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This paper analyzes semifinite time stability for a general chaotic system. By cooperating methods terminal sliding mode (TSM)
with adaptive feedback control (AFC), a controller based on the two methods is derived to achieve semifinite time stability.
The theoretical analysis employs the theories of linear matrix inequalities and Lyapunov functional method. Finally, numerical
simulation is given to illustrate the derived theoretical results.

1. Introduction

Chaos phenomenon can be found in many physics and engi-
neering systems in practice. However, to improve the system’s
performance, it is often desirable to avoid chaos, and various
methods are proposed.Due to different emphases, controllers
have different merits and drawbacks. For example, TSM
establishes terminal sliding mode surface to couple system
variables and control them to reach equilibrium points. Its
control is effective, but it can only control system states
coupled in the sliding mode surface; readers are referred to
[1–7] for more detailed information. As for impulse control
[8–16], they add impulse effects to continuous differential
equation and, by constructing comparison system, establish
relationships between parameters of system and impulse.
Their controllers are effective, but design processes of their
controllers are too much complex. For adaptive feedback
control as in [17–21], similar to TSM, they have unified the
format with different parameters. AFC has a wide range of
applications in various fields, but its dynamic is not as good
as the first two.

For the system’s structure constructed in this paper,
we design controllers from methods TSM and AFC, both
of which have unified formats. If TSM is used only, we
should design several TSM surfaces. If AFC is used only,

its controller is very simple and flexible, but it can only
achieve asymptotical stability. Combining their merits and
drawbacks, a cooperative controller is proposed in the paper.
TSM method finite-timely controls system states, which
are coupled in TSM surface, as in [4–7]. Simple AFC is
introduced as a supplementary control into the remaining
states of the system, controlling system states which are
outside TSM surface and making them asymptotically stable
[18, 20], and, finally, the overall system tends to be semifinite-
time stable [5].

This design scheme can control main elements of system
finite-time stability, firstly, then use AFC method to ensure
that other dimensions are asymptotically stable, and finally
realize the overall system’s semifinite time stability. Compared
with TSM only, this design can greatly reduce the control
input and simplify the design process of controller; compared
with AFC only, it has obvious advantages in time sequence.

The rest of the paper is organized as follows. In Section 2,
a general chaotic system model and some preliminaries are
presented. In Section 3, we will show theoretical analysis,
establish several sufficient conditions for SFTS, and formulate
controller. In Section 4, numerical simulation is presented to
verify the validity of theoretical results. Finally, the conclu-
sions are drawn in Section 5.
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2. Problem Statement and Preliminaries

We use the following differential equation to describe general
dynamic chaos system:

̇𝑦 = 𝑓 (𝑦) . (1)

In this paper, we are committed to solve the stability
analysis of chaotic systems which can be organized into the
following form:
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Definition 1 (finite-time stability [22, 23]). Consider that
𝑥(𝑡) ∈ 𝑅

𝑛 are system states. If there exists constant 𝑇 > 0,
such that lim

𝑡→𝑇
‖𝑥‖ = 0 and if 𝑡 ≥ 𝑇, ‖𝑥(𝑡)‖ = 0, then the

system realizes finite-time stability.

Definition 2 (semifinite-time stability [5]). Take dynamic
system (2), for example; after adding controllers, if the states
𝑥
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and 𝑥

2
are finite-time stable and the states 𝑥

3
are asymp-

totically stable, then we call the system semifinite-time stable.

Lemma 3 (see [23]). Assume that a continuous, positive-defi-
nite function 𝑉(𝑡) satisfies the following differential inequality:
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3. Main Results

In this section, controller is designed from TSM and AFC
separately with detailed theoretical analysis. TSM portion
is used to derive 𝑥

1
𝑥

2
finite-time stability, and AFC is for

asymptotical stability of 𝑥
3
. Finally, system (2) tends to

semifinite time stability.

3.1. Terminal Sliding Mode Portion Design. Take the system’s
first two parts of the states and add controlling part:
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Generally speaking, the process of terminal sliding mode
control can be divided into two stages: the first stage is to
establish the nonsingular terminal sliding model surface; the
second is to design TSM controller, which can make the
system variables reach and maintain the TSM surface within
finite time.

So in this paper, a nonsingular TSM surface is introduced
as follows:
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where parameters 𝐶
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3
, 0 < 𝑞 < 𝑝 are odd matrices

determined by the designer.

Theorem 5. In the system (6), we add the following controller:
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where 𝜇 > 0, 𝜂 > 0, and 0 < 𝜉 < 1.Then the system states slide
on the switch surface 𝑠 = 0.

Proof. Introduce the following Lyapunov function:
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From Lemma 3 and Definition 1, TSM surface could
reach the equilibrium point within finite time.

When the system states slide on the switch surface 𝑠 = 0,
they satisfy the following equations:
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Thus, we can get the following sliding mode dynamics:
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then the system (6) is finite-time stable.

Proof. Introduce the following Lyapunov function:
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where 𝜆max(𝑃) is the maximum eigenvalue of 𝑃.
Calculate its derivative along the solution of system (13)
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Thendifferential equation (13) is exponentially finite-time
stable; state 𝑥

1
tends to zero within finite time. By (12), 𝑥

2
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tends to zero; then, the desired objective, finite-time stability
of system (6), is achieved.

3.2. Adaptive Feedback Control Portion Design. After the
finite-time convergence of system (6), system (4) transforms
into
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by the same method and almost the same process; we can
prove the globally asymptotical stability of system state (18)
with AFC controller. So AFC acts as a single-state control and
also can be designed globally.

4. Simulation Results

After the theoretical analyses are investigated, we discuss
the following numerical example to illustrate the derived
theoretical results. From [13], we can obtain the systemmodel
of Chua’s Oscillator:
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The Chua oscillator is illustrated in Figures 1 and 2. For
simulation, the system parameters are used as 𝛼 = 8.72, 𝛽 =
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Figure 1: The time series of uncontrolled Chua oscillator.
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Figure 2: Chaotic attractor of uncontrolled Chua oscillator.

According to simulation results, it is easy to find that,
the TSM method can effectively control the first two of
system states and realize their finite-time stability. Com-
paring Figures 3 and 4, we can find that AFC controller
effectively controls the remaining one of system state and
makes it asymptotically stable. Finally, system states globally
tend to semifinite time stable and we complete the expected
objectives.

5. Conclusions

A controller, cooperating TSM with AFC, is proposed to
control a class of chaotic system as described above in this
paper. Two methods are complementary in the procedure
and finally achieve good effectiveness. Complex TSMmethod
controlsmain elements of chaotic system to finite-time stabil-
ity; then, simpleAFCmethod controls dimension elements of
chaotic system to asymptotic stability and finally the overall
system goes to semifinite time stability. This design scheme
can not only guarantee the system’s convergence but also
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Figure 3: Time series of Chua oscillator with TSM only.
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Figure 4: Time series of Chua oscillator with both TSM and AFC.

reduce the system’s control-input spending and also further
improve their applications in chaos control.

In this paper, effective performance of the simulation
results proves the feasibility of this design scheme. The pro-
posedmethod can be applied inmany famous chaotic systems
such as Lorenz, liu chaotic system, and Chua’s circuit.
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