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Abstract

This paper proposes an observer-based indirect adaptive fuzzy sliding mode controller with state variable filters
for a certain class of unknown nonlinear dynamic systems in which not all the states are available for measurement.
To design the proposed controller, we first construct the fuzzy models to describe the input/output behavior of the
nonlinear dynamic system.Then, an observer is employed to estimate the tracking error vector. Based on the observer,
a fuzzy sliding model controller is developed to achieve the tracking performance. Then, a filtered observation error
vector is obtained by passing the observation error vector to a set of state variable filters. Finally, on the basis of the
filtered observation error vector, the adaptive laws are proposed to adjust the free parameters of the fuzzy models.
The stability of the overall control system is analyzed based on the Lyapunov method. Simulation results illustrate
the design procedures and demonstrate the tracking performance of the proposed controller.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, adaptive fuzzy control system designs have been extensively discussed in the literature
[1,3,6,17]. The fundamental idea of adaptive fuzzy control is as follows: based on the universal approx-
imation theorem [17], one first constructs a fuzzy model to describe the input/output behavior of the
controlled system. After that a controller is designed based on the fuzzy model, the adaptive laws are
derived to adjust the parameters of the fuzzy models.
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In an effort to improve the robustness of the adaptive fuzzy control system, many works have been
published on the design of adaptive fuzzy sliding mode controller (AFSMC) [7,8,21,18,23,24], which
integrates the sliding mode controller (SMC) [2,14–16,19] design technique into the adaptive fuzzy
control to improve the stability and the robustness of the control system. Conventionally, AFSMC design
is based on the assumption that the system states are available for measurement, so the adaptive laws of
AFSMC are formulated as functions of the tracking error vector of the system [7,8,21,18,23,24]. However,
in practice, not all the states of the controlled system are available for measurement. It implies that as
one could not obtain all elements of the tracking error vector, the conventional adaptive laws would be
difficult to realize. In order to treat this problem, several studies apply an observer to estimate the tracking
error vector [9,10,12,13,20,22] and use the SPR-Lyapunov design approach [15] to design an adaptive
scheme [9,10,13,20,22].

Unlike these works, this paper proposes an indirect AFSMC with state variable filters to tackle the
above-mentioned problem. For a given unknown nonlinear dynamic system in which not all the states are
available for measurement, we first construct the fuzzy models to describe the input/output behavior of
the nonlinear dynamic system. Then, an observer is employed to estimate the tracking error vector. Based
on the observer, a fuzzy sliding model controller is developed for guaranteeing the tracking performance.
Subsequently, by passing the observation error vector to a set of state variable filters [4,5], we obtain
a filtered observation error vector. Finally, based on the filtered observation error vector, we propose
the adaptive laws to adjust the free parameters of the fuzzy models. The stability of the overall control
system is analyzed based on the Lyapunov method. Simulation results illustrate the design procedures
and demonstrate the tracking performance of the proposed controller.

This paper is organized as follows: Section 2 presents the fuzzy sliding mode controller (FSMC) design
based on the observer. With the aid of the state variable filters, the adaptive laws for adjusting the free
parameters of the proposed control strategy are presented in Section 3. In Section 4, simulations of an
inverted pendulum system are given to confirm the validity of the proposed control scheme. Section 5
gives the conclusions.

2. Design of observer-based FSMC

Consider annth-order unknown nonlinear dynamical system of the form

x(n) = f (x)+ b(x)u+ d(t),

y = x, (1)

wherex = [x, ẋ, . . . , x(n−1)]T = [x1, x2, . . . , xn]T is the state vector of the system,y is the system output,
u is the control signal,f (x) andb(x) are unknown but continuous functions, andd(t) is the external
bounded disturbance. Assume that not all statesxi (i = 1,2, . . . , n) are available for measurement, but
y is measurable. Eq. (1) can be rewritten in the following form:

ẋ = Ax + B[f (x)+ b(x)u+ d(t)],
y = Cx, (2)
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where

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


 , B =




0
0
...

0
1


 , and CT =




1
0
...

0
0


 .

Without loss of generality, we make the following assumption.

Assumption 1(Slotine and Li [15], Wang et al. [20], Wang [17]). Assume thatf (x), b(x) andd(t) sat-
isfy |f (x)|�F < ∞, 0 < bmin�b(x)�bmax < ∞, and|d(t)|�D, respectively, for allx ∈ Ux ⊂ n,
whereF , bmin, bmax andD are known constants.

Control objective: Determine a control lawu to force the system outputy to asymptotically track a
given desired outputyd.

Define the tracking error ase = y − yd, and let

e= [e, ė, . . . , e(n−1)]T
= [y − yd, ẏ − ẏd, . . . , y

(n−1) − y
(n−1)
d ]T

= [x1 − yd, x2 − ẏd, . . . , xn − y
(n−1)
d ]T (3)

be the tracking error vector. Set the sliding surfaceH as

H : {e|S(e) = 0}, (4)

S(e) = �Te, (5)

where� = [�0, �1, . . . , �n−1]T is chosen such that�n−1 = 1 and the polynomial�n−1p
n−1+�n−2p

n−2+
· · · + �0 is strictly Hurwitz [19] (herep denotes the complexLaplace transformvariable).

To meet the control objective, it is sufficient to find a control lawu so that all initial states lying off
H will hit H and then remain on it. Iff (x) andb(x) are exactly known, the control objective can be
achieved by the control law designed as [15]:

u = ueq + ud, (6)

whereueq is the equivalent control law and is defined as

ueq = b(x)−1

[
−

n−1∑
i=1

�i−1e
(i) − f (x)+ y

(n)
d

]
(7)

and

ud = −� sgn(S) (8)
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is called the switching control law, in which� is a positive constant satisfying� > D/b(x), with D

denoting the bound ofd(t); i.e., |d(t)|�D, and

sgn(S) =



1 if S > 0,
0 if S = 0,
−1 if S < 0.

However, if the functionsf (x) andb(x) are unknown, the control law (6) is generally inapplicable.
Thus, we will employ the fuzzy systemŝf (x|�f ) andb̂(x|�b) to approximatef (x) andb(x), respectively.
Specifically, the fuzzy rule bases of̂f (x|�f ) andb̂(x|�b), respectively, consists of rules

R
(m)

f̂
: IF x1 is Fm

x1 and. . .andxn is Fm
xn, THEN f̂ (x|�f ) is Fm

f̂
, (9)

R
(m)

b̂
: IF x1 is Fm

x1 and. . .andxn is Fm
xn, THEN b̂(x|�b) is Fm

b̂
, (10)

wherem = 1,2, . . . ,Q, Q is the total number of the fuzzy rules for each fuzzy model, andFm
xi (i =

1, . . . , n) are the fuzzy sets associated withxi (i = 1, . . . , n), andFm

f̂
andFm

b̂
are fuzzy singletons for

f̂ (x|�f ) andb̂(x|�b), respectively. By using the singleton fuzzifier, product inference, and center average
defuzzifier [17], the outputs of the fuzzy models off̂ (x|�f ) andb̂(x|�b) can be, respectively, expressed
as

f̂ (x|�f ) = �T
f �(x), (11)

b̂(x|�b) = �T
f �(x), (12)

where�f = [F 1
f̂
, F 2

f̂
, . . . , F

Q

f̂
]T and�b = [F 1

b̂
, F 2

b̂
, . . . , F

Q

b̂
]T are the adjustable parameter vectors,

�(x) = [�1(x), �2(x), . . . , �Q(x)]T is the vector of fuzzy basis functions [17] defined as

�j (x) =
∏n

i=1 F
j
xi(xi)∑Q

j=1 [∏n
i=1 F

j
xi(xi)]

, j = 1,2, . . . ,Q, (13)

andFj
xi(xi) represents the membership function value ofxi in Fj

xi . We make the following assumptions.

Assumption 2(Leu et al. [9], Li and Tong [10], Wang et al. [20]). �f and�b belong to compact sets�f

and�b, respectively, which are defined as�f = {�f ∈ Q| ‖�f ‖�mf } and�b = {�b ∈ Q|0 <

‖�b‖�mb}, wheremf andmb are designed finite positive constants.

From (11), (12), and by Assumption 2, we can also assume that|f̂ (x|�f )|�F and 0< bmin� b̂(x|�b)
�bmax< ∞. Thus, we can replace (6) by the following control law [17,21]:

u = ûeq + ûd, (14)

where

ûeq = b̂(x|�b)−1

[
−

n−1∑
i=1

�i−1e
(i) − f̂ (x|�f )+ y

(n)
d

]
(15)
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and

ûd = �̂ sgn(S), (16)

in which �̂ > b−1
min(2F +D)+ [b−1

min − (bminbmax)
−1/2]|ûeq|, and

sgn(S) =



1 if S > 0,
0 if S = 0,
−1 if S < 0.

However, this control law of (14) is still nonrealistic because not all statesxi (i = 1,2, . . . , n) of
(1) are available for measurement, and hence not all the derivative signalse(i) (i = 1,2, . . . , n − 1)
are available for measurement. Although ideallyxi (i = 2,3, . . . , n) and e(i) (i = 1,2, . . . , n − 1)
can be obtained by successive differentiation of the signalx1 ande, respectively, ideal differentiators
are physically unrealizable. Thus, we have to estimate the signalsxi (i = 2,3, . . . , n) ande(i) (i =
1,2, . . . , n−1)with realizable filters. Let̂xi (i = 2,3, . . . , n) denote the estimate ofxi (i = 2,3, . . . , n),
let x̂ = [x̂1, x̂2, . . . , x̂n]T ∈ Ux̂ ⊂ n denote the estimate of the state vectorx = [x1, x2, . . . , xn]T, let
ê = ŷ − yd denote the estimate ofe = y − yd, let ê(i) (i = 1,2, . . . , n − 1) denote the estimate of
e(i) (i = 1,2, . . . , n− 1), and letê= [ê, ˙̂e, . . . , ê(n−1)]T denote the estimate of the tracking error vector
e= [e, ė, . . . , e(n−1)]T. Then, by replacingx of (11) and (12) bŷx, we have

f̂ (x̂|�f ) = �T
f �(x̂), (17)

b̂(x̂|�b) = �T
f �(x̂). (18)

By replacingf̂ (x|�f ), b̂(x|�b) ande(i) by f̂ (x̂|�f ), b̂(x̂|�b) andê(i), respectively, the control law of (14)
can be rewritten as

u = b̂(x̂|�b)−1

[
−

n−1∑
i=1

�i−1ê
(i) − f̂ (x̂|�f )+ y

(n)
d

]
− �̂ sgn(Ŝ), (19)

whereŜ = �Tê. Applying (19) to the system (1), we have

ė= Ae+ B{[−�T
mê+ f (x)− f̂ (x̂|�f )+ [b(x)− b̂(x̂|�b)]u− �̂b̂(x̂|�b)sgn(Ŝ)+ d(t)},

e = Ce, (20)

where�m = [0, �0, �1, . . . , �n−2]T. For (20), we design the following observer to estimate the tracking
error vector:

˙̂e= Aê+ B[−�T
mê− �̂b̂(x̂|�b)sgn(Ŝ)] + L(ê − e),

ê = Cê, (21)

whereL = [ln−1, ln−2, . . . , l0]T is the observer gain vector. Define the observation error asẽ = ê − e,
and the observation error vector by

ẽ= ê− e. (22)

Subtracting (20) from (21), we obtain the observation error dynamic equation as

˙̃e= �oẽ+ B{f̂ (x̂|�f )− f (x)+ [b̂(x̂|�b)− b(x)]u− d(t)},
ẽ = Cẽ, (23)
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where

�o = A + LC =




ln−1 1 0 · · · 0
ln−2 0 1 · · · 0
...

...
...

. . . 0
l1 0 0 · · · 1
l0 0 0 · · · 0


 .

Because(C,�o) pair is observable,L can be selected such that the characteristic polynomial of�o is
strictly Hurwitz and there exists a positive-definite matrixP satisfying

�T
oP+ P�o = −Q, (24)

whereQ is an arbitrary symmetric positive-definite matrix [20]. Here we let�min(Q) > 1, where�min(Q)
denotes the minimum eigenvalue ofQ.

To complete the controller design, we need to find�f and�b in (17) and (18). In the following section,
we will present the adaptive laws to adjust the parameter vectors�f and�b.

3. Observer-based indirect adaptive FSMC with state variable filters

To derive the adaptive laws for adjusting�f and�b, we first define the optimal parameter vectors�∗
f

and�∗
b as

�∗
f = arg min

�f ∈�f

[
sup

x∈Ux, x̂∈Ux̂
|f̂ (x̂|�f )− f (x)|

]
(25)

and

�∗
b = arg min

�b∈�b

[
sup

x∈Ux, x̂∈Ux̂
|b̂(x̂|�b)− b(x)|

]
. (26)

Define the minimum approximation error

w = [f̂ (x̂|�∗
f )− f (x)] + [b̂(x̂|�∗

f )− b(x)]u. (27)

Then inserting (17), (18) and (27) into (23) yields

˙̃e= �oẽ+ B{f̂ (x̂|�f )− f̂ (x̂|�∗
f )+ f̂ (x̂|�∗

f )− f̂ (x|�∗
f )+ f̂ (x|�∗

f )− f (x)

+[b̂(x̂|�b)− b̂(x̂|�∗
b)+ b̂(x̂|�∗

b)− b̂(x|�∗
b)+ b̂(x|�∗

b)− b(x)]u− d(t)},
= �oẽ+ B{�T

f �(x̂)− �∗T
f �(x̂)+ �∗T

f �(x̂)− �∗T
f �(x)+ �∗T

f �(x)− f (x)

+[�T
b�(x̂)− �∗T

b �(x̂)+ �∗T
b �(x̂)− �∗T

b �(x)+ �∗T
b �(x)− b(x)]u− d(t)},

= �oẽ+ B[w + �T
f �(x̂)+ �T

b�(x̂)u+ �∗T
f �̃ + �∗T

b �̃ u− d(t)],
= �oẽ+ B[w + �T

f �(x̂)+ �T
b�(x̂)u+ �], (28)

where�̃ = �(x̂)− �(x), � = �∗T
f �̃ + �∗T

b �̃ u− d(t), �f = �f − �∗
f and�b = �b − �∗

b.
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The following lemma is required in the stability analysis.

Lemma. If Assumptions1 and2 are satisfied, thenw ∈ L∞ and� ∈ L∞.

Proof. We first provew ∈ L∞. From Assumptions 1 and 2, we have

|w| � |f̂ (x̂|�∗
f )− f (x)| + |b̂(x̂|�∗

b)− b(x)| |u(t)|
� |f̂ (x̂|�∗

f )| + |f (x)| + [|b̂(x̂|�∗
b)| + |b(x)|]|u(t)|

� ‖�∗T
f ‖ ‖�(x̂)‖ + |f (x)| + [‖�∗T

b ‖ ‖�(x̂)‖ + |b(x)|]|u(t)|
� mf + F + [mb + bmax]

(
max
t

|u(t)|
)
. (29)

Since the control signalu is designed as a bounded signal, we obtained thatw is bounded; i.e.,w ∈ L∞.
Next, we prove thatw ∈ L∞. Based on Assumptions 1 and 2, we have

|�| � |�∗T
f �̃ | + |�∗T

b �̃ u| + |d(t)|
� ‖�∗T

f ‖ ‖�̃ ‖ + ‖�∗T
b ‖ ‖�̃ ‖

(
max
t

|u(t)|
)

+D

� mf +mb

(
max
t

|u(t)|
)

+D.

Since the control signalu is designed as a bounded signal, we obtained that� is bounded; i.e.,� ∈ L∞.
This completes the proof.�

Regarding[w + �T
f �(x̂)+ �T

b�(x̂)u+ �] as the input for (28), we can obtain

ẽ = �(p){w + �T
f �(x̂)+ �T

b�(x̂)u+ �}, (30)

where

�(p) = 1

pn − ln−1pn−1 − ln−2pn−2 − · · · − l0
(31)

andp denotes the complexLaplace transformvariable. As has been discussed, because not all the states
are available for measurement, we could not obtain all the elements ofe; as a result, we could not obtain
all the elements of̃e. To deal with this problem, the state variable filters [4,5] will be employed. First, we
introduce a stable filter�(p) to (30), and obtain the steady-state equation

[(pn − ln−1p
n−1 − ln−2p

n−2 − · · · − l0)�(p)]{ẽ} = �(p){w + �T
f �(x̂)+ �T

b�(x̂)u+ �}, (32)

where

�(p) = 1

pn + �n−1pn−1 + · · · + �0
. (33)

Define a set of state variable filtersTi(p) by

Ti(p) = �(p)pi, i = 0,1,2, . . . , n− 1, (34)

and the corresponding filtered signalseFi , 	F, �F and�F by

eFi = Ti(p){ẽ}, i = 0,1,2, . . . , n− 1, (35a)



C.-C. Kung, T.-H. Chen / Fuzzy Sets and Systems 155 (2005) 292–308 299

	F = T0(p){w + �}, (35b)

�F = T0(p){�(x̂)}, (35c)

�F = T0(p){�(x̂)u}. (35d)

Then (32) yields a filtered equation as follows:

ėF = �oeF + B(	F + �T
f �F + �T

b�F),

eF0 = CeF, (36)

in which eF = [eF0, eF1, . . . , eFn−1]T. In order to derive the adaptive laws for adjusting�f and�b, we
consider the following Lyapunov function candidate:

V = 1

2
eT
FPeF + 1

2
f
�T
f�f + 1

2
b
�T
b�b, (37)

which P is given by (24), and
f and
b are positive constants. The time derivative of (37) along the
trajectory (36) is

V̇ = 1

2
ėT
FPeF + 1

2
eT
FPėF + 1


f
�T
f �̇f + 1


b
�T
b �̇b

= 1

2
eT
F�T

oPeF + 1

2
eT
FP�oeF + eT

FPB(	F + �T
f �F + �T

b�F)+ 1


f
�T
f �̇f + 1


b
�T
b �̇b

= −1

2
eT
FQeF + eT

FPB(	F + �T
f �F + �T

b�F)+ 1


f
�T
f �̇f + 1


b
�T
b �̇b

= −1

2
eT
FQeF + �T

f

(
eT
FPB�F + 1


f
�̇f

)
+ �T

b

(
eT
FPB�F + 1


b
�̇b

)
+ eT

FPB	F. (38)

By the above equation, we choose the adaptive laws as follows:

�̇f = −
f e
T
FPB�F, (39a)

�̇b = −
be
T
FPB�F. (39b)

Therefore, we obtain

V̇ = −1
2 e

T
FQeF + eT

FPB	F. (40)

Let �min(Q) be the minimum eigenvalue ofQ satisfying�min(Q) > 1, then

V̇ � −�min(Q)− 1

2
‖eF‖2 − 1

2
(‖eF‖2 − 2eT

FPB	F + ‖PB	F‖2)+ 1

2
‖PB	F‖2

� −�min(Q)− 1

2
‖eF‖2 + 1

2
‖PB‖2‖	F‖2. (41)

Integrating both sides of (41) yields

V (∞)− V (0)� − �min(Q)− 1

2

∫ ∞

0
‖eF‖2 dt + 1

2
‖PB‖2‖

∫ ∞

0
‖	F‖2 dt. (42)
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After some manipulations, we have∫ ∞

0
‖eF‖2 dt�

2

�min(Q)− 1
[V (0)− V (∞)] + 2

�min(Q)− 1
‖PB‖2

∫ ∞

0
‖	F‖2 dt. (43)

By (33) and (34), we knowT0(p) is stable, and from the Lemma, we havew ∈ L∞ and� ∈ L∞, so
	F = T0(p){w+�} ∈ L2∩L∞. Hence, the right-hand side of (43) is bounded and we obtaineF ∈ L2∩L∞.
Also, because all the variables in the right-hand side of (36) are bounded, we obtainėF ∈ L∞. By using
Barbalat’s lemma [15], we have limt→∞ ‖eF(t)‖ = 0. Consequently, limt→∞ eF0(t) = 0.

Recall that

eF1 = T1(p){ẽ},
= p

pn + �n−1pn−1 + · · · + �0
{ẽ}. (44)

Hence,

eFn+1 + �n−1eFn + · · · + �0eF1 = ˙̃e. (45)

SinceeF ∈ L∞, ėF ∈ L∞ and ˙̃e ∈ L∞, it implies eFn+1 ∈ L∞. Moreover, since
∫∞

0 eFn dt =
lim t→∞ eFn−1 = 0, it implies limt→∞ eFn = 0.

Also, because

eF0 = T0(p){ẽ},
= 1

pn + �n−1pn−1 + · · · + �0
{ẽ} (46)

can be rewritten as

ẽ = eFn + �n−1eFn−1 + · · · + �0eF0, (47)

and consequently

lim
t→∞ ẽ = lim

t→∞(eFn + �n−1eFn−1 + · · · + �0eF0). (48)

From the facts that limt→∞ ‖eF‖ = 0 and limt→∞ eFn = 0, we obtain limt→∞ ẽ = 0. Moreover,
because limt→∞ ‖ê‖ = 0, it implies limt→∞ e = lim t→∞(ê − ẽ) = 0. Thus, the control objective can
be achieved by the control law (19) with the adaptive laws (39).

Remark 1. Obviously, it is difficult to apply the adaptive laws (39) to satisfy Assumption 2. Therefore,
the Projection algorithm [11] is adopted to treat this problem. The adaptive laws for adjusting�f and�b
are redesigned as

�̇f =




−
f e
T
FPB�F if {‖�f ‖ < mf }

or {‖�f ‖ = mf andeT
FPB�T

f �F�0},
−
f e

T
FPB�F + 
f e

T
FPB

�f �T
f

�T
f �f

�F if {‖�f ‖ −mf andeT
FPB�T

f �F < 0},
(49a)
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�̇b =




−
be
T
FPB�F if {‖�b‖ < mb}

or{‖�b‖ = mb andeT
FPB�T

b�F�0},
−
be

T
FPB�F + 
be

T
FPB

�b�T
b

�T
b�b

�F if {‖�b‖ = mb andeT
FPB�T

b�F < 0}.
(49b)

On the basis of the above discussions, the following theorem can be obtained.

Theorem. Consider the nonlinear dynamical system(1) with the control law given by(19) and the
observer given by(21) to estimate the tracking error vector. Let the parameter vector�f and �b be
adjusted by the adaptive laws(49). If Assumptions1 and 2 are satisfied, then the tracking errore(t)
converges to zero ast → ∞; i.e., limt→∞ e(t) = 0.

Remark 2. In practice, because the control law given by (19) contains sgn(Ŝ), a discontinuous term,
applying (19) will cause a chattering problem. Thus, we may replace sgn(Ŝ) by a saturation function of
the form [15]:

sat(Ŝ/�) =
{

sgn(Ŝ/�) if |Ŝ|��,

Ŝ/� if |Ŝ| < �,

where� is a positive constant. The control law of (19) will be modified as

u = b̂(x̂|�b)−1

[
−

n−1∑
i=1

�i ê
(i) − f̂ (x̂|�f )+ y

(n)
d

]
− �̂ sat(Ŝ/�). (50)

So, if |Ŝ|��, the control law of (50) is equivalent to (19), which guarantees that the sliding condition is
still satisfied. While|Ŝ| < �, the control law of (50) becomes a smooth function. This leads to tracking
within a guaranteed precision� while allowing the alleviation of the chattering phenomenon.

The overall design procedure can be summarized in the following steps:
Step1: Construct two fuzzy systems,̂f (x̂|�f ) andb̂(x̂|�b) as given in (17) and (18), respectively, to

describe the input/output behavior of the unknown dynamic system. Next, solve the vector of fuzzy basis
functions�(x̂) = [�1(x̂), �2(x̂), . . . , �Q(x̂)]T by (13).

Step2: Specify the observer gain vectorL and choose a symmetric positive-definite matrixQ so that
�min(Q) > 1. Then solve the positive-definite matrixP by (24). Subsequently, design an observer as
given in (21) to estimate the tracking error vector.

Step3: Choose the suitable sliding surface as given in (5) and choose the suitable�̂ such that
�̂ > b−1

min(2F + D) + [b−1
min − (bminbmax)

−1/2]|ûeq|. If necessary, choose� > 0 for the controller
given by (50).

Step4: Choose the filter�(p) as given in (33) and a set of filtersTi(p)(i = 0,1,2, . . . , n−1) as given
in (34). Then, solveeFi (i = 0,1,2, . . . , n− 1), �F and�F by (35). Set
f and
b. Design the adaptive
laws for adjusting�f and�b by (49). Then apply the controller as given by (19) (or by (50)) to control
the nonlinear dynamic system.

Fig. 1 illustrates the architecture of the observer-based indirect adaptive fuzzy sliding mode controller.
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Fig. 1. The overall scheme of the proposed controller. (a) The block diagram of the overall system. (b) Internal structure of the
block “state variable filters”.

4. Simulation examples

This section presents the simulation results of the proposed control strategy for an inverted pendulum
system. Consider the dynamic equations of the inverted pendulum system as follows
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[8,9,17,20–22]:

ẋ1 = x2,

ẋ2 = g sinx1 − cosx1(mpl/(mc +mp) x
2
2 sinx1 − 1/(mc +mp) u)

l(4/3 − (mp cos2 x1)/(mc +mp))
+ d(t),

y = x1, (51)

whereg is the acceleration due to gravity(g = 9.8 m/s2), mc is the mass of the cart,mp is the mass of
the pole,l is the half length of the pole,x1 is the angular position of the pole,x2 is the angular velocity
of the pole,y is the system output,u is the applied force (the control signal), andd(t) is the external
disturbance. In this simulation, we letmc = 1 kg,mp = 0.1 kg, l = 0.5 m, and the sampling period be
0.001 s.

If we require that|x1|��/6 and |x2|��/6, then the boundsbmax and bmin can be calculated as
|b(x1, x2)|�1.46 = bmax and |b(x1, x2)|�1.12 = bmin. Also, since|f (x1, x2)|�15.78 + 0.0366x2

2,
we can setF = 16.

The following cases are simulated:
Case1: The desired trajectoryyd = 0, the initial valuesx(0) = [0.2,0.3]T andê(0) = [−0.2,−0.1]T,

andd(t) is an independently random noise uniformly distributed in the interval[−0.1,0.1].
Case2: The desired trajectoryyd = � sin(t)/30, the initial valuesx(0) = [−0.15,−0.15]T and

ê(0) = [0.15,0.15]T, andd(t) is an independently random noise uniformly distributed in the interval
[−0.1,0.1].

According to the design procedure, the controller can be designed in the following steps:
Step1:To construct two fuzzy logic systems,f̂ (x̂|�f )andb̂(x̂|�b)as given in (17) and (18), respectively,

we select the membership functions forx̂i (i = 1,2) from the following fuzzy sets:

exp{−[(x̂i + �/6)/(�/24)]2}, exp{−[(x̂i + �/12)/(�/24)]2}, exp{−[x̂i/(�/24)]2},
exp{−[(x̂i − �/12)/(�/24)]2},

and

exp{−[(x̂i − (�/6)/(�/24)]2}.
Therefore, to cover the whole case, we apply 25 rules for each of thef̂ (x̂|�f ) andb̂(x̂|�b). We choose

the initial �f (0) and�b(0) randomly in the intervals[−5,5] and[1.12,1.46], respectively. Next, solve
the vector of fuzzy basis functions�(x̂) = [�1(x̂), �2(x̂), . . . , �Q(x̂)]T by (13).

Step2: Select the observer gain vectorL = [−200,−600]T and choose

Q =
[

4 0
0 4

]
,

which satisfies�min(Q) > 1. After solving (24), we obtain

P =
[

0.67 −2
−2 6.0034

]
.

We then design an observer as given in (21) to estimate the tracking error vector.
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Fig. 2. The trajectories ofy andyd for Case 1.
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Fig. 3. Trajectory of the control signal for Case 1.

Step3: Choose the sliding surface asS(e) = �Te = 0, wheree = [e, ė]T, � = [5,1]T. Select
�̂ = b−1

min(2F +D)+ [b−1
min − (bminbmax)

−1/2]|ûeq| and� = 0.5 for Case 1 and� = 0.1 for Case 2.
Step4: Choose the filter�(p) = 50/(p2 + 20p + 100) and a set of filtersTi (i = 0,1) as given in

(34). SolveeFi (i = 0,1), �F and�F by (35). Set
f = 100 and
b = 5, and adjust�f and�b by the
adaptive laws (49). Next, apply the controller as given by (50) to control the nonlinear dynamic system.

For Case 1, the simulation results are shown in Figs. 2–4. Fig. 2 shows the trajectories ofy (solid
line) and ofyd (dashed line). Fig. 3 shows the control signal. Fig. 4 shows the trajectory of the estimated
error ê (solid line) and the trajectory of the actual tracking errore (dotted line). From these simulation
results, we see that the estimated error can asymptotically track the actual error, and the system output can
asymptotically track the desired output. That is, the proposed controller can attain the control objective
and is robust against the external noise.

In Case 2, to compare the control performance, we also control the inverted pendulum system with the
same parameters given by the direct adaptive fuzzy-neural control with the state observer (SO-DAFC)
presented in [20] and the observer-based indirect adaptive fuzzy control (O-IAFC) presented in [10]. The
simulation results are shown in Figs. 5–10. Figs. 5, 6 and 7 show the trajectories of the system output
y with the proposed controller, SO-DAFC and O-IAFC, respectively. Figs. 8, 9 and 10 show the control
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Fig. 4. The trajectories of̂e ande for Case 1.
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Fig. 5. The trajectory ofy with the proposed controller for Case 2.
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Fig. 6. The trajectory ofy with SO-DAFC [20] for Case 2.
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Fig. 7. The trajectory ofy with O-IAFC [10] for Case 2.
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Fig. 8. The trajectory of the control signal with the proposed controller for Case 2.

signals with the proposed controller, SO-DAFC and O-IAFC, respectively. Comparing these simulation
results, we see that the proposed controller can use the smallest magnitude of the control signal, taking the
shortest time to track the desired outputyd to achieve the control objective. It implies that the proposed
controller can achieve the better performance with a smaller control signal compare to that of SO-DAFC
and O-IAFC.

5. Conclusions

In this paper, we have proposed a method for designing an observer-based indirect adaptive fuzzy
sliding mode controller with state variable filters for the control of a certain class of unknown nonlinear
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Fig. 9. The trajectory of the control signal with SO-DAFC [20] for Case 2.
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Fig. 10. The trajectory of the control signal with O-IAFC [10] for Case 2.

dynamic systems, in which not all the states are available for measurement. We first construct the fuzzy
models to describe the input/output behavior of the nonlinear dynamic system. Then, an observer is
employed to estimate the tracking error vector. Based on the observer, a fuzzy sliding model controller is
developed to achieve the tracking performance. By passing the observation error vector to a set of state
variable filters, a filtered observation error vector is obtained. The free parameters of the fuzzy models
can be adjusted by the adaptive laws, based on the filtered observation error vector and the Lyapunov
synthesis method. With the proposed control strategy, the stability of the overall control system can be
guaranteed. The simulation results show that the proposed control strategy can turn in a good tracking
performance and is robust against the external noise.
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