in each mechanism have been identified from various model plants including Arabidopsis and rice. Iron transport within plants is also tightly controlled. New information has emerged on transporters that play a role in xylem loading and phloem loading/unloading of iron, and on the iron chelators involved in iron homeostasis. Some of the components regulating iron deficiency responses also have been elucidated, demonstrating that iron dependent gene regulation occurs at both the transcriptional and post-transcriptional levels.

Keywords: Iron uptake; Iron deficiency; Transport; Regulation; Phytosiderophores

1. Introduction

Iron (Fe) is an essential nutrient for plants. It is required for life-sustaining processes from respiration to photosynthesis, where it participates in electron transfer through reversible redox reactions, cycling between Fe²⁺ and Fe³⁺. Insufficient Fe uptake leads to Fe-deficiency symptoms such as interveinal chlorosis in leaves and reduction of crop yields. Plants need to maintain Fe in the concentration of 10⁻⁹–10⁻⁴ M to achieve optimal growth, however Fe acquisition is challenging due to the low solubility of Fe in soil solution [1]. Although Fe is the fourth most abundant element in the earth’s crust, it is not readily available to plants. In well-aerated soils at physiological pH, the concentrations of free Fe³⁺ and Fe²⁺ are less than 10⁻¹₅ M, a value far below that required for optimal growth [2]. Thus, Fe-deficiency often limits plant growth causing agricultural problems. In fact, one third of the world’s cultivated soils are calcareous and considered Fe deficient [3]. In addition to the low solubility, the properties of Fe require plant cells to place limitations on its accumulation. Superoxide and hydrogen peroxide, that are produced in the cells during the reduction of molecular oxygen, are catalyzed by Fe²⁺ and Fe³⁺ to form highly reactive hydroxyl radicals [4]. The hydroxyl radical can damage most cellular components such as DNA, proteins, lipids and sugars. Thus, Fe uptake in plants is highly regulated to prevent excess accumulation.

Once Fe has entered the symplast, Fe is bound to various chelators, facilitating it remaining in solution and preventing it from participating in the generation of hydroxyl radicals. Organic acids, such as citrate, are known to bind Fe³⁺; nicotianamine (NA) forms stable complexes with both Fe²⁺ and Fe³⁺ [5]. Fe-chelator complexes also play roles in short- and/or long-distance transport of Fe.

Over the last 10 years, many Fe uptake and transport related components have been identified at the molecular level. In this review, we will follow the pathway of Fe movement from the soil to the seed and describe the suggested roles of identified gene products in an effort to understand how plants acquire Fe from the soil, how plants partition Fe among different tissues and subcellular organelles, and how plants regulate their Fe-deficiency responses (Fig. 1).

2. Fe uptake

Plants have evolved two strategies to take up Fe from the soil. Non-grasses activate a reduction-based Strategy I when starved for Fe whereas the grasses activate a chelation-based strategy.

2.1. Reduction-based Strategy I

2.1.1. Proton release. Under Fe-deficiency, Strategy I plants extrude protons into the rhizosphere, lowering the pH of the soil solution and increasing the solubility of Fe²⁺. This works because for every one unit drop in pH, Fe³⁺ becomes 1000-fold more soluble [6]. The responsible proton-ATPases are not yet identified at a molecular level, but several proton-ATPases of the AHA (Arabidopsis H⁺-ATPase) family are suggested to be involved this process. For example, AHA7 is up-regulated in response to Fe-deficiency and its expression is dependent on FIT1 (Fe-deficiency induced transcription factor 1), implicating AHA7 as part of the Fe-deficiency response [7]. Cucumber also has at least one Fe-regulated proton ATPase, CsHAT1, whose expression is induced in Fe-deficient roots [8].

2.1.2. Fe(III) chelate reduction. Fe becomes more available by reducing Fe³⁺ to the more soluble Fe²⁺. The reduction step, prior to Fe²⁺ uptake, has been shown to be critical for Fe uptake from Fe-deficient soil. The Arabidopsis mutant, ferric-chelate reductase defective 1 (frd1), has no inducible root Fe(III) chelate reductase activity and develops severe chlorosis
when Fe is limiting [9]. The corresponding Arabidopsis gene, \textit{FRO2}, was identified based on sequence similarity to a subunit of the human respiratory burst oxidase, gp91phox, and the yeast Fe(III) chelate reductase, Fre1 [10]. \textit{FRO2} mapped to the same location as \textit{frd1}, and is able to complement the \textit{frd1} phenotype. \textit{FRO2} is expressed in the epidermal cells of Fe-deficient roots and is thought to be the main Fe(III) chelate reductase in roots. Plants overexpressing \textit{FRO2} are resistant to low Fe growth conditions [11]. The \textit{FRO} family of metal reductases contains seven additional members in Arabidopsis [12,13]. The expression of \textit{FRO} genes in various locations suggests different sets of \textit{FRO} proteins are participating in Fe uptake in different plant tissues. For example, like \textit{FRO2}, \textit{FRO3} and \textit{FRO5} are expressed in roots. However \textit{FRO3} is predominantly expressed in the vascular cylinder of roots, suggesting a role in Fe re-absorption from the root apoplast (Fig. 1D). The shoot-specific \textit{FRO} genes are \textit{FRO6}, \textit{FRO7}, and \textit{FRO8}. The promoter of \textit{FRO6} contains multiple light-responsive elements and a \textit{FRO6} promoter driven reporter gene is activated upon exposure to light [14].

Fe(III) chelate reductases have also been identified in pea and tomato. Like \textit{FRO2} in Arabidopsis, \textit{PsFRO1} mRNA accumulates in Fe deficient roots; however, the mRNA is also seen throughout the root, suggesting that \textit{PsFRO1} may also play a role in Fe transport within the plant [15] (Fig. 1B and D). \textit{LeFRO1} mRNA is detected both in roots and shoots, indicating a role in Fe mobilization in the shoots (Fig. 1B and G). \textit{LeFRO1} localizes to the plasma membrane in onion epidermal cells and confers Fe(III) reductase activity when expressed in yeast [16].

2.1.3. \textit{Fe}^{2+} transport. \textit{Fe}^{2+} is transported into the root by \textit{IRT1}, a member of the ZIP (ZRT, IRT-like proteins) metal transporter family. The Arabidopsis \textit{IRT1} gene was identified by functional complementation of an Fe uptake mutant of yeast [17]. The Arabidopsis \textit{irt1} mutant exhibits chlorosis and severely impaired growth [18–20]. Indeed, \textit{irt1} plants die before setting seed unless supplied with high levels of soluble Fe. \textit{IRT1} is expressed in the epidermal cells of Fe-deficient roots and localizes to the plasma membrane. Taken together, these data suggest that \textit{IRT1} is the major transporter for Fe uptake from soil [18]. Although only Fe can rescue the survival of \textit{irt1}, metal uptake and growth assays in yeast showed that \textit{IRT1} can transport multiple divalent metals (Fe, Zn, Mn and Cd), and in keeping with these observations, \textit{irt1} plants have reduced levels of Fe, Mn, Zn and Co.

There are 15 additional ZIP metal transporters in Arabidopsis: \textit{IRT2}, \textit{IRT3}, ZIP1 through ZIP12 [21] and the distantly related \textit{IAR1} [22]. \textit{IRT2} is most similar in amino acid sequence to \textit{IRT1} and is expressed in the external layers of Fe-deficient roots [23]. However, \textit{irt2} plants show no symptoms of Fe-deficiency and overexpression does not appear to substitute for the loss of \textit{IRT1}. Thus, although \textit{IRT2} complements the growth defect of Fe uptake mutant yeast, it must be playing a different role than \textit{IRT1}. It will be of interest to examine the subcellular localization of \textit{IRT2} in plants.

\textit{IRT1} orthologs have been found in other Strategy I plants as well as in rice, which is a Strategy II plant. We will discuss \textit{OsIRT1} and \textit{OsIRT2} in the following section. In tomato, \textit{LeIRT1} and \textit{LeIRT2} are specifically expressed in roots. However, unlike Arabidopsis, \textit{LeIRT1} and \textit{LeIRT2} are expressed in both Fe sufficient and Fe deficient roots, with \textit{LeIRT1} showing induction under Fe-deficiency [24]. \textit{RIT1} (Root Iron Transporter 1) from pea is expressed in Fe-deficient roots [25].
expressed in yeast, RIT1 showed high-affinity Fe transport and low-affinity Zn and Cd transport.

2.2. Strategy II uptake

Grasses, such as corn, wheat and rice, use the chelation-based Strategy II. In response to Fe-deficiency, grasses release small molecular weight compounds known as the mugineic acid (MA) family of phytosiderophores (PS). PS have high affinity for Fe3+ and efficiently bind Fe3+ in the rhizosphere. Fe3+-PS complexes are then transported into the plant roots via a specific transport system. The chelation strategy is more efficient than the reduction strategy and thus allows grasses to survive under more drastic Fe-deficiency conditions [3].

2.2.1. Synthesis of phytosiderophores. The family of mugineic acids includes MA, 2'-deoxymugineic acid (DMA), 3-epihydroxymugineic acid (epi-HMA), and 3-epihydroxy 2'-deoxymugineic acid (epi-HDMA). Each grass produces its own sets of MAs and increases the production and secretion of MAs in response to Fe-deficiency. Thus, tolerance to Fe-deficiency is correlated with the amounts and the types of PS secreted [2]. For example, rice, wheat, and corn secret only DMA in relatively low amounts and thus, are susceptible to low Fe availability. In contrast, barley secretes large amounts of many types of PS, including MA, HMA, and epi-HMA and is therefore more tolerant of low Fe availability [26]. In the generation of MA, nicotianamine (NA) is the key intermediate that is produced from the condensation of three molecules of S-adenosyl methionine by nicotianamine synthase (NAS). NA is present not only in grasses but in non-grasses as well. NA can bind various metals including Fe2+ and Fe3+, but is not secreted, suggesting a role for NA in intra- and intercellular metal transport in both for Strategy I and Strategy II plants. In Strategy II plants, grass-specific nicotianamine aminotransferase (NAAT) converts NA to the intermediate 3'-keto DMA [27]. Subsequent reduction of the 3'-keto intermediate produces DMA, the common precursor of all other MAs [26]. DMA then undergoes hydroxylation and produces other types of MAs. Two barley genes, Ids2 and Ids3, encode dioxygenases and are thought to catalyze the formation of epi-HMA and epi-HDMA in Fe-deficient roots [28].

In an attempt to enhance Fe nutrition, two barley genes, NaatA and NaatB, encoding NAAT were introduced under molecular evidence for the role of citrate in long-distance Fe transport [34]. In Arabidopsis, there are three proteins predicted to be similar to IREG1. AtIREG2 (also referred to as FPT2) is shown to localize to the vacular membrane of root epidermal cells and is involved in Fe-dependent nickel detoxification [35]. FPT1/AtIREG1 is localized to the plasma membrane of stele cells, suggesting a possible role in Fe release into the xylem vessels (Guerinot, unpublished data).

3. Long-distance Fe transport

Once Fe enters the root symplast, Fe is required to be bound by chelating compounds. Fe–chelator complexes then move through intercellular connections into the stele along the diffusion gradient. The release of Fe into the xylem vessels requires Fe efflux from the symplast into the apoplastic space (Fig. 1C). The mechanism of Fe efflux is not yet clearly understood. In mammals, a duodenal protein encoded by the IREG1 gene is an Fe-regulated transporter involved in the basolateral Fe efflux from epithelial cells into the circulation [34]. In Arabidopsis, there is an Fe-regulated transporter involved in the basolateral Fe efflux from epithelial cells into the circulation [34]. In Arabidopsis, there are three proteins predicted to be similar to IREG1. AtIREG2 (also referred to as FPT2) is shown to localize to the vacular membrane of root epidermal cells and is involved in Fe-dependent nickel detoxification [35]. FPT1/AtIREG1 is localized to the plasma membrane of stele cells, suggesting a possible role in Fe release into the xylem vessels (Guerinot, unpublished data).

It is generally agreed that Fe is present as Fe(III)-citrate complexes in the xylem where the pH is around 5.5-6 [5] (Fig. 1E). The Arabidopsis mutant, frd3 (man1), has provided molecular evidence for the role of citrate in long-distance Fe transport. frd3 has deregulated Strategy I responses, showing constitutive expression regardless of the external Fe supply [36]. As a result, the frd3 mutant accumulates more Fe in its roots. Despite this, frd3 xylem exudate contains approximately half as much Fe and significantly less citrate than the exudate from wild-type plants. The FRD3 gene encodes a transmembrane protein belonging to the multidrug and toxic efflux (MATE) family of small molecule transporters and is therefore suggested to transport citrate. Two-electrode voltage clamp analysis has revealed that FRD3 expression in Xenopus
its ability to form stable complexes with Fe\(^{2+}\) at neutral and phloem, based on its ubiquitous presence in plant tissues and gene, so it would be interesting to see whether this mechanism dehydrins. There is a gene in Arabidopsis similar to the to a large family of late embryogenesis proteins known as ITP belongs as an Fe-chelator in the phloem. ITP specifically binds Fe\(^{3+}\) as shown by in vivo labeling experiments. Thus, it is believed that Fe is transported as a Fe(III)-ITP complex in the phloem. ITP belongs to a large family of late embryogenesis proteins known as dehydrins. There is a gene in Arabidopsis similar to the ITP gene, so it would be interesting to see whether this mechanism of phloem transport exists in other plants. In addition to ITP, NA has been proposed to function in Fe transport in the phloem, based on its ubiquitous presence in plant tissues and its ability to form stable complexes with Fe\(^{2+}\) at neutral and weakly alkaline pH. The tomato mutant chln (chloronera) demonstrates the role of NA in long-distance Fe transport. chln was identified due to its interveinal leaf chlorosis, especially in young leaves. However, chln has increased Fe uptake in roots independent of external Fe supply and accumulates high concentrations of Fe in its shoots and roots. chln phenotypes are rescued by grafting a chln shoot onto wild-type rootstock, suggesting a mobile, normalizing compound. The responsible compound was purified and identified as NA; exogenous application of NA complements chln phenotypes. The chln gene encodes NAS.

The presence of a small amount of Fe\(^{2+}\) in the phloem sap has lead to the idea that NA can act as a shuttle by chelating Fe\(^{2+}\) from Fe(III)-ITP during phloem loading and unloading. This hypothesis requires the participation of an oxido-reduction system for Fe\(^{2+}/Fe^{3+}\) conversion and specific Fe(II)-NA transporters within the phloem. Yellow-stripe 1 like (YSL) transporters, that share sequence similarity with maize YS1, are likely involved in the transport of Fe(II)-NA complexes. YSI transports Fe(III)-PS and Fe(II)-NA complexes as mentioned earlier. Indeed, among 8YSL genes in Arabidopsis, most of AtYSLs (AtYSL1 and AtYSL2, AtYSL4 through AtYSL8) are able to complement the Fe uptake mutant of yeast when Fe(II)-NA is exogenously supplied. Rice has 18 putative YSL genes in its genome. OsYSL2 is capable of mediating the transport of Fe(II)-NA and Mn(II)-NA but not of Fe(III)-DMA or Mn(II)-DMA when expressed in Xenopus oocytes. YSL3 from Thlaspi complemented the Fe uptake mutant of yeast and mediated NA dependent Ni or Fe uptake.

The YSL genes are expressed in various tissues, suggesting roles in Fe uptake at diverse locations. AtYSL1 mRNA is expressed in the vasculature of roots and shoots; more specifically in the xylem parenchyma surrounding xylem tubes. AtYSL1 is also detected in young siliques and in the chalazal zone of the embryo, indicating its role in Fe loading of the seed. ysil seeds contain two- to fourfold less NA (and less Fe) than wild-type seeds, while ysil shoots contain elevated levels of NA. The germination of ysil seeds under Fe deficient conditions is slower than that of wild-type seeds, a defect that can be rescued by Fe supply. Interestingly, the levels of AtYSL1 are increased in response to high Fe, reflecting increased demand for Fe loading. AtYSL3 has a similar expression pattern to AtYSL1 and is expressed in the vasculature of shoots and reproductive organs. A more drastic phenotype is observed in ysilysl double mutants compared to ysil. ysilysl plants exhibit interveinal chlorosis in leaves and reduced fertility, presumably due to defective anther and embryo development. These phenotypes are partially rescued by exogenous Fe supply. Interestingly, similar phenotypes were also observed in previously reported NA-defective tobacco plants. When endogenous NA in tobacco plants was depleted by expressing a barley NAAAT, the transgenic plants displayed interveinal chlorosis in leaves and reduced fertility, presumably due to defective anther and embryo development. The YSL genes in Strategy II plants also play a role in long-distance Fe transport. The maize YSI gene is expressed both in roots and shoots [30]. Several rice YSL genes (OsYSL6, OsYSL14, and OsYSL16) are expressed both in roots and shoots; OsYSL2 and OsYSL13 are expressed preferentially in shoots. More specifically, OsYSL2 is expressed in the companion cells of the phloem and the vascular bundles in flowers and in developing seed. Together with the localization to the plasma membrane, OsYSL2 is suggested to play a role in Fe(II)-NA transport in phloem and rice grains.

4. Intracellular Fe transport

Mutants with constitutively active Fe-deficiency responses in their roots can be divided into two groups by their leaf phenotype: one group, including chln and frd3, shows interveinal chlorosis (Fe deficiency), despite Fe overaccumulation and the other group, such as the brz and dgl mutants of pea, dis-
play necrotic or degenerative leaves (Fe toxicity) due to Fe overaccumulation [48,49]. This illustrates that Fe homeostasis at a cellular level is highly regulated and plants can develop either Fe-deficiency or Fe toxicity in normal soils depending on where they lose control. Our knowledge is limited concerning how plants regulate cellular Fe homeostasis and intracellular Fe transport, but several observations have suggested that vacuoles play a role in accumulating excess Fe and releasing Fe into the cytosol when external Fe supply is sub-optimal. Upon Fe overload, the concentrations of NA are increased and the bulk of NA is found in the vacuoles of tomato and pea, while NA is detected in the cytosol under normal or Fe-deficient conditions [50]. The brz and dg1 mutants also showed high levels of NA in their vacuoles, similar to what is seen in Fe overloaded plants [50]. It is not yet known whether Fe translocates into the vacuole as Fe–NA complexes or whether specific transporters for NA are present and the Fe–NA complexes then form in the vacuole. In the NA-free cihm mutant, insoluble Fe(III)-phosphate precipitates are detected in the vacuoles of leaf cells, suggesting NA is required to maintain vacuolar Fe in a soluble form [51]. It is tempting to speculate that some members of YSL gene family might localize to the vacuolar membrane and be involved in re-translocation of Fe–NA into the cytosol.

The Arabidopsis VIT1 (Vacuolar Iron Transporter 1) was recently identified as an Fe2+ transporter that functions in vacuolar Fe storage [52]. VIT1 is 62% similar to its yeast ortholog, LeVIT1, and is 62% similar to its yeast ortholog, yeast vacuoles [53]. Yeast overexpressing vit1 mutants, insoluble Fe(III)-phosphate precipitates are detected in the vacuoles of leaf cells, suggesting NA is required to maintain vacuolar Fe in a soluble form [51]. It is tempting to speculate that some members of YSL gene family might localize to the vacuolar membrane and be involved in re-translocation of Fe–NA into the cytosol.

The Arabidopsis VIT1 (Vacuolar Iron Transporter 1) was recently identified as an Fe2+ transporter that functions in vacuolar Fe storage [52]. VIT1 is 62% similar to its yeast ortholog CCC1p, a transporter that can mediate Fe and Mn efflux into vacuoles [53]. Yeast overexpressing CCC1 accumulate more Fe in their vacuoles, and conversely, deletion mutants accumulate less Fe and are sensitive to elevated levels of Fe. VIT1 complements the sensitivity of ccc1 yeast mutants to Fe toxicity. VIT1 localizes to the vacuolar membrane, and it is expressed in the vacuole with increased expression seen during embryo and seed development. When visualized by synchrotron X-ray fluorescence microtomography, Fe localizes to the provascular strands of wild-type seeds. In vit1, this Fe distribution is completely abolished, suggesting VIT1-mediated vacuolar Fe transport plays an important role in Fe localization in seeds. Furthermore, vit1 plants grow poorly in Fe-limiting soils, emphasizing the critical role of vacuolar Fe storage for the growth of germinating seedlings.

Members of the Nramp (natural resistance associated macrophage proteins) gene family mediate the uptake of a variety of divalent cations. In Arabidopsis, AtNramp1, AtNramp3 and AtNramp4 can complement the Fe uptake mutant of yeast, revealing that these proteins can mediate Fe transport [54,55]. Nramp1 is expressed preferentially in roots and is induced by Fe-deficiency, implicating it in Fe uptake from the soil. However, overexpression of Nramp1 leads to resistance to toxic levels of Fe, suggesting that Nramp1 may be targeted to an intracellular membrane and may play a role in Fe mobilization into the cytosol upon Fe-deficiency [56]. Indeed, its tomato orthologs, LeNramp1 and LeNramp3, are localized to membranes of intracellular vesicles and vacuoles in yeast in addition to the plasma membrane [57]. Both Nramp3 and Nramp4 are localized to the vacuolar membrane in Arabidopsis [55,58]. The mRNAs of Nramp3 and Nramp4 are up-regulated in response to Fe-deficiency. In Nramp3 overexpressing plants, the mRNAs of IRT1 and FRO2 are down-regulated, further indicating that Nramp3 remodels vacuolar Fe into cytosol, thereby down-regulating Fe uptake genes. Studies of atrnamp3 atrnamp4, the double knockout Arabidopsis mutant, demonstrate that Fe mobilization mediated by Nramp3 and Nramp4 is crucial during early seedling development [58]. Mutant seeds contain wild-type levels of Fe; however, the mutant displays retarded root growth and cotyledon greening during seed germination under low Fe. Electron microscopy showed the disappearance of Fe-associated globoids in wild-type vacuoles during germination while globoids of the mutant remained unaltered, suggesting mutant seeds fail to retrieve Fe from vacuolar globoids. Interestingly, like the VIT1 gene, both Nramp3 and Nramp4 are expressed in the vasculature. The seedling growth of atrnamp3 atrnamp4 and vit1 mutants are arrested on Fe-limiting soil. Taken together, these data suggest that vacuoles in the vascular cells are an important site of Fe storage and Fe remobilization during germination is crucial for the seedling development when the Fe supply is low.

More than 90% of the Fe in leaf cells is located in the chloroplasts [59]. Chloroplasts have a high Fe requirement in order to maintain the structural and functional integrity of the thylakoid membranes, and thus the chloroplast is highly sensitive to Fe-deficiency [2]. Fe can be stored in plant cells in the stroma of plastids as ferritin. Ferritin is a Fe storage protein with the ability to store up to 4500 atoms of Fe. Arabidopsis contains four genes that encode ferritin (AtFer1–4). All four proteins are predicted to contain transit peptides for delivery to the plastid. mRNAs of AtFer1, AtFer3 and AtFer4 were increased upon excess Fe treatment in both roots and leaves [60]. Despite its abundance, the mechanism of Fe uptake into the chloroplasts is not well understood. Fe uptake studies with isolated barley chloroplasts indicated that this process is light-dependent, and requires Fe(III) chelate reductase activity [61]. In Arabidopsis, FRO6 shows light-dependent gene expression and localization in green tissues, fulfilling the prerequisite characteristics for chloroplast Fe uptake [14]. Most recently, a presumptive Fe transporter, PIC1 (permease in chloroplasts), has been identified that localizes to the chloroplast [62]. Although the function of PIC1 orthologs were annotated as unknown, the cyanobacterial orthologs belonged to COGs (clusters of orthologous groups) that are generally involved in ion or solute transport. PIC1, a homolog of cyanobacterial sl1656, complemented a yeast mutant defective in Fe uptake and pic1 mutants showed severe chlorosis and only grew heterotrophically.

5. Regulation of Fe-deficiency responses

The tomato fer (T3238/fer) mutant and the cloning of the corresponding gene, FER, have offered the first clues as to how plants regulate their Fe-deficiency responses [63]. The fer mutant is unable to induce the Strategy I mechanism in response to Fe-deficiency, leading to chlorosis and lethality under low Fe conditions. The FER gene encodes a basic helix-loop-helix (bHLH) transcription factor, suggesting that it may be involved in directly regulating gene expression of Strategy I components. The FER mRNA is expressed in the root epidermis, the outer cortical layer of root tips and in the vascular cylinder of the mature root-hair zone. This suggests that FER plays a role in regulating Fe uptake genes from the soil and genes related to Fe redistribution as well. In the fer mutant, the induction of LeIRT1 mRNA in response to Fe-deficiency is abolished and LeNramp1 expression in the vascular parenchyma in the root hair zone is abolished [16,57,63]. The
expression of FER gene itself is rather constitutive regardless of Fe supply (0.1 and 10 μM Fe), or slightly down-regulated in response to supra-optimal Fe (100 μM Fe). However, FER protein levels are controlled by Fe availability. In transgenic tomato expressing FER under the control of the constitutive CaMV 35S promoter, FER mRNA can be detected from the plants grown at 10 μM and 100 μM Fe. FER protein, however, is not detected from the plants grown at 100 μM Fe, suggesting FER is down-regulated post-transcriptionally at elevated Fe levels.

FIT1 (also known as bHLH29/FRU) is the Arabidopsis ortholog of FER [64,65]. Expression of FIT1 in the fer mutant allows the mutant tomato to induce the Fe-deficiency responses and survive under Fe-limiting conditions [65]. fit1 mutants, like fer mutants, are chlorotic and die at the seedling stage unless supplied with Fe. FIT1 is expressed in the root epidermal cells and is induced under Fe-deficient conditions, suggesting that FIT1 regulates Fe uptake genes in response to Fe-deficiency. In fit1 mutants, the induction of FRO2 mRNA is not observed in response to Fe-deficiency. In contrast, up-regulation of IRT1 mRNA is still observed. In plants expressing FIT1 driven by the 35S promoter, mRNA expression of FRO2 is not altered compared to wild-type [7]. Thus it will be interesting to investigate whether FIT1 protein is regulated post-transcriptionally, like FER, and is present only under Fe deficiency.

The overexpression of IRT1 and FRO2 in plants has revealed post-transcriptional regulation. IRT1 mRNA is detected in the roots and shoots of 35S-IRT1 plants regardless of Fe status, however, IRT1 protein can only be detected in Fe-deficient roots [66]. Likewise, 35S-FRO2 plants show increased FRO2 mRNA levels but Fe(III) chelate reductase activity is elevated only when plants are Fe-deficient [11]. The mechanism of this regulation is currently not known, but an FIT1-dependent factor is suggested to control IRT1 protein levels by post-transcriptional regulation. In fit1 mutants, the IRT1 protein is not detected although IRT1 mRNA is induced upon Fe deficiency [7].

6. Final remarks

A wealth of information has been obtained in recent years on Fe uptake components in plants. Of particular importance has been the cloning of FRO2, IRT1, and YSI genes, enabling Fe uptake from the soil to be described at the molecular level. Characterization of additional members from these gene families also has enriched our knowledge of Fe transport and distribution within the plant. The future challenge will be to elucidate the specific contribution of each family member by addressing their subcellular localization, tissue specificity, and gene regulation in response to Fe status.

We still know relatively little about how the Fe-deficiency responses are regulated. The cloning of FIT1 and FER, encoding the essential transcription factors of Arabidopsis and tomato, helped us to understand the FIT1-dependent regulation of Strategy I components; FIT1 is necessary for the induction of FRO2 mRNA and the maintenance of increased levels of IRT1 protein in response to Fe-deficiency. FIT1 regulates subsets (71 out of the 179) of Fe-deficiency inducible genes, indicating that FIT1-independent regulatory mechanisms also operate in Fe-deficiency responses [7]. FIT1 mRNA itself is up-regulated by Fe-deficiency, thus upstream regulatory components also remain to be discovered. Ethylene is suggested to participate in the regulation of FIT1 and FER expression; treatment of plants with an ethylene inhibitor decreases the levels of FIT1 and FER mRNA induction in response to Fe-deficiency [67].

Among the least understood mechanisms is how plants sense Fe status and formulate the Fe-deficiency signal. It is a well-established idea that long-range signals are involved in the regulation of nutrient uptake genes in roots [68,69]. The growing shoot communicates its requirement to the root and the uptake in the root matches the demand for nutrients. Reciprocal grafting between the pea mutants, brz and dgl, and their parental genotypes reveals that the Fe(III) chelate reductase activity in roots is determined by the shoot genotype, indicating a shoot-derived signal regulates the root response [49]. In split root experiments, the Fe(III) chelate reductase activity was increased in half of the root supplied with Fe, suggesting a long-distance signaling from Fe-deprived half to the other half [69]. Interestingly, Fe(III) chelate reductase activity was decreased in the Fe-deprived portion of the root, implying the local presence of Fe is also involved in the induction of the Fe uptake activity. Recently, the expression of IRT1 and FRO2 was tested using split roots. When plants were grown under Fe-deficiency and transferred into a split root system, IRT1 and FRO2 mRNAs were shown to be more abundant in the roots supplied with Fe, further supporting the inductive effect of local Fe [70]. Identifying the components for the local- and long-range signaling and deciphering how these signaling events are integrated with the Fe deficiency responses will enable us to fully understand the molecular basis of Fe uptake and transport in plants.

Acknowledgements: We thank members of the Guerinot lab for stimulating discussions. Work in the Guerinot lab is supported by grants from the National Science Foundation (IBN 0344305; IBN-0419695) and the Department of Energy (DE-FG-2-06ER15809).

References

'Sparkle' conditioning decreased nodulation and increased iron uptake and leaf necrosis. Plant Physiol. 93, 717–722.

