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Gene expression profile classification is a pivotal research domain assisting in the transformation from
traditional to personalized medicine. A major challenge associated with gene expression data classifica-
tion is the small number of samples relative to the large number of genes. To address this problem,
researchers have devised various feature selection algorithms to reduce the number of genes. Recent
studies have been experimenting with the use of semantic similarity between genes in Gene Ontology
(GO) as a method to improve feature selection. While there are few studies that discuss how to use GO
for feature selection, there is no simulation study that addresses when to use GO-based feature selection.
To investigate this, we developed a novel simulation, which generates binary class datasets, where the
differentially expressed genes between two classes have some underlying relationship in GO. This allows
us to investigate the effects of various factors such as the relative connectedness of the underlying genes
in GO, the mean magnitude of separation between differentially expressed genes denoted by d, and the
number of training samples. Our simulation results suggest that the connectedness in GO of the differen-
tially expressed genes for a biological condition is the primary factor for determining the efficacy of GO-
based feature selection. In particular, as the connectedness of differentially expressed genes increases, the
classification accuracy improvement increases. To quantify this notion of connectedness, we defined a
measure called Biological Condition Annotation Level BCAL(G), where G is a graph of differentially
expressed genes. Our main conclusions with respect to GO-based feature selection are the following:
(1) it increases classification accuracy when BCAL(G) P 0.696; (2) it decreases classification accuracy
when BCAL(G) 6 0.389; (3) it provides marginal accuracy improvement when 0.389 < BCAL(G) < 0.696
and d < 1; (4) as the number of genes in a biological condition increases beyond 50 and d P 0.7, the
improvement from GO-based feature selection decreases; and (5) we recommend not using GO-based
feature selection when a biological condition has less than ten genes. Our results are derived from data-
sets preprocessed using RMA (Robust Multi-array Average), cases where d is between 0.3 and 2.5, and
training sample sizes between 20 and 200, therefore our conclusions are limited to these specifications.
Overall, this simulation is innovative and addresses the question of when SoFoCles-style feature selection
should be used for classification instead of statistical-based ranking measures.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

A major transformation is occurring within the health-care
community. Instead of applying general treatments to diverse pa-
tient populations, therapies are being customized to patient sub-
populations based on their gene expression profiles. This new
form of medical practice is known as personalized medicine. Gene
expression profile classification is subfield of bioinformatics that is
aiding in the transformation to personalized medicine. Gene
expression profiling is an important tool for personalized medicine
because it allows biomedical researchers to discover biomarkers.
There are two types of biomarkers, prognostic biomarkers and pre-
dictive biomarkers. Prognostic biomarkers allow clinicians to dis-
cern which patients to treat, while predictive biomarkers
elucidate a treatment’s effectiveness for a patient [1]. For gene
expression studies, a biomarker is represented by the expression
of a gene or set of genes under a certain physiological condition.
To give the reader some insight regarding biomarkers, suppose
some treatment treat has been shown to be effective for patients
having some biomarker b in physiological situation sit. Now sup-
pose we have a patient p with physiological situation sit, we want
to say: if patient p with physiological situation sit has biomarker b
then apply treatment treat to patient p. In this example, b is a
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predictive biomarker. There are many applications of gene expres-
sion profile classification including: tumor class discrimination,
prediction of clinical outcome based on treatments and detection
of previously unknown sub-patterns [2]. Gene expression profiles
have been traditionally collected using DNA microarrays, however,
recent studies are also using RNA-seq [3]. In its simplest form, the
gene expression classification problem compares two classes: (1) a
control class and (2) an experimental class. Dubitzky et al. describe
nine steps involved with microarray data analysis: (1) identify sci-
entific aims; (2) design experiment; (3) design/make or acquire
microarray; (4) hybridize and scan microarray; (5) analyze result-
ing image; (6) derive data matrix; (7) pre-process data matrix; (8)
analyze and model; and (9) interpret and validate results [4].

In this paper, we focus on steps seven and eight of microarray
data analysis. Step seven has a few subtasks such as missing value
computation, normalization, transformation and feature selection.
Within step seven, we are most interested in feature selection. The
ultimate goal of feature selection, also known as gene selection, is
to reduce the dimensionality of the problem and identify potential
biomarkers. Feature selection is supremely important because a
gene expression profile has thousands of values associated with
it, and fitting a classifier with exceptionally high dimension leads
to the curse of dimensionality. Adding to the problem is the fact
that there are usually only tens or hundreds of gene expression
profiles to use as training examples. With regards to step eight,
many different classifiers such as linear discriminant analysis
(LDA) [5], diagonal linear discriminant analysis (DLDA) [5],
weighted voting (WV) [6], k-nearest neighbor (KNN) [7] and, sup-
port vector machines (SVM) [8] have been applied on gene expres-
sion profiles [9].

To frame the problem in a more mathematical context, let’s de-
fine the training set to be T 2 Rm�n where m is the number of genes,
n is the number of biospecimens analyzed and Rm�n refers to a m
by n dimensional real number space. A column of the set T repre-
sents the gene expression profile of a biospecimen; a row repre-
sents the expression levels for a single gene across all
biospecimens. The primary objective of feature selection is to find
T 0 2 Rd�n where T0 � T and d < m such that training a classifier C on
T0 yields higher generalized classification accuracy than training on
T.

Given the importance of discovering biomarkers, one should not
be surprised to find a vast amount of literature devising feature
selection algorithms. There are three common approaches to fea-
ture selection: filter, wrapper, and embedded techniques [10]. To
understand how feature selection algorithms are classified using
this scheme, it is useful to envision these processes as they occur
along a time-line with respect to training a classifier. Specifically,
filtering occurs before classifier training, embedded selection oc-
curs during classifier training and wrappers are applied after clas-
sifier training. Filtering techniques typically rank genes by some
statistical metric and then remove all genes that fall below a
user-defined threshold. Wrapper methods attempt to find an opti-
mal subset of genes that achieve high accuracy. These methods are
Table 1
Examples of feature selection techniques.

Technique Type Publication

Signal-to-noise ratio Filter [6]
t-Statistics Filter [11]
ANOVA Filter [12]
Wilcoxon rank-sum Filter [13]
BLOCK.FS Wrapper [14]
Multiple SVM-RFE Wrapper [15]
Integer-coded genetic algorithm Wrapper [16]
Genetic programming Embedded [17]
Multiple-filter–multiple-wrapper Combination [9]
called wrappers because they encapsulate a classifier and call the
classifier as a subroutine. Table 1 lists some feature selection
techniques.

The previously mentioned techniques discover important genes
by comparing statistical properties of a dataset, and do not include
domain specific biological knowledge into the selection. Recently,
some researchers have been investigating whether or not prior
knowledge could improve feature selection for gene expression
data classification. The rationale for these investigations is based
on the following inductive argument: (1) gene expression data
has small sample sizes, so the identification of important genes is
difficult; (2) there are large biomedical knowledge-bases such as
Gene Ontology (GO) [18] and Gene Ontology Annotation (GOA)
[19] that describe gene relationships; (3) there appears to be some
correlation between gene expression data and semantic similarity
between terms in GO [20,21]; (4) there has been success by incor-
porating prior knowledge in other pattern recognition tasks; there-
fore, it seems possible that incorporating prior knowledge into
feature selection techniques will improve biomarker identification
and classification accuracy for gene expression data.

Further support for feature selection techniques that incorpo-
rate prior knowledge can be found in the success of enrichment
analysis tools. The purpose of enrichment analysis tools is to assist
with the interpretation of a list of relevant genes from data gener-
ated using high-throughput technologies like microarrays. Huang
et al. mention that these tools are built on the following assump-
tion: if a biological process is not functioning properly, then genes
involved in this biological process will have a higher likelihood to
be relevant [22]. The goal of these enrichment analysis tools is to
find biological processes that best describe a user-specified list of
relevant genes. Some of these enrichment analysis tools discover
relevant biological terms by comparing a GO term’s coverage
among the list of relevant genes to its coverage among all genes.
The difference between feature selection methods and enrichment
analysis tools is that feature selection methods build a list of rele-
vant genes, where as enrichment analysis tools assist with the
interpretation of a list of relevant genes.

Some examples of enrichment analysis tools are Onto-Express
[23], MaPPFinder [24], GOMiner [25], DAVID [26], EASE [27], Gen-
eMerge [28], and FuncAssociate [29]. Refinements to enrichment
analysis tools using information theory can be found in [30]. Other
enrichment analysis tools, do not require a list of relevant genes,
instead they work on all the genes. An example is Gene Set Enrich-
ment Analysis (GSEA) discussed in [31,32]. GSEA works on a
ranked list of genes that are correlated with a phenotype. GSEA
tries to discover functional annotations such as GO terms that
are either up-regulated or down-regulated relative to a control
group. This allows for functional annotation-level analysis.

Extensions of functional annotation-level analysis methods are
found in signatures of pathway deregulation in tumors [33], Condi-
tion-Responsive Genes (CORGs) [34] and the Functional Analysis of
Individual Microarray Expression (FAIME) profiles [35]. Two other
functional-level analysis methods aimed at the interpretation of
high-throughput biological results are [36,37]. Functional-level
analysis, similar to other enrichment analysis tools, are also used
to interpret high-throughput results, however, methods like FAIME
map gene expression values onto functional-level annotations such
as GO terms. This mapping procedure allows pattern recognition
tasks to be performed directly at the functional-level instead of
at the gene-level. Feature selection methods, as discussed in this
paper, select important genes at the gene-level.

SoFoCles [38] is a feature selection technique, which is based, in
part, on Qi and Tang’s method [39,40]. SoFoCles uses information
from GO to improve statistical feature selection. In our paper, we
refer to the enrichment of feature selection using GO as GO-based
feature selection. The authors of SoFoCles show that GO-based
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feature selection improves classification accuracy for two datasets.
While these are impressive results, one important question is:
Does this technique generalize to other datasets? If the answer
to this is yes, another question immediately follows: Should GO al-
ways be used to enhance feature selection? In particular, under
what conditions does GO-based feature selection lead to improved
classification accuracy?

In this paper, we investigate when GO-based feature selection is
effective. This differs from previous studies that investigate how to
use GO effectively. To our knowledge, no existing study performs
this analysis. Methods such as GO PaD [30] apply information the-
ory to select which GO terms to use for the functional analysis and
the interpretation of a list of genes selected from gene expression
data. We assess when GO as a whole should be used for feature
selection for gene expression profile classification. In summary,
we assess when GO should be used to select genes and GO PaD as-
sess which GO terms should be used to interpret the results of gene
expression analysis. An important question related to our goal is
whether to use real data or simulated data. If we used real data,
it would be difficult to comprehend the underlying mechanisms
that contribute to improved classification accuracy, and we would
of had small sample sizes, thus it would be difficult to draw valid
conclusions when comparing GO-based feature selection versus
statistical feature selection. Based on this, we opted for a simula-
tion-based approach. But, how does one generate synthetic data
from GO? In order to answer this question, some background
knowledge is required. For example, what exactly is GO? We an-
swer questions like this and many others in Section 2. Once this
foundation is in place, we move onto Section 3 where we unveil
our methodology for simulation. Our preliminary study, [41], and
the fact that GO and GOA define the relationships between genes,
led us to hypothesize that the amount of accuracy improvement
GO-based feature selection yields is proportional to the connected-
ness in GO of the differentially expressed genes characterizing a
particular biological phenomenon. Also in this section, we define
a measure to quantify the notion of connectedness. We present
our results of utilizing this simulation to evaluate our hypothesis
in Section 4. Finally, in Section 5, we summarize our work, and
draw conclusions.
2. Background

Before we introduce our simulation, we must acquaint the read-
er with some fundamental concepts relating to our study. In this
section, we begin by discussing GO, which is a bioinformatics re-
source containing a set of biological terms and the relationships
between those terms. From here, we introduce Gene Ontology
Annotation (GOA), which is a database that allows us to relate a
gene’s products to specific GO terms. Next, we introduce informa-
tion content (IC), which allows us quantify the specificity, or how
much information is contained within a term in GO. Semantic sim-
ilarity builds on the idea of information content, and it allows us to
compare the similarity of two terms in GO. These concepts consti-
tute the foundation of our simulation methods.
2.1. Gene ontology and gene ontology annotation

An ontology is a ‘‘specification of conceptualization’’ [42], in
practice an ontology has a set of terms and relations between these
terms. GO was created by the Gene Ontology Consortium [18] to
support the development of a controlled vocabulary which biolo-
gists could use to collaborate more precisely. In addition, GO al-
lows researchers to compare gene function profiles between
different species, which was extremely difficult prior to GO’s exis-
tence [43]. The terms in GO are organized as a directed acyclic
graph (DAG). In GO, two terms are related by either a ‘‘part_of’’
edge or an ‘‘is_a’’ edge. GO was designed to be species neutral to
collectively describe biological concepts from multiple organisms.
There are three disjoint DAGs in GO: cellular components, molecu-
lar functions and biological processes. The cellular component
ontology ‘‘refers to the location inside or outside of the cell where
a gene product is active’’ [43]. The molecular function ontology has
terms that describe specific biochemical activities in the cell. A
gene product or a set of gene products can perform a molecular
function. A term in the biological process ontology ‘‘describes the
objective which a gene or gene product contributes,’’ and these
terms usually represent a set of molecular functions with a well-
defined beginning and end [43]. The structure of the biological pro-
cess ontology suggests a possible filtering method for finding
important genes. Suppose a gene is identified to be significant, a
possible way to find other important genes would be to look for
genes involved with the same or similar biological processes. To
capitalize on an approach like this, there needs to be a way to
map from genes to GO terms.

GO terms are annotated to gene products via the GOA [19] pro-
ject. When a GO term is annotated to a gene product, the functional
properties of the GO term are inherent to the gene product. There
is a many-to-many relationship between GO terms and gene prod-
ucts. Each annotation has an evidence code associated with it.
There are two broad categories of annotations: manual annotations
and automatically assigned evidence codes. Biocurators read full
text articles on resources such as PubMed and transfer information
into GOA using GO terms [43]. The computational approach at-
tempts to mimic manual biocuration. There are some evidence
codes that are fully manual, experts verify others, and the only
fully automatic evidence code is Inferred from Electronic Annota-
tion (IEA). Since curators do not review this evidence code, it is
considered less reliable than the manual evidence codes. IEA anno-
tations are discovered by cross-referencing corresponding data
from multiple biomedical-databases, and they are usually based
off of the results from sequence alignments or scientific text min-
ing [38]. In summary, GO is a controlled vocabulary that represents
biological terms and the relationships between those terms, and
GOA is a database that labels gene products with GO terms.
2.2. Information content and semantic similarity

Since GO terms are annotated to a gene’s products, before any
similarity value between two genes can be assigned, there first
must be a way to quantify the similarity between two GO terms.
And, prior to this quantification, there needs to be a technique to
assign a numerical value to each term in GO. Within GO, there is
a tendency for GO terms closer to the root to represent more gen-
eral concepts and terms that are closer to the leaves to represent
more specific concepts. Information content is a measure of speci-
ficity of a particular concept, which captures the amount of infor-
mation intrinsic to each GO term. Terms pertaining to more
specific concepts (e.g., induction of positive chemotaxis) have more
information thus larger values, while those terms corresponding to
more general concepts (e.g., biological process) have less informa-
tion thus smaller values. The information content [38] of a GO term
t can be expressed as:

ICðtÞ ¼ � logðpðtÞÞ ¼ � log
nt

nr

� �
¼ logðnrÞ � logðntÞ ð1Þ

where p(t) is the probability of t in GO, nt is the count of the term
and its descendants in GO, and nr is the count of the root and its
descendants. In GO, nr is equal to the number of terms in the ontol-
ogy, because the root is an ancestor of all other terms. Using this
definition, a leaf in GO has maximal information content, and the
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root has information content equal to zero. The information content
is intrinsic to GO, thus there is no external corpus to compute infor-
mation content [44]. Using this intrinsic information concept, a
descendant of a term can be thought of as another occurrence of
its ancestors. We used the convention that a term is a descendant
and an ancestor of itself, because this was the default parameter
setting in MATLAB,1 the software platform used for this investiga-
tion. One can normalize the information content measure so it takes
on values between zero and one by dividing by the information con-
tent of a leaf. Since leaves have maximal information content, this
forces their normalized information content to one [38]. The mathe-
matical derivation of this notion can be seen below.

ICðleaf Þ ¼ � logðpðleaf ÞÞ ¼ � log
1
nr

� �
ð2Þ

ICnormðtÞ ¼
ICðtÞ

ICðleaf Þ ¼
log nt

nr

logð 1
nr
Þ
¼ 1� logðntÞ

logðnrÞ
ð3Þ

The concept of information content leads to numerous methods
for calculating the semantic similarity between two GO terms:
[45–47]. The idea of semantic similarity is to compute the amount
of common information between two terms. Please see [48] for an
a review of semantic similarity methods for biomedical ontologies.
One measure for semantic similarity is Resnik, and this method
works by assigning the semantic similarity between two terms to
be the information content of their lowest common ancestor [45].

The mathematical formula of the normalized Resnik semantic
similarity of two terms t1 and t2 is:

R-simnormðt1; t2Þ ¼
maxt2Sðt1 ;t2Þ½ICðtÞ�

ICðleaf Þ ð4Þ

where S(t1, t2) is the common set of ancestors for t1 and t2.
The final prerequisite for computing the semantic similarity be-

tween two genes is a way to compare multiple terms simulta-
neously. This is required because in GOA genes can be annotated
to a set of GO terms. With two genes, we can represent the similar-
ity between the two sets of GO terms corresponding to the two
genes as a matrix:

SIMða; bÞ ¼

sim1;1 sim1;2 � � � sim1;Nb

..

. ..
. . .

. ..
.

simNa ;1 simNa ;2 � � � simNa ;Nb

2
664

3
775 ð5Þ

where Na is the number of GO terms for gene a and Nb is the number
of GO terms for gene b.

The similarity between gene a and gene b can be assigned by
SimMAX(a, b), which finds the maximum value of the matrix SIM(a,
b):

SimMAXða; bÞ ¼max
i;j
ðsimi;jÞ ð6Þ

In this section, we introduced the concept of information con-
tent, which is a method to quantify the amount of information
intrinsic to a GO term. We then discussed a method to compute
the semantic similarity between two GO terms. This method as-
signs the semantic similarity between two GO terms to be the
information content of their lowest common ancestor. This notion
represents the amount of common information between these two
terms. Finally, we mentioned an approach to compare the semantic
similarity between two genes by finding the maximum similarity
between the GO terms annotated to these genes.
1 http://www.mathworks.com/products/matlab/.
3. Methods

The purpose of this section is to explain the methods used in
our simulation. We first discuss how our simulation generates gene
expression data from GO. We used version 1.1807 of GO, which we
downloaded on 03/01/2011 (mm/dd/yyyy) from http://www.gene-
ontology.org/GO.downloads.ontology.shtml. We downloaded GOA
on 03/8/2011 from ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/HU-
MAN/gene_association. goa_human.gz. For our simulation, we used
the human species of GOA, and this version of GOA has 18,141
genes. For GO, we restricted our analysis to the biological process
ontology. We also excluded IEA annotations, which are the only
automatically inferred annotations. We made these choices with
regards to GO in order to be consistent with [38]. The seed dataset
for generating gene expression data is GDS2771 from the Gene
Expression Omnibus (GEO).2 This dataset was collected by Spira
et al. and it was derived from large airway epithelial cells from
smokers with cancer and smokers without cancer using Affymetrix
HG-U133A microarrays [49]. Spira et al. used the Robust Multi-array
Average (RMA) algorithm [50] to obtain probe-level data. There are
192 samples in this dataset; there are 90 samples without cancer
and 102 with cancer. The primary reason for selecting this dataset
is its size. After we discuss our data generation process, we introduce
a slightly modified version of SoFoCles, which is a feature selection
technique that uses GO to select genes. After these important topics
are developed, we explain our overall experimental methodology.
We close this section with a measure that quantifies the notion of
connectedness for a biological situation, or biological condition, gen-
erated by our simulation.

3.1. Simulation methods

We restrict our analysis to cases where there are only two
groups, a control group and an experimental group. We are using
these terms quite loosely; because our simulation should be apply
to any two-class gene expression data problem. In this section,
there are two main points that we discuss: (1) Algorithm 1, which
is a way to define a group of differentiating genes between the con-
trol and experimental class from GO; and (2) a method for gener-
ating gene expression data using this group of genes.

Algorithm 1.

% a is the minimum number of genes to be significant
% b is the information content threshold
% Genes is a list of n gene symbols
% gi is the gene symbol at index i
% GO is the list of all GO terms
% Annotated = {(g, t) j g 2 Genes ^ t 2 GO ^ t is annotated to g in

GOA}
% D is the output list of gene that differentiate the control and

experimental classes
D ;
while jDj 6 a do

i randomInteger(0, n � 1)
D D [ gi 2 Genes

GOIDs {t j (gi, t) 2 Annotated ^ ICnorm(t) P b}
for all t 2 GOIDs do

D D [ {g j (g, t) 2 Annotated}
end for

end while
return D
2 http://www.ncbi.nlm.nih.gov/geo/.

http://www.geneontology.org/GO.downloads.ontology.shtml
http://www.geneontology.org/GO.downloads.ontology.shtml
http://www.mathworks.com/products/matlab/
http://www.ncbi.nlm.nih.gov/geo/
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The output of Algorithm 1, D, is a set of genes that are differen-
tially expressed between the control and experimental classes. This
set D is the input to the data generation step, which we discuss la-
ter. We now provide the reader with some intuition on how this
algorithm functions. Algorithm 1 starts by selecting a random gene
gi from Genes, the list of all gene symbols. This gene is then ap-
pended to D. All the GO terms that are annotated to gi with infor-
mation content at least b are inserted in the set GOIDs. Next, for
each GO term t in the set GOIDs, we find all genes annotated to t,
and append all these genes to D. This process repeats while the size
of D is less than or equal to the parameter a. Now that we have de-
fined D, we can discuss how to generate gene expression data
using this set.
3.1.1. Gene expression data generation
Our approach to gene expression data generation is based on a

real gene expression simulation created by Singhal et al. [51]. This
method takes a set of real gene expression profiles as a seed and
then adds three levels of noise to create new gene expression pro-
files. In our study, we compare a control class and an experimental
class. Our seed control data comes from non-cancer samples of the
Fig. 1. An overview of an experimental run. Given D, d and the number of training sam
sample t-test is used rank the genes, where genes with a rank greater than 2000 are remo
with the highest 2r absolute t-test values are used for the ttestPool. The enrichedPool is fo
using the enrichedPool and one using the ttestPool. These classifiers are evaluated on the
GEO dataset GDS2771. While this dataset has two classes, we only
use the non-cancer samples because we must control the experi-
mental class’s characteristics to effectively study GO-based feature
selection. Two parameters, D and d, characterize the experimental
class. The first parameter D defines the genes that are truly differ-
entially expressed between the control and experimental classes.
The second parameter d defines the mean separation in actual gene
expression between the control and experimental classes for all
genes from D. Since GDS2771 was preprocessed with RMA, d cor-
responds to units in the RMA preprocessed expression space. All
other genes have a small random increase or decrease in expres-
sion level between experimental and control class’s seed data. This
random change in expression for each gene is modeled by normal
random variable with a mean of zero and a standard deviation of
0.1. Hence for a particular D and d, we create the experimental
seed data from the control seed data.

To generate new synthetic gene expression data, we add three
sources of noise to seed data. The three sources of noise, defined
by Singhal et al., are the following: (1) systematic technical vari-
ability or inter-array variability; (2) random technical variability
or intra-array variability; and (3) biological variability [51]. The
ples per class parameters, we generate training samples and test samples. A two-
ved. Genes with the highest r absolute t-test values are used as the rankedPool, genes
rmed from the ranked pool using Algorithm 2. Two DLDA classifiers are trained one
test samples. This process is repeated 20 times for a given set of parameters.
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mathematical details of this method and further discussion of the
three types of noise are in Appendix A.

3.2. Simulation implementation

We now discuss and justify some of our parameter settings
used for our simulation and explain our experimental approach.
In our experiments, we compare the accuracy of two Diagonal Lin-
ear Discriminate Analysis (DLDA) classifiers trained on data gener-
ated from two classes. One classifier is trained using a subset of
genes that are found to be important from a statistical standpoint.
The second classifier is trained using a subset of genes that con-
tains half statistically important genes and half semantically
important genes. The first classifier we refer to as the statistical
classifier, and the second classifier we refer to as the enriched clas-
sifier. The number of genes used for training both classifiers is
identical. Taking this approach, we are testing whether or not a
pool of genes containing half statistically important genes and half
semantically important genes is more effective than using statisti-
cally important genes only.

The central question of this study is: When is it advantageous to
use GO-based feature selection? To assist in answering this ques-
tion, we defined a measure called Biological Condition Annotation
Level (BCAL(G)). We introduce BCAL(G) in depth in Section 3.3. But,
at this point it is enough to understand the basic idea of what
BCAL(G) represents. BCAL(G) is calculated from a set of genes D
and it takes on a value between zero and one. The closer BCAL(G)
is to one, the more connected the genes in D are in GO. This im-
plies, that the closer BCAL(G) is to one, the more improvement
we expect from GO-based feature selection. To see how BCAL(G) af-
fects GO-based feature selection, we created ten different biologi-
cal conditions with different BCAL(G) values. Recall that D defines
the set of genes differentially expressed between a control and
an experimental class. Every D has a corresponding BCAL(G) asso-
ciated with it. To create an initial D, we applied Algorithm 1 with
a = 30, and b = 1. These parameters resulted in a D with jDj = 36,
where jDj refers to the number of genes in D.

We created ten new biological conditions by modifying this ini-
tial D, which we refer to as D0. To modify D0, we either added or
removed genes. We added genes to D0 to reduce its corresponding
BCAL(G) value. We removed genes to increase its BCAL(G) value.
Our methodology for adding genes to D0 was as follows: (1) sort
gene symbols lexicographically; and (2) add genes with lowest
rank to D0 until we achieved our target BCAL(G). In many cases,
we had to remove some genes from D0 to obtain our target
BCAL(G). We refer to these ten biological conditions as {D1, D2,
. . ., D10}. These biological conditions have the following corre-
sponding BCAL(G) values {1.000, 0.892, 0.785, 0.696, 0.584, 0.488,
0.389, 0.291, 0.182, 0.086}. Although it is difficult to create a bio-
logical condition with an exact BCAL(G), our goal was to start with
BCAL(G) = 1.000 and reduce the BCAL(G) of each successive biolog-
ical condition by 0.10. The number of genes in each biological con-
dition is {23, 26, 31, 35, 36, 39, 36, 38, 38, 37} respectively. For each
biological condition Di for i 2 {1, 2, . . ., 10}, we varied two param-
eters d, and the number of training samples per class. The values of
d that we investigate are {0.3, 0.5, 0.7, 0.9 1.1, 1.3, 1.5, 1.7, 1.9, 2.1,
2.3, 2.5}. The number of training samples per class we explore are
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. Since there were two classes
the total number of training samples varied from 20 to 200. For
each Di, we performed 120 experiments; this values comes from
the fact that there are 12 values of d and 10 different training sam-
ple sizes. Each experiment was repeated 20 times, and we com-
puted the average of the 20 replications to get the average
difference in classification accuracy between the enriched classifier
and the statistical classifier. We refer to the classifier using GO as
enriched because the statistical genes are semantically enriched
by GO. For all experiments, we fixed the number of selected genes
to 40.

Another important issue regarding BCAL(G) is: How does the
number of genes in D affect GO-based feature selection? To answer
this question, we focused on cases where BCAL(G) = 1.000, because
we could efficiently control the number of genes. We then created
ten new biological conditions: {D11, D12, D13, D14, D15, D16, D17,
D18, D19, D20}. The number of genes in each of these biological con-
ditions is {5, 10, 50, 100, 150, 200, 250, 300, 350, 400} respectively.
The same values for d and the number of training samples per class
as above are used in the experiments.

Fig. 1 displays the steps of an experimental run. For a particular
value of d, we generate 2000 control group and 2000 experimental
group training samples. A similar procedure is also applied to gen-
erate the test set. Assuming all the other parameters are fixed, we
then generate a training sample permutation with the number of
samples specified by the training sample size per class parameter.
For example, if the training sample size per class parameter is 20,
then a sample of 40 gene expression profiles would be created with
20 profiles from the control group and 20 profiles from experimen-
tal group.

To rank the genes, we applied a two-sample t-test to each gene.
In order to reduce the search space, only 2000 genes with the
highest absolute value t-test were kept, while all the other genes
were filtered out.

After the top 2000 genes were selected, we create three pools of
genes: rankedPool; ttestPool; and enrichedPool. The rankedPool con-
tains the top r as ranked by the absolute value of the t-test. The
ttestPool contains the top 2r genes as ranked by the absolute value
of the t-test. For all our experiments r = 20. The enrichedPool is con-
structed using Algorithm 2.

Algorithm 2. Enrichment Algorithm
% rankedPool the top r t-test genes
% otherPool = top2000ttest � rankedPool
% similarity[i] = 0, "i 2 otherPool
for all g 2 rankedPool do

for all g0 2 otherPool do
simo = SimMAX(g, g0)
if similarity[g0] < simo then

similarity[g0] = simo

end if
end for

end for
% sort otherPool in descending order by similarity and then in

descending order by the absolute value of the t-test.
simPool = sort(otherPool, similarity)
enrichedPool = rankedPool [ {g j g’s index in simPool 6 r}
return enrichedPool

Algorithm 2 finds the r most semantically similar genes to the
genes in the rankedPool. Algorithm 2 is based on the enrichment
process presented in [38]. We differ from the original implementa-
tion by incorporating the absolute t-test value into the sorting
activity.

This is important when using SimMAX, because many gene pairs
are given the same semantic similarity. For example, any pair of
genes that have a common leaf term annotation will have identical
semantic similarity.

SimMAX was used because it has been shown to perform well
with gene expression data [21]. In addition, in the study by Papa-
christoudis et al. [38] it performed consistently, and its implemen-
tation is simple.
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Fig. 2. Example of BCAL(G) Calculation. (a) Graph G of differentially expressed genes represented by the set D, where jTerm 1j, jTerm 2j and jTerm 3j refer to the number of
uncovered genes for each term. The initial value of / is {jTerm 1j, jTerm 2j, jTerm 3j}. (b) Calculation of / for the term with the largest number of genes associated to it (Term 1).
All seven genes covered by Term 1 are marked at this point with the value of / = {7, jTerm 2j, jTerm 3j}. (c) Calculation of / for the term with the most remaining unmarked
genes associated with it (Term 2). Three additional genes are covered and marked with the value of / = {7, 3, jTerm 3j}. (d) Calculation of / for the only remaining term (Term

3). At this point the calculation of / is complete with its value being / = {7, 3, 1}. At this stage, BCAL(G) is calculated using D and / as BCALðGÞ ¼ k/kjDj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72þ32þ12
p

10 ¼ 0:768.
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After the creation of the enrichedPool, we train two DLDA classi-
fiers. One classifier is trained using the features in the enrichedPool
and the other classifier is trained using the features from the ttest-
Pool. Both pools contain 2r genes. The classifiers are evaluated
using 4000 test samples that we generated earlier. This process is
repeated 20 times for a given set of parameters. At the end of the
experiment, the average classification accuracies, the difference
in classification accuracy and the number of true positive differen-
tially expressed genes are calculated for each pool. Finally, after all
parameter values have been examined, we alter D to investigate
other biological conditions with different annotation levels.
3.3. Biological condition annotation level

Up to this point we have not mentioned a method in detail to
quantify the connectedness of a biological condition represented
by D. To do this we must take into account how Algorithm 2 func-
tions. Specifically, when would we expect Algorithm 2 to perform
best? Suppose a biological condition is represented by all genes
connected to the same GO term. Assuming this is a leaf term, the
semantic similarity will be one between all pairs of genes. If this
is the case, and if one of these genes is a member of the rankedPool,
then Algorithm 2 can infer all other genes from this single gene.
This base case gives us some intuition for how to define a measure
that quantifies how effective Algorithm 2 will be for a given D.

Since the connectedness of the genes in D is largely dependent
on GOA annotations, we will refer to the connectedness of D as the
biological condition annotation level (BCAL). To discover a suitable
metric that quantifies the annotation level of biological condition,
one can investigate its graphical structure.

Let G = (V, E), where V = Terms [ D and E = {(g, t) j g 2 D is
annotated by term t 2 Terms} and Terms = {t j t 2 GO ^ ICnorm(-
t) P b0 ^ t is annotated to at least two genes 2D}. Terms repre-
sents the set of all GO terms annotated to at least two genes in
D and meeting the minimum information content threshold b0.
A term must be annotated to at least two genes because if it were
only annotated to one gene it would contribute nothing toward
discovering other genes. E is the set of all edges between genes
in D and GO terms from the set Terms. The graph G is bipartite
by construction, since it can be partitioned into two sets of nodes,
Terms and D, where there are only edges between D and Terms.
An important substructure of G, that should quantify the suitabil-
ity of a biological condition for enrichment, is how well high
information content terms cover the genes of G. By cover, we
mean there is an edge between a term and a gene. A term that
covers many genes has high degree. A biological condition that
requires fewer high information content terms to cover its genes
should have a higher annotation level than a biological condition
that requires more terms to cover its genes. As mentioned earlier,
a biological condition where all genes are covered by a single leaf
term represents an ideal condition. In this case, only one signifi-
cant gene is required to infer all significant genes. We now define
the BCAL(G) measure, which describes the set covering level of
high information content terms for a particular biological condi-
tion as: BCALðGÞ ¼ k/kjDj , where G is a graph representing

D;
PjTermsj

i¼1 /i 6 jDj and /i 2 N is defined in Algorithm 3.
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Fig. 3. A subset of simulation results for D1. The results are shown for the cases where d = {0.3, 0.7} and the pool size was fixed at 40. There is one plot for each value of d.
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the ttestPool classifier for a given training sample size per class. The middle panel shows the average classification accuracy for each classifier by each training sample size per
class. The bottom panel shows the number of true positive genes for each gene pool varying by the training size per class parameter.
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Fig. 6. A Comparison of GO-based feature selection while varying BCAL(G). In the legend, the value in parentheses next to D represents its corresponding BCAL(G) value. The
top two plots shows the area under the difference in accuracy curve versus d. If the curve is above zero, then there is a net improvement in classification accuracy from GO-
based feature selection. When the curve is below zero, there is a reduction in classification accuracy. The bottom two plots shows the area between the true positive curves for
the enrichedPool and the ttestPool. If the curve is above zero, then the enrichedPool has more true positives. Otherwise, the ttestPool had more true positives.
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Fig. 7. A comparison of GO-based feature selection while keeping the BCAL(G) fixed at one and varying the number of genes in the biological condition. In the legend of each
plot, the number of genes is in parentheses next to its corresponding D. The top two plots show the area under the difference in accuracy curve versus d. If the curve is above
zero, then there is a net improvement in classification accuracy from GO-based feature selection. When the curve is below zero, there is a reduction in classification accuracy.
The bottom two plots shows the area between the true positive curves for the enrichedPool and the ttestPool. If the curve is above zero, then the enrichedPool has more true
positives. Otherwise, the ttestPool had more true positives.
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Algorithm 3. BCAL Algorithm
% geneCoveredBy(t) = {g j(g, t) 2 E}
% Isolated = {g j g 2D ^ g is not annotated to any t 2 Terms}
"i, /i = 0
covered = ;
while jcoveredj < jDj � jIsolatedj do

t argmaxt(jgenesCoveredBy(t) � coveredj)
/t = jgenesCoveredBy(t) � coveredj
covered = covered [ genesCoveredBy(t)

end while

return k/k
jDj

Algorithm 3 is a greedy algorithm which approximates the
minimum set cover of the terms of G, inspired by [52]. Its general
concept is depicted pictorially in Fig. 2. This algorithm first finds
the term t that covers the most genes and assigns /t to be the
number of genes covered by term t. On the next iteration, the
algorithm finds the term t0 that covers the most genes that are
not already covered, and it assigns the value /t0 to be the number
of genes covered by t0, which are not already covered. This process
continues until all genes are covered or only isolated genes remain.
By finding the approximate set cover, we do not double count
genes. This allows us to normalize the vector / by jDj. The optimal
value, BCAL(G) = 1, occurs when all genes are annotated by a single
term, which is the star graph. So all genes, g1 and g2, have
SimMAX(g1, g2) = 1. Thus knowing one significant gene allows
Algorithm 2 to infer all other significant genes through the
common term. BCAL(G) is normalized by dividing by jDj so
that 0 6 BCAL(G) 6 1. The reason for this is

k/k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPjTermsj

i¼1 /2
i

q
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPjTermsj
i¼1 /i

� �2
r

¼
PjTermsj

i¼1 /i 6 jDj. Dividing

both sides of the inequality by jDj implies k/kjDj 6 1. One disadvan-

tage of BCAL(G) is that it has the information content parameter
b0. In our investigation, we fixed b0 = 1. If b0 = 1, then some biolog-
ical conditions may get an artificially low BCAL(G). This could occur
when the genes that characterize a biological condition are related
mainly through a term t with ICnorm(t) < 1. However, the b0 param-
eter should be as high as possible, because the semantic similarity
between two terms is bounded by the information content of their
lowest common ancestor. So using a low b may yield an artificially
high BCAL(G).

We now expand on the biological meaning of BCAL(G). Suppose
we are comparing two groups of patients, and there are 40 true dif-
ferentially expressed genes between these groups of patients. If all
of these genes are annotated to a single GO leaf term, then this bio-
logical condition would have a BCAL(G) = 1. In this case, all the
genes have gene products involved in the same specific biological
process. There could be other biological processes that have been
altered, but there is a single common biological process that is
annotated to all 40 of the differentially expressed genes. On the
other end of the spectrum, if the 40 genes either were not anno-
tated to any leaf GO terms or each gene was only annotated to a
single leaf GO term, then this condition would have a BCAL(G) = 0.
In this case, there are biological processes that have been altered,
but there is no commonality of the genes in terms of GO leaf anno-
tations for these biological processes. That is each altered existing
biological process in GO is annotated to at most one gene. If the
biological condition had a BCAL(G) = 0.5, this could occur by having
four altered biological processes each annotated to ten of the dif-
ferentially expressed genes. In this case, there are at least four spe-
cific biological processes that have been altered, and each one of
these biological processes has 10 unique differentially expressed
genes. In essence, BCAL(G) is a measure of how closely related
the genes are in terms of specific biological processes. BCAL(G) will
be closer to one if the differentially expressed genes are involved
with fewer specific biological processes. BCAL(G) will be closer to
zero if the differentially expressed genes have little commonality
among the altered biological processes. One possible cause for
low BCAL(G) could be not enough information in GO for the biolog-
ical condition under study.
4. Results and discussion

We investigate twenty synthetic biological conditions. We split
the analysis into two groups of results. The first group of ten bio-
logical conditions (D1, D2, . . ., D10) that we analyze have BCAL(G)
values varying from 0.086 to 1.000. The seed biological condition
D0 is generated using Algorithm 1, and we modify this biological
condition to create the others. This biological condition D0 has
jD0j = 36 with BCAL(G) = 0.68.

The second group of ten biological conditions (D11, D12, . . ., D20)
all have BCAL(G) = 1.000. However, these biological conditions have
differing cardinalities from five to 400. The purpose of analyzing
this group of biological conditions is to discover how the number
of genes affects the improvement of GO-based feature selection.
In this section, we first discuss the results of one biological condi-
tion, D1, in detail. Next, we discuss the summary of the results for
D1, D2, . . ., D10. We then discuss the summary of the results for D11,
D12, . . ., D20.
4.1. Biological condition D1

We now analyze the results for D1. To recap, this condition has a
BCAL(G) = 1.00, and jD1j = 23. Fig. 3 displays the results of our
experiments when d = 0.3 and 0.7. Fig. 4 presents the results when
d = 1.1 and 1.5. Fig. 5 shows the results when d = 1.9 and 2.3. Each
figure has two subplots. Each subplot corresponds to a particular
value of d, and there are three panels within each subplot. The
top panel displays a 95% confidence interval for the difference in
classification accuracy between the classifier trained using the
enrichedPool of genes and the classifier trained using the ttestPool
of genes. The middle panel shows the average classification accu-
racy for each classifier over 20 experimental repetitions. Finally,
the bottom panel shows the number of true positive genes for each
gene pool.

When d = 0.3, there is no improvement in classification accuracy
when using the enrichedPool. There is an improvement in the
detection of true positive genes for the GO-based feature selection.
For example, when the number of training samples per class is
around 100, the enrichedPool has an average of about five true pos-
itives where as the ttestPool has an average of two. There was no
improvement in classification accuracy because a d = 0.3 is insuffi-
cient in differentiating between the classes with so few genes.

In the case where d = 0.7, there is an improvement in classifica-
tion accuracy when the number of training samples is greater than
10 per class. However, this improvement is quite small, averaging
around 2% for most sample sizes. The overall classification accu-
racy is between 50–60%, which is quite low. The enrichedPool con-
tained more true positives than the ttestPool for all training sample
sizes.

As d increases to 1.1, the amount of improvement is larger. The
average improvement approaches 4% when the number of training
samples is 40 per class, 80 per class and 100 per class. A similar
pattern occurs when d = 1.5. When d is increased to 1.9 the
improvement is close to 5% at small sample sizes and approaches
zero as the training sample size increases. The situation is similar
for the case where d = 2.3. The improvement decreases toward zero
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because both the enrichedPool and the ttestPool on average contain
nearly all 23 of the genes from D1.

Inspecting the full range of results reveals a pattern. Essentially,
the results follow a roughly concave down curve, which shifts from
large training sample sizes to smaller sample sizes as d increases.
These results indicate that there is an increase in classification
accuracy in almost all cases when BCAL(G) = 1.000. But, this is the
ideal case, what happens when we decrease BCAL(G)?

4.2. Results for different BCAL(G) values

It is clear, when BCAL(G) = 1.000 that it is almost always benefi-
cial to use GO-based feature selection. However, this represents
the ideal case. It is quite unlikely that real gene expression data
will have BCAL(G) = 1.000. In this section, we compare D1, D2, . . .,
D10. We cannot display all the results for each biological condition
like we did for D1 in the previous section, because this would re-
quire many pages. So we opted for a summarization approach,
which calculates a single value for each plot. To understand this va-
lue, recall in Figs. 3–5 we are comparing three variables: d, the
training sample size, and the difference in classification accuracy.
So to condense this into a two variable comparison, we calculate
the area under the difference in accuracy curve over the number
of training samples. In the case of D1 when d = 0.3, we calculate
the area under the curve in the top panel of Fig. 3. Doing this gives
a single value at each value of d for each biological condition. If the
area under the curve is positive, then there is a net improvement in
using GO-based feature selection. If the area under the curve is
negative then GO-based feature selection does not provide a net
improvement. In fact, if the area under the curve is negative, then
the GO-based feature selection provides a net decrease in classifi-
cation accuracy over the range of training sample sizes. The advan-
tage of doing this summarization approach is that it allows us to
see the overall trend on how BCAL(G) affects the classification accu-
racy. This in turn provides us with a concise visualization of all the
results. The downside is that we lose details on when GO-based
feature selection leads to an increase in classification accuracy.
For example, GO-based feature selection could increase classifica-
tion accuracy at small sample sizes then decrease classification
accuracy at large sample sizes. This information is lost when we
calculate the area under the curve. In addition to the area under
the difference in accuracy curve, we also calculate the area be-
tween the enrichedPool and ttestPool true positive curves.

Fig. 6 displays the summary of the area under the difference in
accuracy curve and the area between the enrichedPool true positive
curve and the ttestPool true positive curve. When BCAL(G) P 0.696,
there is a net improvement in classification accuracy for the classi-
fier that uses the enrichedPool. When d = 0.3 there is no improve-
ment in accuracy. The GO-based feature selection provides a net
improvement until 0.9 6 d 6 1.1 where the improvement peaks.
After the peak, the improvement levels off when BCAL(G) P 0.696.
In the cases where BCAL(G) < 0.696, the GO-based feature selection
begins to result in a reduction in classification accuracy, when
d P 1.5. It is interesting to note, that both biological conditions
D2 and D3 outperform D1 even though both these biological condi-
tions have lower BCAL(G) values. We believe this is due to the fact
that the pool size is 40 and the jD1j = 23. The jD2j = 26 and
jD3j = 31, so they are closer in size to the number of selected genes.
So with D1, Algorithm 2 runs out of true positive genes to add to
the enrichedPool. Another interesting observation is when d > 1,
the biological condition with BCAL(G) = 0.696 (D4) yielded more
true positives than D1 and D2. We believe this is also caused by
the cardinality of D4, which is 35.

The true positive plot of Fig. 6 shows some important ideas. In
the cases where BCAL(G) P 0.584, the overall trend for area be-
tween the true positive curves is that they start out small when
d = 0.3, and they reach their peak when d = 0.7. The curves then
start to approach zero as d increases. However, for both cases
where BCAL(G) = 0.696 and BCAL(G) = 0.584, the enrichedPool be-
gins to contain fewer true positives than the ttestPool. D4 falls be-
low zero at d = 1.7, and D5 falls below zero at d = 1.3. When
BCAL(G) 6 0.488 the curves reach their peaks even earlier. In the
case of BCAL(G) = 0.086, the peak occurs at d = 0.3. In all cases
where BCAL(G) 6 0.488 the curves fall below zero before d = 1. In
the worst cases, the area between the enrichedPool and the ttestPool
curves is near �1000. The magnitude of this is more than twice as
large as the best cases, which are near 400. This suggests GO-based
feature selection can be significantly worst than its potential ben-
efits when BCAL(G) 6 0.291 and d P 2.3.
4.3. Results for same BCAL(G) values

One important question we have not investigated is: Given a
fixed BCAL(G), how does the number of genes affect the difference
in classification accuracy? To answer this question, we fix
BCAL(G) = 1.000 and vary the number of genes. We created ten bio-
logical conditions D11, D12, . . ., D20 with the number of genes
increasing from 5 to 10, then increasing from 50 to 400 by 50 genes
at a time. This allows us to assess the efficacy of GO-based feature
selection when the number of genes in a biological condition be-
comes inconvenient, that is either very large or very small. We
fixed BCAL(G) = 1 because we can control the number genes in this
case much more than we can in other cases. We also fixed the
number of genes selected for classification at 40, the same as be-
fore. Fig. 7 displays the results of these simulation experiments.

There are some trends in Fig. 7 worth discussing. In the top two
plots, we see the area under the difference in accuracy curves. Sim-
ilar to the Fig. 6, a positive value indicates a net improvement in
using the enrichedPool for classification as opposed to the ttestPool.
The enrichedPool provides essentially no improvement for D11. For
the case of D12 the enrichedPool provides improvement when d > 1
and there is little to no improvement when d 6 1. The biological
condition D13 has a similar shape as D1 from Fig. 6. When the num-
ber of genes is increased to 100 for D14 the amount of improve-
ment significantly declines. This implies the t-test was able to
identify many more true positives with D14 as compared to D13.
However, when d < 0.7, the enrichedPool yielded better perfor-
mance as compared to ttestPool when the number of genes in the
biological conditions was at least 150. If we inspect the bottom
two plots of Fig. 7, we can understand this situation more clearly.
When d = 0.3, as the number of genes in a biological condition in-
creases, the enrichedPool contains more true positive genes. This
occurs because there is a greater chance for true positive genes
to be found in the initial rankedPool of genes. This allows Algorithm
2 to add many semantically similar genes to the enrichedPool. This
improvement converges as the number of genes in the biological
conditions approach 250. When d > 1 and the number of genes in
a biological condition is greater than 150, there is little to no ben-
efit of using GO-based feature selection. Therefore, we recommend
against using GO-based feature selection for biological conditions
with larger than 150 genes and d > 1. If BCAL(G) < 1, then we expect
similar reductions in improvement.
5. Summary and conclusion

This study addresses the question of when to use GO-based fea-
ture selection effectively, whereas previous studies have developed
methods on how to use GO effectively for feature selection. To
investigate this question, we created a simulation. The first step
of the simulation process is Algorithm 1, which outputs a set of
genes. These genes are differentially expressed between a control
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class and an experimental class. This set of genes represents a bio-
logical condition, and is denoted by D. We generate synthetic gene
expression data using real data collected from large airway epithe-
lial cells. The data from the experimental class (representing an al-
tered biological condition) is based on the control class, except the
genes that are in the set D have their expression either increased or
decreased. The magnitude of increase or decrease for each gene in
D is governed by the parameter d. These two datasets constitute
the seed of our data generation process, which generates new sam-
ples with additional noise. We train two DLDA classifiers on data
generated from these seed datasets. One classifier uses only statis-
tical properties to select genes, and the other classifier uses statis-
tical properties in conjunction with semantic similarity in GO to
select genes. We define a measure called BCAL(G), which quantifies
the annotation level, or connectedness of the genes and terms, in a
biological condition.

We have five main conclusions from our simulations. First, it is
beneficial to use GO-based feature selection when
BCAL(G) P 0.696. BCAL(G) could be calculated from a list of poten-
tial genes. This potential list may be found via a literature search.
In practice, if a biologist expects that the differentially expressed
genes are likely to be related by a small number of specific GO
terms (BCAL(G) closer to 1), then it is likely that using GO-based
feature selection will improve classification. Second, when
BCAL(G) 6 0.389 (D7–D10), statistical feature selection outperforms
GO-based feature selection except for uncommon cases presented
in Fig. 6 in the second plot from the top where 0.5 6 d 6 1.2. Prac-
tically, if a biologist expects the differentially expressed genes not
to have a close relationship in GO (BCAL(G) closer to 0), then it is
not recommended to use GO-based feature selection. Third, when
0.389 < BCAL(G) < 0.696, GO-based feature selection provides
improvement between 0% and 9% when d < 1. However, the aver-
age improvement across all training sample sizes varies from 0%
to 2%. In practice, if the potential list of genes does not fall into
the two previous cases, then it may fall into this category. How-
ever, GO-based feature selection is only effective in this case if
the average change in expression (d) is less than one unit in the
RMA-normalized space. Fourth, If BCAL(G) = 1 is fixed and we in-
crease the number of genes in D beyond 50 with d P 0.7, then
the improvement from GO-based feature selection decreases. Here
we mean the average improvement starts off larger and gets smal-
ler as the number of important genes increases. This is assuming
the feature selection pool size is fixed. In particular, when the
number of genes in a biological condition is greater than 150,
and d > 1, we do not recommend using GO-based feature selection.
Practically, a biologist should not use GO to improve feature selec-
tion if the number of potential genes is more than 150. Fifth, we do
not recommend using GO-based feature selection if the number of
genes in a biological condition is less than 10.

While our simulation provides an understanding of GO-based
feature selection, it has a few limitations. Our synthetic data was
generated from real data that was preprocessed using RMA. Hence
we believe our conclusions are valid for datasets preprocessed
using RMA. Other than RMA, the values of d may vary for different
preprocessing methods. Other limitations of our study stem from
the fact that we restrict our analysis to a single semantic similarity
measure, feature selection method, and classification method.
However, it is possible that GO-based feature selection would yield
improvement on similar BCAL(G) ranges for different semantic sim-
ilarity measures, feature selection, and classification methods. Our
future research will address these limitations.

Overall our simulation provides insight into GO-based feature
selection. Specifically, our simulation shows when it is beneficial
to use SoFoCles-like feature selection. We believe our simulation
can help researchers develop classifiers that utilize GO-based fea-
ture selection more effectively. In addition, our simulation may
positively impact enrichment analysis tools and functional annota-
tion-based analysis, because it could allow researchers to specify
biological conditions from GO and compare the effectiveness of
these algorithms in detecting the specified biological condition.
This comparison may have a positive impact on projects like the
Connectivity Map [53] because it could lead to improved annota-
tion-level representations of biological conditions. Furthermore,
BCAL(G) may improve single-gene enrichment analysis tools be-
cause it could be used to find groups of terms that best cover a rel-
evant gene list at differing information content thresholds.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jbi.2013.07.008.
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