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Abstract

Signal-to-noise ratio, the ratio between signal and noise, is a quantity that has been well established for MRI data but is still
subject of ongoing debate and confusion when it comes to fMRI data. fMRI data are characterised by small activation
fluctuations in a background of noise. Depending on how the signal of interest and the noise are identified, signal-to-noise
ratio for fMRI data is reported by using many different definitions. Since each definition comes with a different scale,
interpreting and comparing signal-to-noise ratio values for fMRI data can be a very challenging job. In this paper, we
provide an overview of existing definitions. Further, the relationship with activation detection power is investigated.
Reference tables and conversion formulae are provided to facilitate comparability between fMRI studies.

Citation: Welvaert M, Rosseel Y (2013) On the Definition of Signal-To-Noise Ratio and Contrast-To-Noise Ratio for fMRI Data. PLoS ONE 8(11): e77089.
doi:10.1371/journal.pone.0077089

Editor: Essa Yacoub, University of Minnesota, United States of America

Received March 8, 2013; Accepted September 6, 2013; Published November 6, 2013

Copyright: � 2013 Welvaert, Rosseel. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Marijke.Welvaert@Ugent.be

Introduction

In science and engineering, the signal-to-noise ratio (SNR) is a

measure that compares the level of a desired signal to the level of

background noise. For data acquired through magnetic resonance

imaging (MRI), this quantification is typically used to allow

comparison between imaging hardware, imaging protocols and

acquisition sequences. In this context, SNR is conceptualised by

comparing the signal of the MRI image to the background noise of

the image [1,2]. Mathematically, the SNR is the quotient of the

(mean) signal intensity measured in a region of interest (ROI) and

the standard deviation of the signal intensity in a region outside the

anatomy of the object being imaged (i.e. a region from which no

tissue signal is obtained) or the standard deviation from the noise

distribution when known (e.g. the background noise in magnitude

data follows a Rician distribution [3]). By varying, for example,

field of view, scan parameters, magnetic field strength and slice

thickness, the SNR of MRI images can be increased because these

parameters influence the background noise. On the other hand,

scanning hardware has also a major influence on the SNR levels of

fMRI data. For example, SNR increases almost linearly with field

strength [4] and is largely effected by the receiver coils (see [5] for

a review).

Translating SNR of MRI images to fMRI images is not as

straightforward as it may seem. First of all, the noise in fMRI

images does not correspond to the background noise of MRI

images (see [6] for an excellent overview). In fMRI images, system

noise effects the image as well as noise stemming from the subject

(i.e. cardiac and respiratory pulsations, motion) and the task that is

performed. Using time series outside the brain as noise measure-

ment only, will not be sufficient to capture the noise data [1,7,8].

Secondly, since the main goal of fMRI studies is to detect small

fluctuations over a period of time, image SNR might not be

suitable. Therefore, temporal SNR (tSNR), in which the (mean)

signal over time is taken into account, can be used to determine

the SNR of fMRI time series [9].

How to define SNR for MRI and fMRI data is documented

quite well in terms of its relationship with the MRI acquisition

parameters. Several studies have demonstrated the dependence on

these parameters and illustrated the necessary conditions to obtain

higher SNR [1,7,10]. Also the relationship between SNR and

CNR (contrast-to-noise ratio, a measure of image quality based on

a contrast rather than the raw signal) has been investigated. For

example, Wald investigated the improvement of BOLD CNR at

higher field strength [11]. He showed that BOLD CNR is not

directly affected by most acquisition parameters such as reciever

coil choice, parallel imaging acceleration and voxel size, but only

through the influence on the tSNR. However, in the end, one is

interested in how well the experimentally induced activation can

be detected. From a statistical perspective, it is not entirely clear

how the SNR measurements relate to this detection power,

because the small activation fluctuations (typically around 1–5%)

cannot be derived from the mean signal based on a static image or

time series. So for fMRI data, using the CNR of the time series

instead of (t)SNR is more preferred because CNR compares a

measure of the activation fluctuations to the noise [12]. In short,

image SNR should be used to assess data quality of a single image,

while tSNR gives information on the data quality of fMRI time

series. CNR on the other hand, provides knowledge on how easy,

or hard, it is to detect experimentally induced signal fluctuations.

These different conceptualisations of SNR make it hard to

compare results over studies. Therefore, in this paper, we provide

an overview of the most current SNR definitions for fMRI. First,

we demonstrate the use of these definitions in the literature and

discuss thoroughly how the definitions can be applied. Second, we

show analytic results that will enable the comparison between the

several definitions. Third, we also analyzed the relationship with

activation detection power and present simulation results that
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clarifies this relation. Finally, an application on real data illustrates

how the definitions can be used in practice.

Methods

To retrieve the range of possible values of SNR and CNR, we

looked at the reported values of SNR and CNR in fMRI studies.

NeuroImage published in 2012 about 458 fMRI studies that

presented original fMRI data. These papers were manually

screened if they reported SNR/CNR values of their data. In

total, 50 of these studies mentioned the role of SNR/CNR for

their experiment or method, while only 18 papers also reported

SNR or CNR values.

Since the determination of the SNR and CNR of real data can

be a demanding job and is not standardly reported, we also looked

at the SNR/CNR values that were reported in simulation studies.

In simulation studies, the range of the reported SNR/CNR values

was determined based on a representative sample of 119 articles

describing at least one simulation study. This sample containes

papers that were published between 1996 and 2012 in about 49

scientific journals. The reported values varied widely across studies

and were almost exclusively labelled as SNR.

Simulation study
A simulation study was conducted to investigate the relationship

between SNR/CNR levels and the power to detect activation in a

basic GLM analysis. 104 time series were simulated for three types

or experimental design: (1) a block design, (2) an event-related

(ER) design, and (3) a contrast between two conditions. These

experimental designs serve as basic templates. More complex

designs can be partially reduced to one of these three design types

based on the specific research hypotheses at hand (i.e. a specific

contrast or the effect of a specific predictor).

An activation signal of 200s was modelled for each design. The

block design consisted of alternating task and rest blocks that lasted

20s each. For the ER design, 25 events were randomly distributed

over the whole time series. For the contrast, two alternating block

conditions of 20s each were modelled with a rest period of 20s

after each sequence AB and the effect of condition A was twice as

high as the effect of condition B. Activation time series were the

result of convolving the stimulus boxcar function with the

Figure 1. Overview of reported SNR values in real data (left panel) and simulated data (right panel).[17,46–61].
doi:10.1371/journal.pone.0077089.g001

Figure 2. Illustration of the notation in the SNR and CNR
definitions: S is the activation signal, N the noise signal, A
defines the amplitude of the activation signal, and sS and sN

indicate the standard deviation of the activation signal and
noise signal respectively.
doi:10.1371/journal.pone.0077089.g002
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canonical HRF. The baseline value of these time series was

considered fixed at 100 and we chose three levels of percent signal

change, 1%, 2%, and 5% respectively. Random Gaussian noise

was added to these time series and the standard deviation of the

noise was allowed to vary between 0.1 and 10.

The empirical power was determined by fitting a standard

GLM model to each of the simulated time series. In both the block

and the ER design, the power was assessed by testing H0 : b1~0.

For the contrast design, H0 : bA{bB~0 was tested. The obtained

power is defined as the average number of correct detections (i.e.

rejection of null hypothesis) over all time series. All simulations

were carried out using the R package neuRosim [13].

Data acquisition
As an illustration of the discussed definitions, we applied the

SNR/CNR definitions in the context of experimental fMRI data

and resting-state fMRI data. The experimental fMRI dataset is

based on a houses-faces object recognition paradigm [14] and is

freely available through the OpenfMRI project (http://openfmri.

org). Forty 3.5-mm-thick sagittal images were acquired on a GE

3T scanner (General Electric, Milwaukee, WI) with TR =

2500 ms, FOV = 24 cm, TE = 30 ms and flip angle = 90. This

resulted in 1452 volume scans. For the resting state data, we

randomly selected one subject (AnnArbor-sub04111) from the

1000 Functional Connectomes project [15]. These data, consisting

of 295 resting scans, were acquired at 3T field strength with a

voxel size of 3:75|3:73|3, a matrix of 64|64 and TR of 2s.

Results

Reported SNR values in the literature
Reported SNR values ranged over studies from 0.35 to 203.6

for real fMRI data[17,46–61]. An overview of the values that were

reported in these studies is presented in Figure 1. Many authors

explicitly reported tSNR values ranging from 4.42 to 280, while in

a few other cases CNR values were reported that varied from 0.5

to 1.8. Note that one study reported the possibility of a CNR value

as low as 0.01, but this was specific to the imaging of orientation

columns in the visual cortex and caused by a combination of bias

and voxel size [16]. An interesting observation was that Hughes

and Beer made an explicit distinction between SNR for active

clusters and SNR for non-active clusters [17].

In the simulation studies, the reported values varied widely

across studies and were almost exclusively labelled as SNR. For

example, the SNR for the simulations varied from 1 to 10 in one

study, while the range was 0.01 to 1 in another, and in yet other

studies, we found SNR values that could be negative, for instance,

ranging from 213 to 30.

Both in the experimental and simulation studies in our literature

search, the reported values demonstrated a range that was much

wider than can be explained by natural variation only. There is

only one reason that could account for the found variation,

namely, the use of different definitions to calculate SNR or CNR.

Indeed, several definitions can be found in the literature, especially

for CNR. All these CNR measurements model some form of

relative signal change, related to the contrast of interest, relative to

the noise level. However, there is no consensus on how this

contrast of interest should be conceptualised. Therefore, the scale

of the CNR definitions varies widely and this makes comparing

studies very hard.

SNR and CNR definitions for fMRI data
Both SNR and CNR definitions have in common that a signal

measure is compared to the noise level. The distinction between

SNR versus CNR and the differences between the CNR

definitions will be the result of how the signal measure and the

noise is defined. While discussing the definitions, we will consider

fMRI time series as the result of an addition of an activation signal

time course and a noise signal time course. Figure 2 illustrates the

notation we will use to define the signal and the noise. The

activation signal time course, denoted as S, contains both the

baseline signal and the possible fluctuations in the signal due to the

experimental task. In general, S can be calculated as the average

haemodynamic response function (HRF) of the fMRI time series

in a certain ROI [18]. The noise signal, N , will typically be the

composition of several noise sources such as system noise,

physiological noise and task-related noise. When referring to the

noise signal, we implicitly take into account all these sources,

ignoring the specific influence or distribution of these sources [7].

To calculate N from the fMRI series in an ROI, the contribution

of the activation signal can be reduced by subtracting the average

HRF from the time series [18].

In the overview of the SNR and CNR definitions below, we will

focus on those definitions that are commonly found in the

literature. In fMRI simulation studies, values for SNR/CNR are

often chosen to give an indication of the strength of the modelled

signal relative to the modelled noise. Six different definitions were

found in total. We will discuss their definition and whether they

should be referred to as SNR or CNR. Note that, although in most

papers these formulae were labelled as SNR, the majority of them

are in fact CNR measurements.
Definition 1 (SNR). The first definition models SNR based

on the mean signal of the fMRI time series and the standard

deviation of the noise in the time series [19,20],

�SS

sN

:

As such, the global signal level, comprised of the baseline and

activation, is related to the noise.

Figure 3. Percentage of the 119 simulation studies from the
literature search that reported a specific SNR/CNR definition.
doi:10.1371/journal.pone.0077089.g003
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Definition 2 (CNR). In contrast, an amplitude measurement

can be related to the standard deviation of the noise [21–24] and

[25],

A

sN

:

The amplitude of the signal is generally defined as the absolute

difference between the baseline of the signal and the signal peak

(Figure 2).

Definition 3 (CNR). The previous definition of the CNR can

also be transformed in decibel (dB) scale, which is a common scale

in signal processing [26–28],

10 log10

A2

s2
N

� �
:

Definition 4 (CNR). Another possibility is to model the

strength of the signal based on the standard deviation of the

activation signal [29–35],

sS

sN

:

This definition is also implemented in the DCM simulator [36]

and is a very intuitive measurement of CNR because the ratio of

the fluctuations of both activation signal and noise is calculated.

Definition 5 (CNR). [37] and [38] used the ratio of the

variances,

s2
S

s2
N

,

which is of course equal to the square of Definition 4.

Definition 6 (CNR). Again, the ratio of the standard

deviations is also found in dB scale [39–44],

10 log10

s2
S

s2
N

� �
:

Comments on the definitions
Figure 3 provides an overview of the frequencies in which the

definitions discussed above are reported in fMRI simulation

studies. About one third of the studies does not mention any SNR

value, another third defines separate parameters for percent signal

change (perc. sign. ch.) of the activation signal and for the noise

level. The remainder of the studies mentions one of the definitions

of which definitions 2 and 4 seem to be the most popular.

Definition 1 is actually a measurement of tSNR [9]. Baseline

levels are highly dependent on the specific scanning parameters

that are used to acquire the fMRI data. Moreover, because the

Table 1. Reference table for the different SNR/CNR definitions based on a block design.

% Sig. ch. sN

�SS

sN

A

sN

10 log
A2

s2
N

� �
sS

sN

s2
S

s2
N

10 log
s2

S

s2
N

� �
Power

1 0.1 1003 10 20 4.46 19.85 12.98 1.00

0.2 502 5 14 2.23 4.96 6.96 1.00

0.5 201 2 6 0.89 0.79 21.00 1.00

1 100 1 0 0.45 0.20 27.02 0.99

2 50 0.5 26 0.22 0.050 213.04 0.58

5 20 0.2 214 0.089 0.0079 221.00 0.14

10 10 0.1 220 0.045 0.0020 227.02 0.07

2 0.1 1007 20 26 8.91 79.42 19.00 1.00

0.2 503 10 20 4.46 19.85 12.97 1.00

0.5 201 4 12 1.78 3.18 5.02 1.00

1 101 2 6 0.89 0.79 21.00 1.00

2 50 1 0 0.45 0.20 27.02 0.99

5 20 0.4 28 0.18 0.032 214.98 0.42

10 10 0.2 214 0.089 0.0079 221.00 0.15

5 0.1 1017 50 34 22.28 496.35 26.96 1.00

0.2 508 25 28 11.14 124.09 20.94 1.00

0.5 203 10 20 4.46 19.85 12.98 1.00

1 102 5 14 2.23 4.96 6.96 1.00

2 51 2.5 8 1.11 1.24 0.94 1.00

5 20 1 0 0.45 0.1985 27.02 0.99

10 10 0.5 26 0.22 0.0496 213.04 0.59

doi:10.1371/journal.pone.0077089.t001
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BOLD signal fluctuations are very small, no real information

about the activation signal strength is included in this definition,

which makes it possibly not very suitable for task-related fMRI

data. In fact, the higher the baseline value of the data, the less

impact the activation signal will have on the value of the SNR.

Therefore, the SNR value of a certain voxel in itself will not be

informative to distinguish active from non-active voxels. On the

other hand, tSNR can be very useful to evaluate resting-state

fMRI, because it provides very accessible and easy to interpret

information on the variation of the noise level over the brain.

In contrast, the remainder of the definitions all include some

measurement of the activation signal strength. Therefore, these

definitions are referred to as CNR formulae. It should be clear

that, in theory, the value for these CNR definitions will always be

zero for non-active voxels and larger than zero for active voxels.

Consequently, theoretically it would be possible to detect active

voxels based on their CNR value. In practice however, the

activation signal is stricto sensu unknown and it may be

complicated to calculate CNR values for single voxels.

For the CNR definitions, two different sets can be distinguished;

the first set (Definition 2–3) focuses on the amplitude of the

activation signal, A, while the second set (Definition 4–6)

incorporates the standard deviation of the activation as the signal

of interest. With regard to the first set, these formulae can be

interpreted as definitions of effect size based on means or

differences between means, like for example Cohen’s d [45]. As

such it is a direct indication of the strength of the signal.

Note that in our literature search, we also found possible

negative SNR values, which might be confusing to many

neuroscientists. These negative values stem from definitions 3

and 6 that define CNR on the dB scale, which are often used in

signal processing. On this logarithmic scale, a value of 0 means

that an equal amount of signal compared to noise is present in the

data. Therefore, negative values are an indication of less signal

than noise, while positive CNR values according to these

definitions represent more activation signal than noise.

In the case of a block activation signal (Figure 2), the

determination of the amplitude A is quite straightforward.

However, this is not the case in, for example, an event-related

design. In this experimental design, it is typical that multiple events

will cause several peaks in the signal and the timing of the stimuli

will have an effect on the height of the peak. In this case, the

amplitude of the signal could be either the difference between the

baseline and the maximal height of the signal, or the mean

amplitude over all peaks. In contrast, calculating the standard

deviation of the activation signal, sS , is independent of the

experimental design (i.e. block or event-related designs).

So far, the definitions described above were only discussed

based on a single condition experiment. As soon as multiple

conditions are considered in a experiment, it is not quite clear

anymore how to calculate the SNR or CNR of the fMRI data.

One option could be to determine the SNR/CNR for each

condition separately, which would be valid when distinct regions

are activated by the conditions. Another option could be to first

create an expected activation signal based on a contrast between

the conditions, and then to calculate the SNR/CNR of the

contrast signal in the same manner as for single condition time

series. In this way, the signal of interest is directly based on the

contrast that will be tested.

In essence all of these definitions have the same denominator

(i.e. sN ) so that differences are just scaling differences based on the

definition of the activation signal. One desirable property for an

Table 2. Reference table for the different SNR/CNR definitions based on an ER design.

% Sig. ch. sN

�SS

sN

A

sN

10 log
A2

s2
N

� �
sS

sN

s2
S

s2
N

10 log
s2

S

s2
N

� �
Power

1 0.1 1002 10 20 3.07 9.41 9.74 1.00

0.2 501 5 14 1.53 2.35 3.72 1.00

0.5 200 2 6 0.61 0.38 24.24 0.99

1 100 1 0 0.31 0.094 210.26 0.67

2 50 0.5 26 0.15 0.024 216.28 0.22

5 20 0.2 214 0.06 0.0038 224.24 0.08

10 10 0.1 220 0.03 0.00094 230.26 0.06

2 0.1 1004 20 26 6.14 37.64 15.76 1.00

0.2 502 10 20 3.07 9.41 9.74 1.00

0.5 201 4 12 1.23 1.51 1.78 1.00

1 100 2 6 0.61 0.38 24.24 0.99

2 50 1 0 0.31 0.094 210.26 0.75

5 20 0.4 28 0.13 0.015 218.23 0.17

10 10 0.2 214 0.06 0.0038 224.24 0.08

5 0.1 1010 50 34 15.34 235.26 23.72 1.00

0.2 505 25 28 7.67 58.81 17.69 1.00

0.5 202 10 20 3.07 9.41 9.74 1.00

1 101 5 14 1.54 2.35 3.72 1.00

2 51 2.5 8 0.77 0.59 22.31 0.99

5 20 1 0 0.31 0.15 210.26 0.64

10 10 0.5 26 0.15 0.024 216.28 0.21

doi:10.1371/journal.pone.0077089.t002
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SNR or CNR definition of fMRI time series would be that it is

closely related to the activation detection power. If the SNR/CNR

is high, then the power should be high too (keeping everything else

constant). Secondly, the scaling differences make it hard to

compare the values of the discussed definitions. In the remainder

of this paper, we will present some tools that will enable

comparison among the different definitions and further, we will

shed some light on the relationship with activation detection

power.

Comparing the SNR and CNR values
Due to the fact that there is no consensus on how to define the

SNR or CNR for fMRI data, interpreting a value can be an almost

impossible job. Dependent on how the SNR/CNR is calculated,

the values will be on a different scale. This impedes comparability

between fMRI studies and consequently delays convergence of

conclusions. In order to facilitate the comprehension of SNR and

CNR values, three reference tables were assembled (Table 1–3),

based on the three experimental designs that were also used in the

simulation study. For all levels of the noise and activation

parameters, the SNR or CNR according to the six definitions

was calculated and the results are presented in Table 1, Table 2

and Table 3. Note that for the ER design the amplitude was

defined as the maximal amplitude (i.e. amplitude of the highest

peak). In the case of the contrast design, the SNR and CNR values

were calculated based on the contrast signal that was the difference

of the activation signals of the two conditions. The amplitude of

this contrast signal was calculated as the difference between the

maximum and the minimum.

The results in Tables 1–3 demonstrate that the SNR definition

(Definition 1) is highly dependent on the value of the baseline,

since the formula is based on the mean signal strength.

Additionally, the obtained values are almost invariant to changes

in the activation signal strength and the experimental design.

The CNR definitions based on the amplitude of the signal

(Definition 2 and Definition 3) are also partially determined by the

baseline since the (maximal) amplitude of the signal will always

correspond to the % signal change relative to the baseline.

However, given the relative % signal change of the activation or

contrast signal, the amplitude is constant over experimental

designs. This is not true for the CNR definitions based on the

standard deviation of the activation signal (Definition 4, Definition

5 and Definition 6). Although these CNR definitions are

completely independent from the baseline, the activation standard

deviation will be influenced by the number of events in an ER

design or by the length of the epochs in a block design. The

reference tables (Table 1, 2 and 3) illustrate this variation, but the

close range of these CNR values over the designs indicates that this

variation is rather small. Therefore, the reference tables presented

here provide a tool to roughly compare and interpret the values for

the different SNR/CNR definitions.

Analytic similarities
Of course, the conversion of one definition to another can also

be solved analytically in some cases. For completeness, we

explicitly demonstrate here the analytic similarities between the

SNR/CNR definitions. Given the percent signal change p of the

activation signal, the amplitude of the signal will be defined as

Table 3. Reference table for the different SNR/CNR definitions based on a contrast.

% Sig. ch. sN

�SS

sN

A

sN

10 log
A2

s2
N

� �
sS

sN

s2
S

s2
N

10 log
s2

S

s2
N

� �
Power

1 0.1 1001 10.56 20.47 3.02 9.14 9.61 1.00

0.2 501 5.28 14.45 1.51 2.28 3.59 1.00

0.5 200 2.11 6.49 0.60 0.37 24.37 0.96

1 100 1.06 0.47 0.30 0.09 210.39 0.46

2 50 0.53 25.55 0.15 0.02 216.41 0.15

5 20 0.21 213.51 0.06 0.0037 224.37 0.07

10 10 0.11 219.53 0.03 0.0009 230.39 0.05

2 0.1 1003 21.12 26.49 6.05 36.56 15.63 1.00

0.2 501 10.56 20.47 3.02 9.14 9.61 1.00

0.5 201 4.22 12.51 1.21 1.46 1.65 1.00

1 100 2.11 6.49 0.60 0.37 24.37 1.00

2 50 1.06 0.47 0.30 0.091 210.39 0.92

5 20 0.42 27.49 0.12 0.015 218.35 0.27

10 10 0.21 213.51 0.06 0.004 224.37 0.10

5 0.1 1007 52.79 34.45 15.12 228.50 23.59 1.00

0.2 504 26.40 28.43 7.56 57.12 17.57 1.00

0.5 201 10.56 20.47 3.02 9.14 9.61 1.00

1 101 5.28 14.45 1.51 2.28 3.59 1.00

2 50 2.64 8.43 0.76 0.57 22.43 0.99

5 20 1.06 0.47 0.30 0.09 210.39 0.47

10 10 0.53 25.55 0.15 0.02 216.41 0.16

doi:10.1371/journal.pone.0077089.t003
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A~
p|100

b
,

with b the baseline of the activation signal. A CNR value c

calculated based on Definition 2 or Definition 4 can be converted

to a CNR value in dB, c’ using

c’~10 log10 (c2):

Vice versa, a dB CNR value c’ can be back transformed to the

CNR in the original scale, c, by

c~10c’=20:

Since the standard deviation of the activation signal (as in

Definition 4–6) will be partially determined by the experimental

design, there is no direct way to go from the percent signal change

to the standard deviation. To compare these CNR values, either

the reference tables, listed here, can be used to provide a rough

estimate, or the values have to be calculated specifically for each

design.

The relationship with detection power
There is no discussion on the fact that SNR or CNR is somehow

related to activation detection power. Indeed, the higher the signal

or the lower the noise (i.e. higher values for the SNR/CNR), the

higher the power will be. Naively, one could expect that, when, for

example, SNR~5 and the power~0:30, the power will increase

to 0.60 for data with an SNR of 10. In other words, one may

expect an approximate linear relationship between SNR/CNR

values and the power to detect activation. In order to establish the

approximate relationship between activation detection power and

the SNR/CNR definitions, power results are presented in the last

Figure 4. The relationship between power and the SNR/CNR definitions for 1% signal change.
doi:10.1371/journal.pone.0077089.g004
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column of the reference tables (Tables 1–3). Note that these results

represent maximal power values. In real fMRI data, the power will

be smaller due to the influence of non-white noise.

Looking at the results, we can immediately conclude that the

simple rule ‘‘twice as much signal will double the power’’ is not valid.

Indeed, as power is bounded, a linear relationship with the signal is

impossible. In general, the power will be lower for the time series

that contain more noise, but their is no linear relationship with the

SNR or CNR values. This is illustrated in Figure 4 for the case of

1% signal change. However, comparing the power values for the

different designs, overall lower values can be observed for the ER

design notwithstanding equal activation strengths and noise levels.

This lower power is in itself not that surprising, but this can only

be predicted based on the CNR definitions that use the standard

deviation of the activation signal, since the SNR/CNR values for

the other definitions are constant over the designs. Additionally, in

the lower power cases, the CNR values of Definition 4 are within

the same range, indicating that these CNR values can be used as a

rough estimate of activation detection power.

Real data example
For both datasets we calculated the tSNR (Definition 1), the

amplitude-based CNR (Definition 2) and the standard deviation

CNR (Definition 4) on the raw data. The tSNR was calculated

similarly for both datasets. For each voxel the mean and the

standard deviation of the corresponding time series were

calculated and then divided to determine the tSNR. Note that

the interpretation of tSNR is only useful in gray matter. The

results are presented in Figure 5 (upper panel). The tSNR of the

task-based data is on average 10.83 and ranges between 0.03 and

161.20. For the resting-state data, the mean tSNR is 12.98,

ranging from 1.07 to 84.54. Based on these results, it seems that

the data quality of the resting-state data is higher compared to the

task-based data. Figure 5 (upper panel) also shows that the spatial

distribution of the tSNR values is more equal for the resting-state

data (right) than for the task-based data (left).

CNR values are only informative for the task fMRI data, so they

were not determined for the resting state data. To calculate them,

we first had to create an activation signal. For the task-based data,

the activation signal was calculated by averaging the time series of

all voxels within the activation contrast mask (i.e. the mask

indicating the mean response over all categories). A second

activation signal was calculated for all voxels outside the mask.

These activation signals were then subtracted from the individual

voxels time series to eliminate the contribution of activation to the

time series and isolate the noise. The resulting signals, both

activation signals and the noise signal, were used to calculate the

parameters for the CNR definitions.

The amplitude-based CNR measure (left) is on average 37.06

(with a range from 8.17 to 95.73) for in-mask voxels and 0.48 (with

a range from 0.01 to 95.73) for out-mask voxels. Similarly, for the

CNR measure using the standard deviation of the signal, in-mask

voxels had an average CNR of 0.029 (ranging from 0.06 to 0.76),

while out-mask voxels had an average CNR of 0.04 (ranging from

0.01–0.76). Of course, it should be noted that these values are

highly dependent on how the mask or ROIs are determined.

Discussion

fMRI data are often characterised by their SNR or CNR. SNR

measurements are, for example, used to compare scanner

hardware or the quality of scanning sequences, while CNR can

be indicative of the quality (i.e. detectability) of the contrast of

interest. In this paper, an overview was provided of common SNR

and CNR definitions in an fMRI time series context. It was

established that the literature lacks consensus on how to define

SNR/CNR for fMRI data. Consequently, reported SNR and

CNR values are hard to compare, possibly hindering the

convergence of conclusions based on fMRI studies.

Based on how the signal of interest is defined, an explicit

distinction was made between SNR and CNR. SNR compares the

global signal level to the amount of noise and can be applied to

Figure 5. tSNR results of the example data, illustrating how the definitions can be applied to real task-based and resting-state fMRI
data. Upper panel: tSNR results for a block design. Lower panel: tSNR results for the resting-state data.
doi:10.1371/journal.pone.0077089.g005
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either MRI images or task-related and resting-state fMRI (e.g.

tSNR). The main purpose of determining the SNR of the data will

be to assess the quality of the data (e.g. influence of noise).

However, when applied to task-related fMRI data, the SNR of the

data will most likely miss out on the small fluctuations present in

the activation signal that are caused by the task. Therefore, in the

case of these particular data, in which the signal of interest is a

specific contrast that models the influence of certain conditions, it

would be better to consistently use the concept of CNR. The CNR

value will also give an indication of the quality of the data in terms

of noise, but additionally it contains information on the strength of

the activation signal for a specific task. This information can be

related to activation detection sensitivity.

A sceptical reader would argue that it might be meaningless to

capture the information present in 4D fMRI data, which are

characterised by very high inter- and intra-subject and -scanner

variability, in one single number (either SNR or CNR). Indeed, for

real data, SNR or CNR values are seldom reported. Moreover,

screening of published simulation studies teaches us that no less

than 62.2% of these studies avoid reporting an SNR/CNR value.

Instead, they reported separate parameters for the activation

strength and the noise level. A second problem might be that the

same value of SNR/CNR can indicate different levels of activation

strength and noise, which can have a different impact on the

detection accuracy. Despite the justly scepticism, determining the

SNR or CNR of fMRI data can still hold useful information,

because it provides an assesment of the quality of the data at a

glance. However, we recommend to calculate the values only for

small regions that are likely to have the same value of SNR/CNR

based on anatomy or function. For simulation studies in particular,

it would be interesting to report the SNR/CNR of the simulated

value along with the specific values of activation strength and noise

level. As such, generalising the conclusions from these studies to

real data will be facilitated.

Conclusion

Consensus on a common SNR/CNR definition for fMRI data

might be difficult to achieve, because the measurement depends

very much on how the signal of interest and the noise is defined.

Therefore, we strongly recommend that authors reporting SNR/

CNR values, at least mention the type of definition they use and

provide an interpretation on the meaning of the reported values.

The tables presented in this chapter can then be a reference

allowing easy comparison from one definition to another.

Furthermore, these tables are an excellent tool to provide an

estimate of the maximal power that can be expected to detect

activation in data with a given SNR/CNR value. Finally, a

better understanding of the SNR/CNR values might encourage

fMRI researchers to report these measurements in a more

systematic way. Consequently, the ability to compare these

reported values will facilitate the convergence of fMRI based

knowledge.
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