
doi: 10.1016/j.procs.2015.05.257 

Using Genetic Algorithms for Maximizing Technical

Efficiency in Data Envelopment Analysis

Mart́ın González1, Jose J. López-Esṕın1, Juan Aparicio1, Domingo Giménez2,
and Jesús T. Pastor1

1 Centro de Investigación Operativa, Miguel Hernández University, Spain
martingonzes@gmail.com, jlopez@umh.es, j.aparicio@umh.es, jtpastor@umh.es

2 Departamento de Informática y Sistemas, University of Murcia, Spain
domingo@um.es

Abstract
Data Envelopment Analysis (DEA) is a non-parametric technique for estimating the technical
efficiency of a set of Decision Making Units (DMUs) from a database consisting of inputs and
outputs. This paper studies DEA models based on maximizing technical efficiency, which aim
to determine the least distance from the evaluated DMU to the production frontier. Usually,
these models have been solved through unsatisfactory methods used for combinatorial NP-hard
problems. Here, the problem is approached by metaheuristic techniques and the solutions are
compared with those of the methodology based on the determination of all the facets of the
frontier in DEA. The use of metaheuristics provides solutions close to the optimum with low
execution time.

Keywords: Data Envelopment Analysis, Closest targets, Mathematical Programming, Efficiency

Methodologies, Genetic Algorithms

1 Introduction

Over the past 50 years technologies have been estimated using many different approaches [9].
The two principal methods are stochastic frontiers, which use econometric techniques, and Data
Envelopment Analysis (DEA), which is a non-parametric technique based on mathematical
programming for the evaluation of technical efficiency of a set of decision making units (DMUs)
that consume inputs to produce outputs [10]. Unlike other efficiency methodologies, DEA
simultaneously provides both an efficiency score and benchmarking information through efficient
targets. In DEA, the efficiency score is obtained from the distance between the assessed DMU
and a point at the frontier of the technology, which serves as an efficient target for the assessed
DMU.

An important stream of the recent literature in DEA is concerned with determining the
least distance to the frontier from an assessed inefficient DMU or, equivalently, obtaining the

Procedia Computer Science

Volume 51, 2015, Pages 374–383

ICCS 2015 International Conference On Computational Science

374 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.257&domain=pdf


efficient targets that maximize the final level of technical efficiency (see [2, 3, 5] to name but
a few). This contrasts with the usual approaches followed from the origins of DEA, where
only the furthest efficient targets are calculated for computational reasons. Indeed, maximizing
technical efficiency is computationally difficult while minimizing technical efficiency is easier,
since this is usually associated with the resolution of a standard linear program.

Regarding papers that have studied the computational aspects of DEA models associated
with the determination of the least distance to the frontier and, therefore, related to the
maximization of the technical efficiency, we cite Aparicio et al. [4] and Jahanshahloo et al.
[11, 12, 13]. Some approaches are based on Mixed Integer Linear Programming or Bilevel Lin-
ear Programming, while others are derived from algorithms that allow the determination of all
the facets of a polyhedron. As we will argue in Section 2, all these approaches have their strong
and weak points and, consequently, there is currently no approach accepted as the best solution
to the problem.

The approach in [4], based on Mixed Integer Linear Programming, is used and we use
metaheuristics to try to solve the model these authors introduced. The complexity of the
model makes it difficult to generate solutions satisfying all the restrictions. In [7, 14] heuristics
were used to generate valid solutions for a subset of restrictions of the problem of maximizing
technical efficiency in DEA. In this paper, all the constraints have been incorporated (in the
previous papers only 9 of 14 constraints were considered), the heuristics are improved, and new
ones are developed, so initial populations of solutions satisfying all the constraints are generated.
Additionally, the solutions generated by our approach for a battery of simulated databases are
compared with the solutions obtained through the determination of all the facets of the frontier
in DEA (see [1]). In this case, the optimizer CPLEX was used to measure technical efficiency.

The remainder of the paper is organized as follows. In Section 2, a brief introduction of
the main notions associated with Data Envelopment Analysis is presented, and the existing
approaches for maximizing efficiency are outlined. Then, heuristic methods to generate initial
populations with valid solutions are studied in Section 3. After that, a Genetic Algorithm to
improve the solutions is discussed in Section 4. In Section 5, the results of some experiments
are summarized. Section 6 concludes the paper and outlines some possible research directions.

2 Data Envelopment Analysis and the Problem to be
Solved

DEA involves the use of Mathematical Programming to construct a non-parametric piece-wise
surface over the data in the input-output space. Technical efficiency measures associated with
the performance of each DMU are then calculated relative to this surface, as a distance from
it.

Some notation is needed. Assume there are data on m inputs and s outputs for n DMUs
(firms, universities, farms, etc). For the j-th DMU these are represented by xij ≥ 0, i =
1, . . . ,m, and yrj ≥ 0, r = 1, . . . , s, respectively.

The basic DEA models are the CCR [8] and the BCC [6]. Both models are based on radial
projections to the production frontier. However, many other approaches give freedom to the
projection so that the final efficient targets do not conserve the mix of inputs and outputs. The
“original” Enhanced Russell Graph measure [15] can be calculated for DMU k, k = 1, . . . , n as
follows:

Genetic Algorithms for Technical Efficiency González, López-Esṕın, Aparicio, Giménez and Pastor

375



min βk − 1
m

∑m
i=1

t−ik
xik

s.t.

βk + 1
s

∑s
r=1

t+rk
yrk

= 1

−βkxik +
∑n

j=1 αjkxij + t−ik = 0 ∀i
−βkyrk +

∑n
j=1 αjkyrj − t+rk = 0 ∀r

βk, αjk, t
−
ik, t

+
rk ≥ 0 ∀j, i, r

(1)

The Enhanced Russell Graph measure, defined as the optimal value of the above model, sat-
isfies several interesting properties from a mathematical and economic point of view. However,
it presents a limitation, a weakness shared with other traditional measures in DEA. Specifi-
cally, the original Enhanced Russell Graph measure minimizes technical efficiency in equation
1. In order to maximize instead of minimize technical efficiency, it seems sufficient to change
“min” for “max” in equation 1. However, this is not true. In this case, we could show that the
solutions generated by the model would not be technically efficient, but inefficient (see [4]) and,
therefore, could not serve as valid benchmark for the assessed DMU.

This problem was behind the introduction of different approaches to maximizing techni-
cal efficiency suitably in DEA. Some of these approaches propose using Mixed Integer Linear
Programs to overcome the problem [4]. In the case of DMU k, the model to be solved would
be:

max βk − 1
m

∑m
i=1

t−ik
xik

s.t.

βk + 1
s

∑s
r=1

t+rk
yrk

= 1 (c.1)

−βkxik +
∑n

j=1 αjkxij + t−ik = 0 ∀i (c.2)

−βkyrk +
∑n

j=1 αjkyrj − t+rk = 0 ∀r (c.3)

−∑m
i=1 νikxij +

∑s
r=1 μrkyrj + djk = 0 ∀j (c.4)

νik ≥ 1 ∀i (c.5)
μrk ≥ 1 ∀r (c.6)

djk ≤ Mbjk ∀j (c.7)
αjk ≤ M(1− bjk) ∀j (c.8)

bjk = 0, 1 (c.9)
βk ≥ 0 (c.10)
t−ik ≥ 0 ∀i (c.11)
t+rk ≥ 0 ∀r (c.12)
djk ≥ 0 ∀j (c.13)
αjk ≥ 0 ∀j (c.14)

(2)

One weakness of the approach in equation 2 is that it uses a “big M” to model the key
constraints (c.7) and (c.8). Specifically, it allows us to link djk to αjk by means of the binary
variable bjk. The value of M can be calculated if and only if all the facets that define the
technology are previously determined. Unfortunately, the identification of all these facets is a
combinatorial NP-hard problem. Something similar happens with the other approaches devoted
to maximizing technical efficiency. All of them are related in some sense to a big M or the
direct calculation of all the efficient facets (see Jahanshahloo et al. [11, 12, 13]).

In this paper, we apply a Genetic Algorithm to solve equation 2. In order to check the
goodness of our approach, the results are compared with those obtained from the determination
of all the facets of the frontier in DEA using a set of simulated numerical examples.

Genetic Algorithms for Technical Efficiency González, López-Esṕın, Aparicio, Giménez and Pastor

376



3 Heuristic Methods to Obtain Valid Solutions

Each solution of equation 2 is composed of βk, αjk, t
−
ik, t

+
rk, νik, μrk, djk ∈ R

+ and bjk ∈ {0, 1},
with i = 1, . . . ,m, j = 1, . . . , n, r = 1, . . . , s. In [7] some heuristics were presented to generate
solutions of 13 of the 14 constraints in the equation. These heuristics are now improved so
that the number of solutions satisfying the 14 constraints greatly increases. Two methods to
generate the initial population of solutions are combined. If non valid solutions are obtained by
using method 1, method 2 is used. The second method has a higher computational cost, and
so it is used only when the first method fails.

3.1 Method 1

1. For a given k, the process starts generating bjk ∀j based on c.9., with the restrictions: the
number of bjk equal to 0 should be greater than s and lower than s+m to calculate the
values of αjk and djk ∀j by means of a system of equations in the next steps. αjk, djk
and bjk are related through c.7. and c.8. The number of bjk equal to 0 is s, with which
the number of equations and of unknowns coincides. The positions of these zero values
are generated randomly.

2. t+rk ∀r and βk are generated using algorithm 1 in order to satisfy c.1. In this algorithm,
the values of t+rk are generated randomly between 0 and 1. Next, βk is obtained using c.1.
If βk is lower than 0, then t+rk ∀r are decreased, and if βk is greater than 1, then t+rk ∀r
are increased. The process continues until 0 < βk < 1.

Require: Y ∈ R
+h×n

, DMU k
Ensure: ∀r, t+rk ∈ R

+, 0 < βk < 1
Generate ∀r, t+rk randomly between 0 and 1
Obtain βk using c.1.
while βk ≤ 0 OR βk ≥ 1 do
if βk < 0 then

Generate r randomly, and t+rk = t+rk/(2.0 + random(0, 1, 2))
else
Generate r randomly, and t+rk = t+rk ∗ (2.0 + random(0, 1, 2))

end if
Obtain βk using c.1.

end while
Algorithm 1: Generate t+rk and βk

3. Next, αjk ∀j are calculated using c.3. The number of αjk different from 0 is equal to
s through step 1. The values of α are calculated using c.3. by solving the system of
equations.

4. t−ik are calculated using c.2. by solving the system of equations.

5. Finally, νik ∀i, μrk ∀r and djk ∀j are calculated. The number of djk equal to 0 is the same
as the number of α different from 0. Therefore, the values of νik are generated randomly
and those of μrk are obtained by solving system c.4.

Genetic Algorithms for Technical Efficiency González, López-Esṕın, Aparicio, Giménez and Pastor

377



3.2 Method 2

This method is used to recalculate the non valid solutions in method 1.

1. The first step coincides with that of the previous method: bjk ∀j are randomly generated
based on c.9., with s values of bjk equal to 0.

2. The values α are generated randomly, with 0 < αjk ≤ 1, for the same reason mentioned
in step 3 of method 1.

3. Next, αjk ∀j are modified using algorithms 2 and 3 in order to satisfy c.1, c.2., c.3., c.11.,
and c.12. In algorithm 2, since βk is between 0 and 1, ∀i the maximum value of βkxik

in c.2. is equal to xik. Then, ∀i, ∑n
j=1 αjkxij must be lower than xik in order to satisfy

c.11. Therefore, the α with least effect in c.3. (αj0k) must be decreased. Otherwise, ∀r,∑n
j=1 αjkyrj must be greater than yrk in order to satisfy c.12. In the same way, the α

with least effect in c.2. is increased. Algorithm 3 has been developed considering c.1. and
c.3. In it the α with least effect in c.2. and c.3. (αj0k) is calculated in order to satisfy c.1.

Require: Y ∈ R
+s×n

, X ∈ R
+m×n

, DMU k
Ensure: ∀r, t+rk ∈ R; ∀i, t−ik ∈ R; ∀j, αjk ∈ R

+, 0 < βk < 1
for i = 1, . . . ,m do
if xik <

∑n
j=1 αjkxij then

Find j0 / 1
m

∑m
i=1 xij0 − 1

s

∑s
i=1 yij0 = maxj=1,...,n{ 1

m

∑m
i=1 xij − 1

s

∑s
i=1 yij}

αj0k = αj0k ∗ 0.95
end if

end for
for r = 1, . . . , s do
if yrk >

∑n
j=1 αjkyrj then

Find j0 / 1
s

∑s
i=1 yij0 − 1

m

∑m
i=1 xij0 = maxj=1,...,n{ 1

s

∑s
i=1 yij − 1

m

∑m
i=1 xij}

αj0k = αj0k ∗ 1.05
end if

end for
∀j adjust αjk with algorithm 3.
Adjust βk to satisfy c.11. and c.12. (step 4)
Obtain t+rk ∀r and t−ik ∀i using c.2. and c.3. (step 4)

Algorithm 2: Adjust αjk to satisfy c.2. and c.3.

4. Adjust βk to satisfy c.2., c.3., c.11. and c.12. If c.11. is violated, then βk is increased
by a factor to satisfy c.2. and c.11. Otherwise, if c.12. is violated, then βk is decreased
by a factor to satisfy c.3. and c.12. This factor is decreased in each iteration for a finer
adjustment. In each iteration t+rk ∀r and t−ik ∀i are obtained using c.2.and c.3.

5. Finally, νik ∀i, μrk ∀r and djk ∀j are calculated as in step 5 of method 1.

4 Genetic Algorithm

A Genetic Algorithm is proposed here to improve the solutions obtained with the previous
heuristic methods. A population of valid solutions of equation 2 is explored. As mentioned

Genetic Algorithms for Technical Efficiency González, López-Esṕın, Aparicio, Giménez and Pastor

378



Require: Y ∈ R
+s×n

, X ∈ R
+m×n

, DMU k, αjk ∀j
Ensure: ∀j, αjk ∈ R

+

∀j, 1 ≤ j ≤ n, pj =
∑s

r=1 yrj/yrk
repeat
Find j0 / 1

s

∑s
i=1 yij0 +

1
m

∑m
i=1 xij0 = minj=1,...,n{ 1

s

∑s
i=1 yij +

1
m

∑m
i=1 xij}

sum =
∑

j=1,...,n,j �=j0
αjkpj

αj0k = s−sum
pj0

if αj0k ≤ 0 then
∀j, αjk = αjk ∗ 0.95

end if
until αj0k > 0

Algorithm 3: Adjust αjk to satisfy c.1.

in the previous section, a solution is composed by βk, αjk, t
−
ik, t

+
rk, νik, μrk, djk ∈ R

+ and
bjk ∈ {0, 1}, with i = 1, . . . ,m, j = 1, . . . , n, r = 1, . . . , s. Valid solutions are those satisfying
the 14 constraints in equation 2, and the fitness is given by the objective function in this
equation. The main characteristics of the algorithm are:

• Initialization. The initial population is generated with the above heuristics. Given the
difficulty of obtaining valid solutions for the 14 constraints [14], some non-valid solutions
can be included initially in the population. The individuals in the population are ordered
by the fitness, with the non-valid solutions at the end of the population.

• End Condition. The Genetic Algorithm works by combining and mutating individuals
in the population until some end condition is reached. Normally, a maximum number of
iterations or a maximum number without improving the best solution is established. In
our case, some values have been tested, and after a number of iterations there were no
significant differences in the goodness of the solution found. For the experiments we have
fixed the number of iterations to 1000.

• Selection. Only valid solutions are selected for combination, and the non-valid solutions
(those not fulfilling all the restrictions) in the population will be substituted for new valid
solutions generated.

The best individuals in the population are selected to be combined, leaving at least
50% of the overall space to generate new solutions. That is, if the total capacity is 200
chromosomes, and there are 120 valid chromosomes, the first 100 (50% of the total) are
selected for combination, and the remaining space is allocated for new solutions. In this
case, the 20 worst valid solutions are discarded. If the valid solutions represents less than
the 50% of the total size, all the valid solutions are selected to be crossed, and all the
non-valid elements are discarded for the next generation.

• Crossover

From those individuals selected for crossing, pairs of individuals are selected randomly and
combined to generate two descendants. The process continues until there are sufficient
new elements to substitute those not selected for combination. The new individuals are
included in the ordered population.

Crossover is fundamental to improve solutions, so three types of crossover have been
implemented and evaluated. Because each individual has components of six types (β, t+,

Genetic Algorithms for Technical Efficiency González, López-Esṕın, Aparicio, Giménez and Pastor

379



t−, ν, μ and d), each combination will work with only one of these types. One crossover
considers only one component and the others randomly select the type of component in
each combination:

– Crossover 1. Only one feature of the chromosomes is considered, β. It appears
in the objective function, and so its modification directly affects the fitness. The
mean of β1 and β2 of the two ascendants is obtained and perturbed by adding and
subtracting a value randomly generated between 0 and 1, γ: β‘

1 = β1+β2

2 + γ and

β‘
2 = β1+β2

2 − γ. If some β is outside the range [0, 1], the descendants are generated

with a new γ. The chromosomes so generated can be non-valid, so the values of t−ik
and t+rk are recalculated so that constraints c.1, c.2 and c.3 are fulfilled. The other
values (νik, μrk and bjk) are inherited from the ascendants. The new chromosomes
are evaluated to see if they are valid or not, and their fitness is calculated.

– Crossover 2. The values of t+, t−, ν, μ or d are crossed. In each combination
only parameters of one type are combined, and the type is randomly selected. Each
parameter has several elements, and a middle point crossover combination is used:
if the ascendants are a1 = (a11, a12) and a2 = (a21, a22) the two descendants are
d1 = (a11, a22) and d2 = (a21, a12). Moreover, as in crossover 1, the value of the
other parameters are recalculated, and the new chromosomes are evaluated and
inserted in the ordered population.

– Crossover 3. This is a combination of the previous crossovers. All the parameters
are candidates for crossing, and one is randomly selected. The crossover works as
explained, with recalculation of the generated elements and insertion in the popu-
lation.

• Mutation. Each individual has a 10% probability of being selected for mutation. One
of the parameters in the individual is selected randomly, and new values are randomly
generated for this parameter. The values of the other parameters are not recalculated.
If the new element is valid, its fitness is calculated and the individual is inserted in the
ordered population.

5 Experimental Results

The generation of valid solutions is a difficult problem, and in previous works the problem of
building valid solutions for 9 [14] or 13 [7] of the 14 constraints in equation 2 was tackled with
heuristic methods. The simplified methods presented in Section 3 allow us to work with all
the constraints. The execution time and the percentage of valid solutions generated with the
previous heuristics and with those presented in this work are compared in Table 1, where the
time is expressed in seconds and the values are the mean of ten executions for each problem
size. The standard deviation is also shown. With the new heuristics more valid solutions are
generated, for all the constraints and with a lower execution time. Thus, these heuristics can
be used for the initial generation of individuals in the population of the Genetic Algorithm.

With an approximation method like the Genetic Algorithm we can not ensure the optimum
solution is found. So, the solutions obtained with the Genetic Algorithm are compared with
those obtained with CPLEX [1], which generates optimum solutions but at the expense of very
large execution times and is impracticable for large problems. Table 2 compares the solutions

Genetic Algorithms for Technical Efficiency González, López-Esṕın, Aparicio, Giménez and Pastor

380



size 9 constraints [14] 13 constraints [7] 14 constraints
m n s time (sec) % val. time (sec) % val. time (sec) % val.

2 15 1 26.4251.44 8235.58 33.2110.82 7218.12 0.090.02 1000.00
3 25 2 6.7216.03 9030.46 72.8915.56 2420.97 0.880.68 962.85
4 30 2 0.220.16 1000.00 89.8418.63 1621.13 0.881.74 951.49
5 40 3 13.1320.64 7443.40 116.3912.86 1.62.49 27.2242.38 929.07
6 60 4 2.011.13 3544.07 117.2614.15 0.060.10 93.4670.08 5335.57

Table 1: Execution cost and percentage of valid solutions with the previous heuristics and with the
heuristics in Section 3, varying the problem size.

m n s crossover 1 crossover 2 crossover 3

2 50 1 2.1e-07 2.1e-07 2.1e-07
3 10 2 0.0344 0.0373 0.0381
3 30 2 0.1122 0.1075 0.1042
3 60 2 0.0778 0.0714 0.0689
4 30 2 0.1431 0.1437 0.1417
4 30 4 0.1612 0.1029 0.1054

Table 2: Comparison of the solution obtained with the Genetic Algorithm using different crossover
functions with the optimum solution (obtained with CPLEX).

obtained with the Genetic Algorithm with the three crossover considered with those obtained
with CPLEX (the optimum ones), for different problem sizes and varying the number of DMUs,
inputs and outputs. Each entry in the table represents the mean of ten experiments, and for each
experiment the mean of the difference of the solution provided by CPLEX and that obtained
with the Genetic Algorithm for all the DMUs. There are always small differences with respect
to the optimum, so the Genetic Algorithm is a good alternative to an exact method when this
can not be used due to huge computational cost. The differences between the three crossovers
is not significant, but in general the third crossover gives better results, which can be expected
because the space of solutions is searched by varying the parameters of all the available types.

In general, and as is normal in a metaheuristic, the initial iterations give important im-
provements in the fitness, and successive iterations give only small improvements if any. This
happens for all the sizes experimented with, as is observed in Figure 1, which compares the
fitness with the Genetic Algorithm with the three crossovers implemented with the optimum
obtained with CPLEX, for one DMU in a problem with m = 4, n = 30 and s = 3. The best
fitnesses obtained every 5 iterations up to 30 are represented. Similar results are obtained for
other DMUs and other problem sizes.

Small problem sizes are used in Table 2 because the execution time of CPLEX increases
exponentially with the problem size. This is seen in Figure 2, which compares (in logarithmic
scale) the execution time with CPLEX and the Genetic Algorithm when varying the problem
size.

6 Conclusions and Future Works

Maximizing technical efficiency or, equivalently, determining least distance measures are topics
of relevance in recent DEA literature. However, it is well-known that from a computational
point of view this has usually been solved by unsatisfactory approaches associated with a
combinatorial NP-hard problem.

Genetic Algorithms for Technical Efficiency González, López-Esṕın, Aparicio, Giménez and Pastor

381



Figure 1: Comparison of the optimum fitness and those obtained with the Genetic Algorithm
with the three crossovers considered at different iterations, for one DMU in a problem with
m = 4, n = 30 and s = 3

Figure 2: Comparison of the execution time (in seconds and logarithmic scale) of CPLEX and
the Genetic Algorithm

This paper improves previous heuristics for the generation of valid solutions for an opti-
mization problem for DEA. The new heuristic provides more valid solutions which satisfy all
the constraints in the model and with a lower execution time. A Genetic Algorithm has been
developed working with this initial population of valid and non-valid solutions to generate more
valid solutions and to improve the best fitness obtained. The Genetic Algorithm gives solutions
close to the optimum and is competitive with an exact method with high computational cost,
which can not be used for large problems.

A deeper analysis should be made to tune the Genetic Algorithm to the problem to obtain
better solutions with lower execution times.

We have studied the problem associated with the so-called Enhanced Russell Graph measure.
Nevertheless, there are a lot of measures in DEA that can be used in the maximization of

Genetic Algorithms for Technical Efficiency González, López-Esṕın, Aparicio, Giménez and Pastor

382



technical efficiency. In this way, programming the approach based on metaheuristic algorithms
to solve all of them can be seen as appropriate and interesting future work.

Acknowledgements

This work was supported by the Spanish MINECO, as well as European Commission FEDER
funds, under grant TIN2012-38341-C04-03. Additionally, the authors are grateful to the San-
tander Chair of Efficiency and Productivity of the University Miguel Hernández of Elche for
partially supporting this research.

References

[1] H. Amatatsu and T. Ueda. Measurement of simultaneous scale and mix changes in inputs and
outputs using DEA facets and RTS. European Journal of Operational Research, 223(3):752–761,
2012.

[2] A. Amirteimoori and S. Kordrostami. A euclidean distance-based measure of efficiency in data
envelopment analysis. Optimization, 59:985–996, 2010.

[3] J. Aparicio and J. T. Pastor. Closest targets and strong monotonicity on the strongly efficient
frontier in DEA. Omega, 44:51–57, 2014.

[4] J. Aparicio, J. L. Ruiz, and I. Sirvent. Closest targets and minimum distance to the Pareto-efficient
frontier in DEA. Journal of Productivity Analysis, 28:209–218, 2007.

[5] C. Baek and J. Lee. The relevance of DEA benchmarking information and the Least-Distance
Measure. Mathematical and Computer Modelling, 49:265–275, 2009.

[6] R. D. Banker, A. Charnes, and W. W. Cooper. Some models for estimating technical and scale
inefficiencies in data envelopment analysis. 30:1078–1092, 1984.

[7] C. Benavente, J. J. López-Esṕın, J. Aparicio, J. T. Pastor, and D. Giménez. Closets targets,
benchmarking and data envelopment analysis: a heuristic algorithm to obtain valid solutions for
the shortest projection problem. In 11th International Conference on Applied Computing, 2014.

[8] A. Charnes, W. W. Cooper, and E. Rhodes. Measuring the efficiency of decision making units.
European Journal of Operational Research, 2(429–444), 1978.

[9] T. Coelli, D. S. P. Rao, and G. E. Battese. An Introduction to Efficiency and Productivity Analysis.
Kluwer Academic Publishers, 1998.

[10] W. W. Cooper, L. M. Seiford, and K. Tone. Data envelopment analysis: a comprehensive text with
models, applications, references and DEA-solver software. Kluwer Academic Publishers, 2000.

[11] G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, H. Zhiani Rezai, and F. Rezai Balf. Finding strong
defining hyperplanes of production possibility set’. European Journal of Operational Research,
177:42–54, 2007.

[12] G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, and M. Zohrehbandian. Finding the piecewise linear
frontier production function in data envelopment analysis. Applied Mathematics and Computation,
163:483–488, 2005.

[13] G. R. Jahanshahloo, J. Vakili, and S. M. Mirdehghan. Using the minimun distance of DMUs from
the frontier of the PPS for evaluating group performance of DMUs in DEA. Asia-Pacific Journal
of Operational Research, 29(2):1250010, 2012.

[14] J. J. López-Esṕın, J. Aparicio, D. Giménez, and J. T. Pastor. Benchmarking and data envelopment
analysis. An approach based on metaheuristics. In Proceedings of the International Conference
on Computational Science, ICCS 2014, Cairns, Queensland, Australia, 10-12 June, 2014, pages
390–399, 2014.

[15] J. T. Pastor, J. L. Ruiz, and I. Sirvent. An enhanced DEA Russell graph efficiency measure.
European Journal of Operational Research, 115:596–607, 1999.

Genetic Algorithms for Technical Efficiency González, López-Esṕın, Aparicio, Giménez and Pastor

383


