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Abstract—In this paper, we present a novel algorithm for fuzzy
segmentation of magnetic resonance imaging (MRI) data and es-
timation of intensity inhomogeneities using fuzzy logic. MRI in-
tensity inhomogeneities can be attributed to imperfections in the
radio-frequency coils or to problems associated with the acqui-
sition sequences. The result is a slowly varying shading artifact
over the image that can produce errors with conventional inten-
sity-based classification. Our algorithm is formulated by modifying
the objective function of the standard fuzzy c-means (FCM) algo-
rithm to compensate for such inhomogeneities and to allow the la-
beling of a pixel (voxel) to be influenced by the labels in its imme-
diate neighborhood. The neighborhood effect acts as a regularizer
and biases the solution toward piecewise-homogeneous labelings.
Such a regularization is useful in segmenting scans corrupted by
salt and pepper noise. Experimental results on both synthetic im-
ages and MR data are given to demonstrate the effectiveness and
efficiency of the proposed algorithm.

Index Terms—Bias field, fuzzy logic, image segmentation, MR
imaging.

I. INTRODUCTION

SPATIAL intensity inhomogeneity induced by the radio-fre-
quency coil in magnetic resonance imaging (MRI) is a

major problem in the computer analysis of MRI data [1]–[4].
Such inhomogeneities have rendered conventional inten-
sity-based classification of MR images very difficult, even
with advanced techniques such as nonparametric, multichannel
methods [5]–[7]. This is due to the fact that the intensity inho-
mogeneities appearing in MR images produce spatial changes
in tissue statistics, i.e., mean and variance. In addition, the
degradation on the images obstructs the physician’s diagnoses
because the physician has to ignore the inhomogeneity artifact
in the corrupted images [8].

The removal of the spatial intensity inhomogeneity from MR
images is difficult because the inhomogeneities could change
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with different MRI acquisition parameters from patient to pa-
tient and from slice to slice. Therefore, the correction of inten-
sity inhomogeneities is usually required for each new image.
In the last decade, a number of algorithms have been proposed
for the intensity inhomogeneity correction. Meyeret al.[9] pre-
sented an edge-based segmentation scheme to find uniform re-
gions in the image followed by a polynomial surface fit to those
regions. The result of their correction is, however, very depen-
dant on the quality of the segmentation step.

Several authors have reported methods based on the use of
phantoms for intensity calibration. Wickset al. [3] proposed
methods based on the signal produced by a uniform phantom to
correct for MRI images of any orientation. Similarly, Tincheret
al. [10] modeled the inhomogeneity function by a second-order
polynomial and fitted it to a uniform phantom-scanned MR
image. These phantom approaches, however, have the drawback
that the geometry relationship of the coils and the image data is
typically not available with the image data. They also require
the same acquisition parameters for the phantom scan and the
patient. In addition, these approaches assume the intensity
corruption effects are the same for different patients, which is
not valid in general [8].

The homomorphic filtering approach to remove the multi-
plicative effect of the inhomogeneity has been commonly used
due to its easy and efficient implementation [6], [11]. This
method, however, is effective only on images with relatively
low-contrast. Some researchers [10], [12] reported undesirable
artifacts with this approach.

Dawantet al. [12] used operator-selected reference points in
the image to guide the construction of a thin-plate spline cor-
rection surface. The performance of this method depends sub-
stantially on the labeling of the reference points. Considerable
user interactions are usually required to obtain good correction
results. More recently, Gilleset al. [13] proposed an automatic
and iterative B-spline fitting algorithm for the intensity inho-
mogeneity correction of breast MR images. The application of
this algorithm is restricted to MR images with a single dominant
tissue class, such as breast MR images. Another polynomial sur-
face fitting method [14] was proposed based on the assumption
that the number of tissue classes, the true means, and standard
deviations of all the tissue classes in the image are given. Unfor-
tunately, the required statistical information is usually not avail-
able.

A different approach used to segment images with intensity
inhomogeneities is to simultaneously compensate for the
shading effect while segmenting the image. This approach has
the advantage of being able to use intermediate information
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from the segmentation while performing the correction. Re-
cently, Wellset al. [5] developed a new statistical approach
based on the expectation-maximization (EM) algorithm to
solve the bias-field-correction problem and the tissue classi-
fication problem. Guillemaud and Brady [15] further refined
this technique by introducing the extra class “other.” There are
two main disadvantages of this EM approach. First, the EM
algorithm is extremely computationally intensive, especially
for large problems. Second, the EM algorithm requires a good
initial guess for either the bias field or for the classification
estimate. Otherwise, the EM algorithm could be easily trapped
in a local minimum, resulting in an unsatisfactory solution [8].

Another approach based on the fuzzy c-means (FCM) [17],
[18] clustering technique was introduced lately [19]–[21]. FCM
has been used with some success in image segmentation in gen-
eral [22], [23] and also in segmenting MR images [24]–[27].
Xu et al. [19] proposed a new adaptive FCM technique to pro-
duce fuzzy segmentation while compensating for intensity in-
homogeneities. Their method, however, is also computationally
intensive. They reduced the computational complexity by iter-
ating on a coarse grid rather the fine grid containing the image.
This introduced some errors in the classification results and was
found to be sensitive to a considerable amount of salt and pepper
noise [20].

To solve the problem of noise sensitivity and computational
complexity of Pham and Prince method, we present in this paper
a different approach for fuzzy segmentation of MRI data in the
presence of intensity inhomogeneities. Our novel algorithm is
formulated by modifying the objective function of the standard
FCM algorithm to compensate for such inhomogeneities. This
new formulation allows the labeling of a pixel (voxel) to be
influenced by the labels in its immediate neighborhood. The
neighborhood effect acts as a regularizer and biases the solution
toward piecewise-homogeneous labeling; such a regularization
is useful in segmenting scans corrupted by salt and pepper noise.

II. BACKGROUND

The observed MRI signal is modeled as a product of the
true signal generated by the underlying anatomy, and a spatially
varying factor called the gain field

(1)

where and are the true and observed intensities at theth
voxel, respectively, is the gain field at the th voxel, and
is the total number of voxels in the MRI volume.

The application of a logarithmic transformation to the inten-
sities allows the artifact to be modeled as an additive bias field
[5]

(2)

where and are the true and observed log-transformed in-
tensities at the th voxel, respectively, and is the bias field
at the th voxel. If the gain field is known, then it is relatively
easy to estimate the tissue class by applying a conventional in-
tensity-based segmenter to the corrected data. Similarly, if the
tissue classes are known, then we can estimate the gain field, but

it may be problematic to estimate either without the knowledge
of the other. We will show that by using an iterative algorithm
based on fuzzy logic, we can estimate both.

III. B IAS-CORRECTED(BC) FCM (BCFCM) OBJECTIVE

FUNCTION

The standard FCM objective function for partitioning
into clusters is given by [16]

(3)

where are the prototypes of the clusters and the array
[ represents a partition matrix, , namely

and

(4)

The parameter is a weighting exponent on each fuzzy mem-
bership and determines the amount of fuzziness of the resulting
classification. The FCM objective function is minimized when
high membership values are assigned to voxels whose intensi-
ties are close to the centroid of its particular class, and low mem-
bership values are assigned when the voxel data is far from the
centroid [18].

We propose a modification to (3) by introducing a term that
allow the labeling of a pixel (voxel) to be influenced by the la-
bels in its immediate neighborhood [21]. As mentioned before,
the neighborhood effect acts as a regularizer and biases the so-
lution toward piecewise-homogeneous labeling. Such a regu-
larization is useful in segmenting scans corrupted by salt and
pepper noise. The modified objective function is given by

(5)

where stands for the set of neighbors that exist in a window
around and is the cardinality of . The effect of the
neighbors term is controlled by the parameter. The relative
importance of the regularizing term is inversely proportional to
the signal-to-noise ratio (SNR) of the MRI signal. Lower SNR
would require a higher value of the parameter.

Substituting (2) into (5), we have

(6)

Formally, the optimization problem comes in the form

subject to (7)
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IV. PARAMETER ESTIMATION

The objective function can be minimized in a fashion sim-
ilar to the standard FCM algorithm. Taking the first derivatives
of with respect to , , and and setting them to zero
results in three necessary but not sufficient conditions for
to be at a local extrema. In the following subsections, we will
derive these three conditions.

A. Membership Evaluation

The constrained optimization in (7) will be solved using one
Lagrange multiplier

(8)

where and
. Taking the derivative of with re-

spect to and setting the result to zero, we have, for

(9)

Solving for we have

(10)

Since

(11)

or

(12)

Substituting into (10), the zero-gradient condition for the mem-
bership estimator can be rewritten as

(13)

B. Cluster Prototype Updating

In the following derivation, we use the standard Eucledian
distance. Taking the derivative of with respect to and
setting the result to zero, we have

(14)

Solving for , we have

(15)

C. Bias-Field Estimation

In a similar fashion, taking the derivative of with respect
to and setting the result to zero we have

(16)

Since only the th term in the second summation depends on
, we have

(17)

Differentiating the distance expression, we obtain

(18)

Thus, the zero-gradient condition for the bias-field estimator is
expressed as

(19)

D. BCFCM Algorithm

The BCFCM algorithm for correcting the bias field and seg-
menting the image into different clusters can be summarized in
the following steps.

Step 1) Select initial class prototypes . Set
to equal and very small values (e.g., 0.01).

Step 2) Update the partition matrix using (13).
Step 3) The prototypes of the clusters are obtained in the

form of weighted averages of the patterns using (15).
Step 4) Estimate the bias term using (19).

Repeat Steps 2)–4) till termination. The termination criterion is
as follows:

(20)

where is the Euclidean norm, is a vector of cluster centers,
and is a small number that can be set by the user.

V. RESULTS AND DISCUSSIONS

In this section, we describe the application of the BCFCM
segmentation on synthetic images corrupted with multiplicative
gain, as well as digital MR phantoms [28] and real brain MR
images. The MR phantoms simulated the appearance and image
characteristics of the T1-weighted images. There are many
advantages for using digital phantoms rather than real image
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(a) (b)

(c) (d)

Fig. 1. Comparison of segmentation results on a synthetic image corrupted by
a sinusoidal bias field. (a) The original image. (b) FCM results. (c) BCFCM and
EM results. (d) Bias-field estimations using BCFCM and EM algorithms: this
was obtained by scaling the bias-field values from one to 255.

data for validating segmentation methods. These advantages
include prior knowledge of the true tissue types and control
over image parameters such as mean intensity values, noise,
and intensity inhomogeneities. We used a high-resolution
T1-weighted phantom with in-plane resolution 0.94 mm ,
Gaussian noise with 6.0, and three-dimensional linear
shading 7% in each direction. All of the real MR images
shown in this section were obtained using a General Electric
Signa 1.5-Tesla clinical MR imager with the same in-plane
resolution as the phantom. In all the examples, we set the
parameter (the neighbors effect) to be 0.7, 2, 9
(a 3 3 window centered around each pixel), and 0.01.
For low-SNR images, we set 0.85. The choice of these
parameters seem to give the best results.

Fig. 1(a) shows a synthetic test image. This image contains a
two-class pattern corrupted by a sinusoidal gain field of higher
spatial frequency. The test image is intended to represent two
tissue classes, while the sinusoid represents an intensity inho-
mogeneity. This image was constructed so that it would be dif-
ficult to correct using homomorphic filtering or traditional FCM
approaches. As shown in Fig. 1(b), FCM algorithm was unable
to separate the two classes, while the BCFCM and EM algo-
rithms have succeeded in correcting and classifying the data as
shown in Fig. 1(c). The estimate of the multiplicative gain using
either BCFCM or EM is presented in Fig. 1(d). This image was
obtained by scaling the values of the bias field from one to 255.
Although the BCFCM and EM algorithms produced similar re-
sults, BCFCM was faster to converge to the correct classifica-
tion, as shown in Fig. 2.

Fig. 2. Comparison of the performance of the proposed BCFCM algorithm
with EM and FCM segmentation when applied to the synthetic two-class image
shown in Fig. 1(a).

(a) (b)

(c) (d)

Fig. 3. Comparison of segmentation results on an MR phantom corrupted with
5% Gaussian noise and 20% intensity inhomogeneity. (a) Original T1-weighted
image, (b) using FCM, (c) using EM, and (d) using the proposed BCFCM.

Figs. 3 and 4 present a comparison of segmentation results be-
tween FCM, EM, and BCFCM, when applied on T1-weighted
MR phantom corrupted with intensity inhomogeneity and noise.
From these images, we can see that traditional FCM was un-
able to correctly classify the images. Both BCFCM and EM
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(a) (b)

(c) (d)

Fig. 4. Comparison of segmentation results on an MR phantom (different
slice from Fig. 3) corrupted with 5% Gaussian noise and 20% intensity
inhomogeneity. (a) Original T1-weighted image, (b) using FCM, (c) using EM,
and (d) using the proposed BCFCM.

segmented the image into three classes corresponding to back-
ground, gray matter (GM) and white matter (WM). BCFCM
produced slightly better results than EM due to its ability to cope
with noise. Moreover, BCFCM requires far less number of itera-
tions to converge compared to the EM algorithm. Table I depicts
the segmentation accuracy (SA) of the three mentioned method
when applied to the MR phantom. SA was measured as follows:

(21)

SA was calculated for different SNR. From the results, we can
see that the three methods produced almost similar results for
high-SNR. BCFCM method, however, was found more accurate
for lower SNR.

Fig. 5 shows the results of applying the BCFCM algorithm
to segment a real axial-sectioned T1 MR brain. Strong inho-
mogeneities are apparent in the image. The BCFCM algorithm
segmented the image into three classes corresponding to back-
ground, GM and WM. The bottom right image show the esti-
mate of the multiplicative gain, scaled from one to 255.

Fig. 6 shows the results of applying the BCFCM for the seg-
mentation of noisy brain images. The results using traditional
FCM without considering the neighborhood field effect and the
BCFCM are presented. Notice that the BCFCM segmentation,
which uses the neighborhood field effect, is much less frag-

TABLE I
SEGMENTATION ACCURACY OFDIFFERENTMETHODSWHEN APPLIED ON

MR SIMULATED DATA

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Brain MRI example. (a) Original MR image corrupted with intensity
inhomogeneities. (b) Crisp GM membership using traditional FCM. (c) Crisp
GM membership using the proposed BCFCM algorithm. (d) the bias-field
corrected image using BCFCM. (e) and (f) Segmented image and bias-field
estimate using BCFCM, respectively.

mented than the traditional FCM approach. As mentioned be-
fore, the relative importance of the regularizing term is inversely
proportional to the SNR of MRI signal. It is important to notice,
however, that the incorporation of spatial constraints into the
classification has the disadvantage of blurring of some fine de-
tails. There are current efforts to solve this problem by including
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Brain tumor MRI examples. (a) and (b) Original MR images corrupted
with salt and pepper noise, respectively. (c) and (d) Segmented images using
FCM without any neighborhood consideration. (e) and (f) Segmented images
using BCFCM (� = 0.85).

contrast information in the classification. High-contrast pixels,
which usually represent boundaries between objects, should not
be included in the neighbors.

VI. CONCLUSION

We have demonstrated a new BCFCM algorithm for adap-
tive segmentation and intensity correction of MR images. The
algorithm was formulated by modifying the objective function
of the standard FCM algorithm to compensate for intensity in-
homogeneities and to allow the labeling of a pixel (voxel) to
be influenced by the labels in its immediate neighborhood. The
neighborhood acts as a regularizer and biases the solution to-
ward piecewise-homogeneous labeling; such a regularization is
useful in segmenting scans corrupted by salt and pepper noise.

Using simulated MRI data and real brain images reviewed
by experts, results show that intensity variations across patients,
scans, and equipment changes have been accommodated in the
estimated bias field without the need for manual intervention.

We compared our results with traditional FCM segmentation
and EM algorithm developed by Wellset al. [5]. The BCFCM
outperformed the FCM on both simulated and real MRI images.
The FCM, however, has the advantage of working for vectors of
intensities while the BCFCM is limited to single-feature inputs.
The BCFCM algorithm produces similar results as the EM al-
gorithm with faster convergence. In noisy images, the BCFCM
technique produced better results than the EM algorithm as it
compensates for noise by including a regularization term.

The results presented in this paper are preliminary and further
clinical evaluation is required. The evaluation of the method for
localized measurements, such as the impact on tumor boundary
or volume determinations also needs further work, as the current
phantom measurements are based on more global corrections
for image nonuniformity.
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