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VI. CONCLUSIONS & FUTURE WORK

In this work, we introduce a dissimilarity feature extraction
framework through which we augment items’ representations
with new features. When utilized in classification tasks, these
enriched representations are proved to be effective in dis-
covering preferred items, since they result in an improved
performance in terms of precision. Presented results from the
applied classifiers and the feature selection techniques endorse
the usability of our features.

In future work, we are interested in comparing our features
with state-of-the-art research efforts such as matrix factoriza-
tion techniques [17]. Such comparison studies will greatly
enhance the importance of our work. Furthermore, consid-
ering the computational complexity of our feature extraction
framework, we plan to provide a distributed implementation
through which its execution time will be reduced. Finally, the
proposed framework could be adjusted in order to provide
suggestions in the context of social networks. Considering a
community of users, we could calculate dissimilarity features
for the items they have expressed their opinion. Then, these
features could lead to dissimilarities between users which can
be used for their separation into two poles. The one pole would
contain the users with small pairwise dissimilarity weights
(i.e. like-minded users), while the other pole would include
the ones with high dissimilarity weights (i.e. opposite-minded
user). Applications that seek a balance between accuracy and
diversity could use both poles of users.
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