Performance-Energy Considerations for Shared Cache Management in a
Heterogeneous Multicore Processor

Anup Holey', Intel Corporation

Vineeth Mekkat', Intel Corporation

Pen-Chung Yew, University of Minnesota - Twin Cities
Antonia Zhai, University of Minnesota - Twin Cities

Heterogeneous multicore processors that integrate CPés @nd data-parallel accelerators such as GPU cores ongathe die
raise several new issues for sharing various on-chip reseuiThe shared last-level cache (LLC) is one of the mostitapbshared
resources due to its impact on performance. Accesses thénedsLLC in heterogeneous multicore processors can benaeai by
the GPU due to the significantly higher number of concurrergads supported by the architecture. Under current caehnagement
policies, the CPU applications’ share of the LLC can be $icgmtly reduced in the presence of competing GPU appliestiBor many
CPU applications, areduced share of the LLC could lead tufsignt performance degradation. On the contrary, GPUegtjns can
tolerate increase in memory access latency when therefisisnf thread-level parallelism. In addition to the penfiance challenge,
introduction of diverse cores on to the same die changesrtige consumption profile and, in turn, affects the energjgiefcy of
the processor.

In this work, we propose Herogeneous LC Management (HeLM), a novel shared LLC management policytéhas advantage
of the GPU'’s tolerance for memory access latency. HeLM is tbthrottle GPU LLC accesses and yield LLC space to cachsitsen
CPU applications. This throttling is achieved by allowing§Gaccesses to bypass the LLC when an increase in memongdataxy
can be tolerated. The latency tolerance of a GPU applicasiatetermined by the availability of thread-level paradiel, which is
measured at runtime as the average number of threads thetal@ble for issuing. For a baseline configuration with @@U cores
and four GPU cores, modelled after existing heterogenemeepsor designs, HeLM outperforms LRU policy by 10.4%. iiddally,
HelLM also outperforms competing policies. Our evaluatishew that HeLM is able to sustain performance with varyingcuix.

In addition to the performance benefit, bypassing also mesldctal accesses to the LLC leading to a reduction in theggner
consumption of the LLC module. However, LLC bypassing hasghtential to increase off-chip bandwidth utilization dDBAM
energy consumption. Our experiments show that HeLM exhitiittter energy efficiency by reducing EBalue by 18% over LRU,
while impacting only a 7% increase in off-chip bandwidtHizétion.

Categories and Subject Descriptors: B.3VPeory Structures]: Design Styles—€ache Memories; C.1.3 [Computer Systems Or-
ganization]: Processor ArchitecturesHeterogeneous (Hybrid) Systems

General Terms: Architecture, Experimentation, Perforcean
Additional Key Words and Phrases: Heterogeneous Multjid@eehe Management Policy, Last-level Cache, Bypassing

ACM Reference Format:

Anup Holey, Vineeth Mekkat, Pen-Chung Yew, and Antonia Z&8il4. Performance-Energy Considerations in Shared Qdelme
agement in a Heterogeneous Multicore Procegsok Trans. Architec. Code Optim. 0, 0, Article 00 (201X), 25 pages.

DA : http://dx.doi.org/10.1145/0000000.0000000

T Authors were affiliated to the University of Minnesota whhis twork was done.

This work is supported in part by National Science Foundagiants CCF-0916583 and CPS-0931931.

Author’s addresses: A. Holey, Intel Corporation, 1900 ieaCity Road, Folsom, CA 95630; email: anup.holey@intehc V. Mekkat,
Intel Corporation, 3600 Juliette Lane, Santa Clara, CA g95@bnail: vineeth.mekkat@intel.com. P.-C. Yew and A. ZBEspartment
of Computer Science and Engineering, University of Mint@s®00 Union Street, Keller Hall 4-192, Minneapolis, MN 554 email:
{yew, zha} @cs.umn.edu.

Permission to make digital or hard copies of part or all o thiork for personal or classroom use is granted without fegiged
that copies are not made or distributed for profit or comna¢m@ilvantage and that copies show this notice on the first paitial
screen of a display along with the full citation. Copyrigfds components of this work owned by others than ACM must beohed.
Abstracting with credit is permitted. To copy otherwiserepublish, to post on servers, to redistribute to listsparde any component
of this work in other works requires prior specific permissend/or a fee. Permissions may be requested from Publisabept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-070J1AUfax +1 (212) 869-0481, or permissions@acm.org.

© 201X ACM 1544-3566/201X/-ART00 $15.00

DA : http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Architecture and Code Optimization, UpNo. 0, Article 00, Publication date: 201X.

00:2 Anup Holey et al.

Normalized IPC

TAP-RRIP
DRRIP
LRU

7,

7

7

zzz

)
7777777 777777
A

DRRIP
A)
7
L

_ TAP-RRIP
DRRIP
LRU
DRRIP
LRU
DRRIP

|
/727777777777 7

4 GPU
4 GPU

iY77 2

2GPU

Y2 7777

LRU
DRRIP

7777777777777 7]
I

1GPU 2GPU

= T i
3 LRU T gi77777777777 77777777 LRU
0% 20% 40% 60% 80% 100% 0 0.2 04 0.6 0.8 1
LLC Distribution Performance

(a) Cache occupancy of the CPU and the GPU cores. OccugbhcNormalized IPC for cache sensitve CPU application

refers to the distribution of the LLC space between appboat (401.bzip2) when GPU is introduced. IPC is normalized to the
IPC of 401.bzip2 executing on the heterogeneous procester w
out interference from the GPU cores.

Fig. 1: The performance impact on a cache sensitive CPU applicstiaring the LLC with GPU application under
various cache replacement policies. Cache sensitive SBR@dling 2007] application 401.bzip2 executes on the CPU
core. The performance impact is measured across the settbb&mrchmarks shown in Table Ill. Three configurations

with varying GPU core counts are evaluated. TAP-RRIP [Lekkim 2012] results are shown only for 4 GPU
configuration as TAP-RRIP needs more than two GPU cores fidufictioning.

1. INTRODUCTION

Advances in semiconductor technology and the urgent neeshrgy efficient computation have facilitated
the integration of computational cores that are heterogena nature onto the same die. Data-parallel ac-
celerators such as Graphic Processing Units (GPU) are athenmost popular accelerator cores used in
such designs. With easy to adopt programming models, susliidi& CUDA [NVIDIA Corporation 2007]
and OpenCL [Khronos Group 2009], these data-parallel cimesow being employed to accelerate diverse
workloads. Availability of heterogeneous multicore syssesuch as AMD Fusion [Brookwood 2010] and
Intel Sandy Bridge [Intel Corporation 2009] suggests thattitcore designs with heterogeneous process-
ing elements are becoming part of mainstream computingerBity in the performance characteristics of
these computational cores presents a unique set of chafienglesigning these heterogeneous multicore
processors.

In heterogeneous multicore systems, the efficient shafing-ghip resources such as the last-level cache
(LLC) is key to performance. However, the integration of C&utl GPU cores onto the same die leads to
competition in the LLC that does not exist in homogeneoutesys. First, the difference in cache sensitivity
among diverse cores imply difference in performance benefitained from owning the same amount of
cache space. Second, GPU cores with a large number of thcaadsotentially dominate accesses to the
LLC, and consequently, skew existing cache sharing pgalicidavor of the GPU cores. As a result, GPU
cores occupy an unfair share of the LLC with existing polcie

Figure 1 shows the performance of various cache replacepodintes in a heterogeneous execution en-
vironment where 401.bzip2 (from the SPEC CPU2006 benchmzitk [Spradling 2007]) executing on a
single CPU core shares a 2MB LLC with a GPU benchmark (fromAth® APP benchmark suite [Ad-
vanced Micro Devices Incorporated 2011]) executing on tR&JGThe applications are listed in Table I
and the details of the experiment and processor configmsatice provided in Section 4. Figure 1(a) shows
the average LLC occupancy and Figure 1(b) shows the noreshlRC of the CPU application across all
the GPU benchmarks. Occupancy refers to the distributiche@l.LC space between applications. Since
401.bzip2 is cache sensitive, while most of the GPU apjitinatare not, it is desirable to allocate a larger
share of the LLC to the CPU application. However, for the basiast Recently Used (LRU) policy, we
observe that a major portion of the LLC is occupied by the Gpliaation. This leads to significant per-
formance degradation for the CPU application under the LBlitp as shown in Figure 1(b).

Prior works have shown that judicious sharing of the LLC capriove the overall performance when
diverse workloads share homogeneous multicore systentsgSal. 2004; Moreto et al. 2008; Kim et al.

ACM Transactions on Architecture and Code Optimization, UoNo. 0, Article 00, Publication date: 201X.

Performance-Energy Considerations for Shared Cache Management 00:3

2004; Qureshi and Patt 2006; Xie and Loh 2010; Qureshi eD&l7 2Jaleel et al. 2010; Xie and Loh 2009].
To evaluate whether these techniques can be adopted bypgeteous multicore processors, we study sev-
eral recently proposed policies. Dynamic Re-Referencervat Prediction (DRRIP) [Jaleel et al. 2010] is
a cache management policy developed primarily for homoggnenulticore processors. DRRIP predicts
whether the re-reference (reuse) interval of cache lineetarmediate or distant, and inserts lines at non-
MRU (Most Recently Used) position based on the predictibra. line is re-used after insertion into the
LLC, it is promoted by increasing its age to improve its lifie¢ in the cache. Non-MRU insertion of cache
lines performs better than MRU insertion because most ofitles do not exhibit immediate re-reference.
Figure 1(a) indicates that DRRIP provides little improveri@ LLC occupancy in a heterogeneous envi-
ronment as the policy is overwhelmed by an order of magnitlifierence between the memory access rates
of the CPU and the GPU cores. The performance impact of thalanted LLC occupancy is shown in
Figure 1(b).

We are aware of only one existing work, TLP-Aware Cache Manaant Policy (TAP) [Lee and Kim
2012], that addresses the diversity of on-chip cores whakghing the LLC sharing policy. TAP identifies
the cache sensitivity of the GPU application, and the diffiee in LLC access rates between the CPU and
GPU cores. This information is used to influence the decssioade by the underlying cache management
policy. When these metrics indicate a cache sensitive GRllicagion, both CPU and GPU cores are given
equal priority. On the other hand, if GPU application is eadasensitive, the GPU core is given a lower
priority by the underlying policy.

TAP, although designed for heterogeneous multicore peaessstill allocates a large portion of the cache
to the cache-insensitive GPU application. Consequethyperformance degradation due to LLC sharing
is still significant for the cache sensitive CPU applicataanshown in Figure 1. Several reasons prohibit
TAP from achieving the desired performance. First, ¢biee sampling technique used in TAP to measure
the cache sensitivity of the GPU application leaves a sicariti amount of GPU dead-blocks in the LLC.
Second, TAP takes the same decision for all GPU memory aes@ssa sampling period, and is slow to
adapt to the runtime variations in the application’s bebavi more fine-grained control over the GPU LLC
share could potentially improve the utilization of the gtht LC. We discuss TAP in detail in Section 5.3.3.

In addition to the performance aspect, the presence ofsvares could change the energy consumption
profile, both on-chip as well as off-chip, for the heterogmmemulticore processor under existing policies.
This could result in a significant increase in energy congdionmt the LLC module if the order of mag-
nitude higher access rate of GPU is not efficiently handledhieycache replacement policy. Also, since
this increase in energy consumption does not imply perfaoeamprovement in a typical cache insensi-
tive GPU application, the energy efficiency of the process@mpacted. Bandwidth utilization is another
characteristic that would also be significantly impactedig/high memory access rate of GPU cores. Since
energy consumption and bandwidth utilization have alrgadyed into first-order constraints in processor
design, these aspects could be significant challenge tadbdity of cache management policies in future
processor designs.

To handle these challenges, performance as well as endigjgrdy, we study the characteristics of the
GPU architecture. The GPU core can support thousands okabtieads simultaneously. Thus, the thread-
level parallelism (TLP) available with the GPU core is oslef magnitude higher than that with the CPU
core. This higher level of TLP aids the GPU core in toleratomgger memory access latency by scheduling
threads that are ready to execute. Our experiments shownidyatity of the GPU applications we study
have a high level of memory access latency tolerance. Takiogonsideration the latency tolerance of the
GPU, we propose Herogeneous LC Management (HeLM), a mechanism for managing shared LLC in
heterogeneous multicore processors [Mekkat et al. 2013].

HelLM is a cache replacement policy that improves the effeottss of the shared LLC in a heteroge-
neous environment by utilizing the available TLP in GPU &msilons. Under the HeLM policy, GPU LLC
accesses are throttled by allowing memory accesses taigelgdypass the LLC; and consequently, the
cache sensitive CPU application is able to utilize a largetipn of the cache. Our evaluations show that
HeLM is able to improve the overall performance of heteragers workloads significantly. We also conduct

ACM Transactions on Architecture and Code Optimization, ¥oNo. 0, Article 00, Publication date: 201X.

00:4 Anup Holey et al.

a detailed study on the energy consumption and the energjeeffy of HeLM to evaluate the feasibility
of using HeLM on real systems. Our evaluations show that HeduNperforms other policies in energy
efficiency.

Overall, the contributions in this work are as follows:

— We analyze GPU application characteristics and identigjlable TLP as an efficient runtime metric to
measure the memory access latency tolerance of the GPLtafiqt. We also find that LLC bypassing
provides sufficient aggressiveness in managing shared hlh@terogeneous multicore processors.

— We propose HelLM, a runtime mechanism, that dynamicallgmeines the cache sensitivity of both CPU
and GPU applications, and adapts the cache management patied on this information.

— We design, implement, and evaluate HeLM, and demonstnatetel M is able to improve the perfor-
mance as well as energy efficiency of shared cache managanahéterogeneous multicore processor.

The rest of this paper is organized as follows. Section 2a®rglthe challenges in LLC sharing in a
heterogeneous environment, based on which, Section 3ilesthe architecture of HeLM. Our evaluation
methodology is described in Section 4. HeLM’s performasavaluated in Section 5 and energy efficiency
in Section 6. We discuss related works in Section 7 and cdediuSection 8.

2. CHALLENGES & OPPORTUNITIES

The heterogeneous multicore architecture we addresssnniik is depicted in Figure 2. This design is
modelled after AMD Fusion APU [Brookwood 2010]. The proaassonsists of several CPU and GPU
cores each with its own private cache. These cores shard theahd DRAM controllers, and the modules
communicate through an on-chip interconnection netwofficiEnt sharing of on-chip resources is critical
to the performance of a multicore processor. The last-lesehe is one of the most important among these
resources.

DRAM
Controller

DRAM
Controller

Fig. 2: A heterogeneous multicore processor with CPU and @&tk sharing the LLC.

Existing cache management policies, developed for homemenmulticore processors, face difficulty
in adapting to heterogeneous architectures. These machafiSuh et al. 2004; Moreto et al. 2008; Kim
et al. 2004; Qureshi and Patt 2006; Xie and Loh 2010; Qureshl. €2007; Jaleel et al. 2010; Xie and
Loh 2009], that were proposed for homogeneous multicoregasors, do not consider the diversity of core
characteristics in their design. While many mechanisms¢&hi and Patt 2006; Xie and Loh 2010; Qureshi
et al. 2007; Jaleel et al. 2010; Xie and Loh 2009] considectuhe sensitivity of the application, they do
not consider the difference in LLC access rate between thersh cores in a heterogeneous multicore. An
order of magnitude higher access rate from the GPU coregpacad to the CPU cores, tends to skew their
judgement in favor of the GPU.

ACM Transactions on Architecture and Code Optimization, UoNo. 0, Article 00, Publication date: 201X.

Performance-Energy Considerations for Shared Cache Management 00:5

2.1. Challenges in LLC sharing

Sharing of the LLC among cores in a heterogeneous multicaveegsor introduces several challenges.
This section presents the challenges in determining thieecaensitivity of various applications executing
on individual cores; and devising cache management mesinarthat can cope with cores having widely
divergent memory access patterns.

Cache sensitivity indicates how much the performance ofpgfiGation can benefit from an increase in
cache capacity. Cache management policies can utilizeecsmsitivity as a metric to determine how to
best share cache capacity between cores. In CPU-based Bonamg multicore systems, this issue has been
studied extensively. Techniques, suctsaigdueling [Qureshi et al. 2007], have been demonstrated effective
in improving cache utilization. It is worth pointing out thén such CPU-based systems [Qureshi and Patt
2006; Xie and Loh 2010; Qureshi et al. 2007; Jaleel et al. 281® and Loh 2009], cache sensitivity is
often measured in terms of variations in cache miss rat@sadiifferent cores as cache capacity allocation
varies [Qureshi and Patt 2006; Xie and Loh 2010] or as caghlacement policy changes [Qureshi et al.
2007; Jaleel et al. 2010; Xie and Loh 2009].

While for CPU cores, change in cache miss rate is a directatdi of cache sensitivity, in GPU cores,
increase in cache miss rate does not necessarily lead trpenfice degradation. Figure 3 shows the cache
sensitivity of a GPU application, BoxFilter [Advanced MidDevices Incorporated 2011], where cache miss
rate does not translate directly into performance. Thiseisalnse GPU cores can tolerate memory access
latency by context switching between a large number of coeatly active threads. Thus, cache miss rate
is not a good indicator of the cache sensitivity of the GPUUG&Pecific techniques must be developed to
determine the cache sensitivity of GPU workloads.

There are two classes of techniques for
managing the shared caches: i) partitioning

. . .. =—MPKI -=IPC
the cache ways among applications; and ii) 150 2

prioritizing the insertion/eviction of blocks 130 e
AN

from different applications. When workloads

with differing cache sensitivites share a 3 /)
cache, one of these techniques could be em- % ’// 08
ployed to enhance cache utilization and maxi- 3 ,, o
mize the overall performance. However, when g o [o2

GPU workload is sharing the cache with
CPU, previously proposed mechanisms are
often unable to make judicious decisions be-
cause GPU workloads often have memory Fig. 3: Cache sensitivity of GPU application

access rates that are an order of magnitude BoxFilter [Advanced Micro Devices Incorporated 2011].
higher than those of CPU workloads. In par- BoxFilter exhibits a memory access behavior that is diverge
ticular, when both CPU and GPU workloads from the traditional understanding of the cache sensjtivit

are identified as cache sensitive, the memory streaming GPU applications.

accesses from the GPU will pollute the shared

cache, and wipe out cache blocks needed by

the CPU. In such cases, it is desirable to give cache sen€tRU workloads higher priority over cache
sensitive GPU workloads to improve the overall performance

4avB
2MB
1mB
512KB
32KB
16KB
8KB

128KB
64KB

= 256KB

C Si

N
o

2.2. Improving LLC sharing

In this work, we aim to address the challenges faced by egjistache management techniques in a hetero-
geneous multicore environment. First, we propose to usathltevel parallelism (TLP) as a runtime metric
to correctly identify the cache sensitivity of GPU applioas. Second, we propose to use LLC bypassing to
improve cache management in the heterogeneous environment

2.2.1. Available TLP as a Runtime Metric. The general cache insensitivity of GPU applications steora f
two main reasons: i) streaming memory access behaviorpaiidiigh levels of available TLP. Even when

ACM Transactions on Architecture and Code Optimization, ¥oNo. 0, Article 00, Publication date: 201X.

00:6 Anup Holey et al.

the memory access behavior is not streaming, GPU applicatice able to tolerate higher memory access
latency by utilizing the available TLP. Figure 4 shows theteasensitivity and performance characteristics
of the GPU application Floyd [Advanced Micro Devices Inammgted 2011]. Even when the application ex-
periences increase in the cache miss rate, it is able taspsdormance to some extent due to the presence
of enough threads that can prevent the GPU core from stdlintack of data. Here, the average TLP at
runtime is measured as the numbewaf/efronts! ready to be scheduled at any given time. Higher number of
ready wavefronts indicate higher TLP, which in turn indésathat GPU can tolerate higher memory access
latency.

These characteristics point to the fact that
the TLP available in a GPU application is
a good indicator to its cache sensitivity, and
hence could aid in promoting an effective
sharing of LLC among cores. Moreover, TLP
is a true runtime metric that adapts to dynamic
behaviors of the GPU application. To the best
of our knowledge, no other work has directly
utilized TLP as a metric to manage shared
LLC in heterogeneous multicore processors.
We observe that while mechanisms such as

set dueling are not able to identify the true Fig 4: TLP availability and cache sensitivity charactécisof

cache sensitivity of GPU applications, TLP gpy application Floyd [Advanced Micro Devices Incorpotate

forms an accurate metric for the same. 2011]. Figure shows that available TLP helps Floyd sustain i
2.2.2. LLC Bypassing. Toimprovethe flex- ~ Performance to some extent in the face of increasing MPKI.

ibility of cache management mechanisms in

a heterogeneous multicore processor, we ex-

plore LLC bypassing techniques. Figure 5 shows the impabypéssing the shared LLC for 100%, 75%,
50%, and 25% of GPU memory access requests. The impact of yp@ssing is related to the cache sen-
sitivity of the application and the amount of TLP availabteaantime. While applications such as Floyd,
Gaussian, Mattran, which have low TLP, suffer from randomasging, Bitsort and Hist remain unaffected
due to their cache insensitivity. Applications like Dwthaad Sobel, on the other hand, sustain their per-
formance due to high TLP availability. On average, GPU agpions can sustain up to 50% of LLC access
bypassing without significant performance degradatioe.GRU is able to do so by utilizing its high degree
of available TLP.

LLC bypassing allows potentially different decisions f@cl incoming GPU access. When both CPU
and GPU applications are identified as cache sensitive, gEhamism can consider various application
characteristics while making the bypass decisions. Suaheckeristics include the difference in cache sen-
sitivities of CPU and GPU applications, difference in meynaccess rate, and the amount of TLP available
in the GPU application. Such fine-grained throttling of eBtlC access can bring significant performance
improvement as a result of better LLC utilization.

zZzIPC -#-MPKI Avg. TLP

Avg. TLP / MPKI

64KB

32KB

16KB
8KB

= 128KB }

C Size

3. HETEROGENEOUS LLC MANAGEMENT

In this section, we describe our heterogeneous LLC managgmechanism that mitigates the performance
impact of LLC sharing by throttling LLC accesses initiatedthe GPU cores. HeLM exploits the memory
access latency tolerance capability of the GPU cores and/sithe GPU cores to yield LLC space to the
cache sensitive CPU cores without significantly degradieg own performance. In HeLM, we manage the

IWork is allocated to the GPU cores keynels that contain a large number of threads. A kernel is furthetitipmed and mapped

to different GPU cores athread-blocks or workgroups. Scalar threads within each GPU core are scheduled sineoltmty as
warps [NVIDIA Corporation 2007] orwavefronts [Advanced Micro Devices Incorporated 2007] onto the SIMEnpaiting engine.

2For 75%, 50%, and 25% bypassing, we randomly choose the GBas$ses for bypassing. The values shown are average for GPU
benchmarks in Table IlI, executing on 4 GPU cores with spetifins as mentioned in Table II.

ACM Transactions on Architecture and Code Optimization, UoNo. 0, Article 00, Publication date: 201X.

Performance-Energy Considerations for Shared Cache Management 00:7

20

0 e e e e
-ZO—QL

-40
-60 |
-80

-
|>

77777
e

7777277

Y777

Performance Impact (%)

-100 ’ﬂ W 100% Bypass [75% Bypass E50% Bypass E25% Bypass
-120

=
5]
©

binopt
bitsort
boxfilt
floyd
hist
radix

blkschl
wthaar
eigen
gaussian
matmult
mattran
reduc
scan
sobel
walsh
Average

d

Fig. 5: Performance impact of bypassing LLC for memory ases®f GPU applications in Table Ill. Performance is
relative to the performance of the application, without Lbhypassing, under LRU policy.

LLC occupancy of the GPU cores by allowing its memory traffisélectively bypass the LLC, as shown in
Figure 6, when: i) the GPU cores exhibit sufficient TLP to tate memory access latency; or ii) when the
GPU application is not sensitive to LLC performance.

For each GPU memory access, the decisions for bypassing
the LLC is made at the shared LLC. On an L1 cache miss,
the TLP information of the GPU core is attached to the LLC €= Normal Access
access request. If the access misses at the LLC, the current e s = <) BypassAccess
TLP is compared to a selected threshold. If the current TLP
is greater than the threshold, response to the cache miss by;
passes LLC. The available TLP at runtime is measured using
hardware performance monitors that measure the number of
wavefronts ready to be scheduled at any given time. A higher
number of ready wavefronts indicates higher TLP, which in
turn suggests that the GPU can tolerate higher memory acces
latency.

Figure 7 shows the high level view of HeLM. GPU LLC by-
passing decisions are made on the basis of the cache sensitiv
ties of both CPU and GPU applications. The CPU application
is given higher priority in our algorithm as it is, in general
more cache sensitive. If the CPU application is found cache
sensitive, GPU memory accesses are subject to aggressive DRAM
LLC bypassing. If not, GPU LLC sensitivity is considered and
a bypass aggressiveness is selected accordingly. Whéeneit_, =
of the applications are cache sensitive, the bypassingpaggrt':'g' 6:LLC g)llopjssmg tgchmque employed by

. . cores in HeLM.
siveness selected does not impact the performance. However
it could have significant impact on the energy consumption
and bandwidth utilization, both on-chip as well as off-chip

The cache sensitivity of the CPU and GPU applications plagrstiaal role in making bypass decisions.
A cache-insensitive CPU application does not benefit froondased LLC space made available by GPU
LLC bypassing. Bypassing LLC for a cache-sensitive GPU iappibn executing along with such cache-
insensitive CPU applications could degrade GPU performavithout improving the overall performance.

In the following subsections, we discuss in detail the tégqires employed to identify: i) the cache sensi-
tivities of the CPU and GPU applications; and ii) an effeefilP threshold to measure the memory access
latency tolerance of the GPU application. We combine thesgios into aThreshold Selection Algorithm
(TSA) that makes GPU LLC bypass decisions.

GPU | L1 |eeunee

ACM Transactions on Architecture and Code Optimization, ¥oNo. 0, Article 00, Publication date: 201X.

00:8 Anup Holey et al.

Cache
Sensitive
(CPU)

NO YES

NO Cache
Sensitive

(GPU)

Aggressive
Bypassing

Energy
Consider-
ations?

Moderate
Bypassing

Fig. 7: Flowchart for bypass algorithm in HeLM.

3.1. Measuring Cache Sensitivity

We employ a mechanism based on #eedueling [Qureshi et al. 2007] technique to measure the cache
sensitivity of the CPU and GPU applications. Set duelingliappgwo opposing techniques to two distinct
sets, and identifies the characteristic of the applicatiomfthe performance difference among the sets.
Dynamic Set Sampling (DSS) [Qureshi et al. 2006] has shownhgampling a small number of sets in the
LLC can indicate the cache access behavior with high acguvée use this technique by sampling 32 sets
(out of 4096) to measure the cache sensitivity.

Figure 8 shows a high-level view of the workings

of the set-dueling technique. Here, for a 4096 set .
cache structure, every 19&et starting from Set

follows poLicyl, while every 128 set starting - e -

from Sej follows pPoLiIcY2. Events such as cach - 8

misses are monitored, and these events incremerita ke

saturation counter when it occurspoLICY1 sets I Folicy 1

and decrement the saturation counter when it oc- E=———"7 Policy2

curs inPoLICY2 sets. The value of the saturation (R Follower Sets

counter is used to determine which policy is per- Fig. 8: Overview of the set-dueling [Qureshi et al. 2007]
forming better. This policy is then applied on the technique.

follower sets.

For HeLM, the two opposing policies used in set-dueling &sgrassing withhigh aggressiveness and
bypassing withow aggressiveness. In HeLM, the bypassing aggressiveness is adapted by aigpasi ap-
propriate threshold for bypassing. The threshold relatélse available TLP in the GPU application. When
the available TLP is higher than a selected threshold, the &plication has enough parallelism to sustain
increased memory access latency and is suitable for LLCdsjpg.

For a GPU that supports up to 64 simultaneous wavefrontsp@yathe threshold range is 0 to 63. In
this range, we select two arbitrary thresholds: HighThy &2) and LowThr (say 15). HighThr corresponds
to less aggressive bypassing as current TLP has to be highretHighThr to enable bypassing. Similarly,
LowThr corresponds to more aggressive bypassing.

3.1.1. CPU LLC Sensitivity. We evaluate the cache sensitivity of the CPU application byitoring the
impact of GPU LLC bypassing on the performance of the CPUieatibn. Since CPU applications are more
cache sensitive than GPU applications, change in cacheratesypically directly affects the performance
of CPU applications. We measure two CPU LLC misbéissLow and MissHigh corresponding to GPU
bypassing at LowThr and HighThr respectively. Tesb dueling monitors (SDM) are used at the LLC to
obtain the MissLow and MissHigh numbers, each bypassing &dsses at LowThr and HighThr respec-
tively. Since the GPU takes more LLC space with HighThr thath wowThr, MissHigh is always greater

ACM Transactions on Architecture and Code Optimizatior, UpNo. 0, Article 00, Publication date: 201X.

Performance-Energy Considerations for Shared Cache Management 00:9

than MissLow. If the difference between MissHigh and MissL@\MISS¢ py/) is greater thamThresh-
old®, GPU bypassing is affecting the CPU LLC behavior, and hetsgegrformance. This criterion can also
identify compute intensive as well as streaming CPU wordtha

3.1.2. GPU LLC Sensitivity. Figure 3 shows that cache miss rate is not a direct indicdtpeidormance
for GPU applications. Hence, we adapt the set-dueling igalerto enable measuring GPU LLC sensitivity
by directly measuring the performance of the GPU core. Fisrghrpose, we utilize two GPlsampling
cores and the two TLP threshold&owThr andHighThr. In every sampling period, one of the GPU cores
(LowGPU) performs LLC bypassing at LowThr, while the other carfeghGPU) uses HighThr. LowThr is
always smaller than HighThr and indicates a higher rate pébging. Hence, LowGPU bypasses more mem-
ory accesses than HighGPU. A significant performance diffee (\IPCs pr/), greater thapThreshold®,
between these two cores indicates that LLC bypassing isban adverse impact on the GPU performance
and hence the GPU application is cache sensitive. If th@pagnce difference is within the limit, the GPU
application is considered cache insensitive. This is sinid theCore Sampling technique used by TAP [Lee
and Kim 2012], where sampling cores insert at MRU/LRU posiiin the LLC. However, in the case of
TAP, this leads to an unwanted side-effect as discussecciinge.3.3.

3.2. Determining Effective TLP Threshold

Determining the effective TLP threshold to initiate GPU LIb@pass is critical. To adapt to the diversity
among GPU applications and the runtime variations withirapplication itself, we propose an algorithm
to dynamically adapt LowThr and HighThr. Our heuristic ispired by thebinary-chop algorithm that is
commonly used for searching an element in a sorted list boyrlanits MaxLimit andMinLimit. Binary-
chop algorithm starts with two parameters U and L such that LJ and calculates a decision element E as
the average of U and L (4 (U, L)). At the beginning of the algorithm, U and L are initzéd to MaxLimit
and MinLimit, respectively, and a prediction is made. If thecision element is lower than expected, the
search window is moved up (GO UP) by updating U and L as showalite I. If the prediction is higher
than expected, the search window is moved down (GO DOWN).a&hestep, E is recalculated, and the
process is continued until E matches with the searched efeme

\ Action | U \ L |
INIT MaxLimit MinLimit
GO UP AvG(MaxLimit, U) E
GO DOWN E AvG(L, MinLimit)

Table I: Binary-chop algorithm for adapting sampling thvelsls at runtime.

Our adaptation of the binary-chop algorithm recompute$ibieer and lower bypass thresholds at runtime
depending upon the application behavior. We start by lidtrey HighThr (U) = %xMAX wave fronts, and

LowThr (L) = ixMAX wavefronts- Here, MaxLimit = MAX,qve fronts, MINLIMit = MIN yqpe fronts- After
every sampling period, HighThr and LowThr values are updiatiéh new values of U and L, respectively.
Figure 9 demonstrates the working of this algorithm with ganeple. Here, we start with HighThr and
LowThr as shown in RASE 0. In each phase, the selected threshold is highlightedigtiFhr is selected
and the program behavior indicates the need to reduce higgaggressiveness, binary-chop algorithm will
perform the GO UP step, increasing the thresholds as showrAsE 1. If LowThr is selected and the
program behavior indicates the need to increase bypasggrgssiveness, GO DOWN step will be taken.
However, if there is a switch in direction from GO UP to GO DOWa$ shown in RASE 2, we detect

3Based on empirical analysis, we set mThreshold to 10%.

4For compute intensive workloads, MissHighMissLow ~ 0, while for streaming workloads, MissHigh MissLow ~ K (positive
number) as shown in Figure 10.

5Based on empirical analysis, we set pThreshold to 5%.

ACM Transactions on Architecture and Code Optimization, ¥oNo. 0, Article 00, Publication date: 201X.

00:10 Anup Holey et al.

a toggle and retain the previously selected threshold. gleoopdicates reaching of a stable phase and, as
observed in RASE 3, the thresholds are maintained for a specified number opkagrperiods. After this,
the algorithm restarts as shown irA&SE 4.

Phase 0 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

63 —— [— 63 m—— 63 m—— 63—

HighThr (55) == HighThr(8) HighT hr (55) e HighThr(55) e

HighT hr (47) =g

IghThr (47) L oWThr (43) mefem HighThr(43) e

LowThr(31) s LOWThr(31) e LowThr (31) s
LowThr(15) wgeen ¢ ¢ b o aeaaaa LOWThr(15) s
s - 0) e 0 e s - ()

START GOUP GO UP TOGGLE! STABLE RESTART

Fig. 9: Binary-chop algorithm for varying bypassing threkh

3.3. Putting It All Together

We combine the cache sensitivity information and TLP thoéddhinto aThreshold Selection Algorithm
(TSA). TSA monitors the workload characteristics continsly and re-evaluates the TLP threshold at the
end of every sampling period (1M execution cycles in ourgfu@nce the threshold is chosen, it is enforced
on all thefollower GPU cores. The pseudocode for TSA is shown in Algorithm 1héf€PU application is
cache sensitive, LowThr is selected for aggressively tsipgd.LC for GPU memory accesses. Otherwise,
the choice of threshold depends on the characteristicseo&#U application. If GPU application is cache
sensitive, HighThr is selected for bypassing LLC for GPU rogyraccesses.

Based on the threshold selected by TSA, HighThr and LowTérescalculated using the binary-chop
heuristic discussed in Section 3.2. For cache sensitive &fllications, LLC bypassing aggressiveness is
reduced by action GO UP; otherwise, the aggressivenessrisaised by action GO DOWN. If the ac-
tions toggle between GO UP and GO DOWN for consecutive sagleriods, we maintain the existing
HighThr and LowThr values for next five sampling periods.

CPU cache management policies have employed thread awarenavoid the domination of one appli-
cation on the sharing policy. Mechanisms such as threadealdd® [Jaleel et al. 2008] and thread-aware
DRRIP [Jaleel et al. 2010] (referred to as DRRIP here) @iizparate set of SDMs to isolate the influence
of applications on each other. Similarly, HeLM is made tlraware by assigning individual MissLow and
MissHigh counters to calculat®MISSq pyy for each thread. For thread awareness, TSA selects LowThr as
the TLP threshold if any of thAAMISS¢ py; is > mThreshold.

3.4. Other Design Considerations

3.4.1. Impact on On-Chip Energy and Off-Chip Access. Allowing memory accesses that are unlikely to
be reused in the cache to bypass the LLC can reduce the dyeaigy consumption of LLC accesses.
However, LLC bypassing could also increase the off-chip DR#ccesses. Due to the streaming nature of
GPU applications, the blocks in the LLC are mostly dead, &edaccesses go off-chip to fetch data blocks
from DRAM. Thus we observe that LLC bypassing does not irezedf-chip DRAM accesses significantly.
We evaluate the impact of bypassing on LLC energy consumjpiial off-chip accesses in Section 6.

ACM Transactions on Architecture and Code Optimization, UpNo. 0, Article 00, Publication date: 201X.

Performance-Energy Considerations for Shared Cache Management 00:11

ALGORITHM 1: Pseudocode for the Threshold Selection Algorithm (TSA).

Data: A|PCGPU,AM|SSCPU
Result: Bypass TLP Threshold
if AMISScpy > mThreshold then
| SetLowThr as TLP threshold;
end
elseif AIPCgpy > pThreshold then
| SetHighThr as TLP threshold;
end
else
if delta(AIPCqpir,pThreshold) > delta(AMISSe prr,mThreshold) then
| SetLowThr as TLP threshold;
end
else
| Energy considerations decide TLP threshold;
end

end

3.4.2. Handling Coherence. The contemporary GPU does not support coherent memoryrbigra-How-
ever, if coherence is supported in future GPUs, bypassingatso be easily supported. The additional
support for maintaining coherence with GPU bypassing mamay not be required depending upon the
inclusion property of GPU cache hierarchy. Inclusion easuhat cache blocks present in high level caches
are also present in the LLC, while non-inclusion or exclasielaxes such a constraint. Bypassing essen-
tially turns the inclusive LLC into a non-inclusive cachéerefore, the support necessary for maintaining
coherence in non-inclusive LLC can also be used to suppgddssing in inclusive LLC. Coherence in non-
inclusive caches is maintained by employing mechanisntsasisnoop filter [Salapura et al. 2008], which is
essentially a replica of higher level cache tags at the LU&r&fore, bypassing for non-inclusive LLC will
not require any modifications for handling coherence, wéilpport similar to snoop filter will be necessary
for inclusive LLC.

While this work evaluates workloads where the CPU and GPUiegijons have disjoint address spaces,
we expect the proposed technique to be equally effectivenvitese applications share the same address
space. When data is shared between the CPU and the GPU, mdyimglcache coherence mechanism will
ensure correctness of data accesses, and the proposed mgrdmnism can be deployed with a snoop filter
as discussed above. In this work, we model a GPU cache higr#trat is write-through; however, it will
work equally well with a write-back cache.

4. EXPERIMENTAL METHODOLOGY

We evaluate HeLM on a cycle accurate simulator, Multi2SinbgUet al. 2012], that simulates both CPU
and GPU cores as depicted in Figure 2. The CPU cores are radaella 4-wide out-of-order x86 processor,
while the GPU cores are based on AMD Evergreen [Advanceddvbavices Incorporated 2009] architec-
ture. We extend the memory subsystem in Multi2Sim to supgltated LLC between CPU and GPU cores.
Table Il shows the parameters of the cores we simulate.

We evaluate 500 million instructions for each CPU benchraark150 million instructiorfsfor each GPU
benchmark. The 500 million representative interval forre@PU benchmark, withef input, is obtained
through SimPoint [Hamerly et al. 2005] analysis. As follalhia previous works [Qureshi and Patt 2006;
Jaleel et al. 2010; Lee and Kim 2012], early finishing benatkaontinue to execute until all the bench-
marks execute the specified number of instructions. WeatMcPAT [Li et al. 2009] and GPUWattch [Leng
et al. 2013] for studying on-chip energy consumption, ancdADISIim2 [Rosenfeld et al. 2011] to calculate
off-chip DRAM energy consumption.

6An instruction executed by all threads in a wavefront is ¢edras one instruction.

ACM Transactions on Architecture and Code Optimization, ¥oNo. 0, Article 00, Publication date: 201X.

00:12 Anup Holey et al.

CPU
Core 1-4 cores, 2.6GHz, 4-wide out-of-order, 64-entry RpB
L1 Cache 4-way, 32KB, 64B line, private I/D (2 cycles)
L2 Cache 8-way, 256KB, 64B line, unified (8 cycles)
GPU
Core 4 cores, 1.3GHz, 8-wide SIMD, 16K register file,
64 wavefronts, round-robin scheduling
L1 Cache 4-way, 8KB, 64B line, private I/D (2 cycles)
Shared Memory 32KB, 256B block (2 cycles)
Shared Components
LLC 32-way, 2-8MB, 64B line, 4-tiles (20 cycles)
DRAM 4GB, 4 controllers (200 cycles)
NoC Mesh topology, 32B flit-size

Table II: Configuration parameters for the heterogeneoaliation infrastructure.

Selecting an appropriate baseline processor model is segeso as not to skew the evaluations in favor
of any policy. We model our baseline design on AMD Fusion ABdopkwood 2010] (A4-5300) which
contains two x86 CPU cores and 128 AMD Radeon GPU stream gsoce(grouped into 4 compute units).
We term this, the 2C4G configuration where ‘C’ stands for CBte@nd ‘G’ stands for GPU core (compute
unit). The die area taken by four GPU cores matches the déetaken by one CPU core. This allows fair
comparison between performances of an application exegati a CPU core and an application executing
on the GPU cores.

An inappropriately chosen configuration could bias the wwifthe impact of GPU cores on the perfor-
mance of the CPU application shown in Figures 1(a) and 1(hs Bias could occur when the GPU cores
are significantly larger than the CPU core, and as a resudtygwelm the LLC occupancy and performance.
To avoid any such bias that could result from the 2C4G conrditium, we consider two more configurations
on the either side of it: 1C4G and 4C4G. In 1C4G, one CPU coaeeshthe on-chip resources with four
GPU cores, and in 4C4G, four CPU cores share the on-chipmesowith four GPU cores.

4.1. Benchmarks

The CPU benchmarks evaluated belong to the SPEC CPU200Brarkcsuite [Spradling 2007]. The GPU
benchmarks evaluated are OpenCL programs from AMD APP (8ajbn Parallel Programming) v2.5
software development kit [Advanced Micro Devices Incogied 2011]. We classify these benchmarks into
different categories, depending on their cache performaasshown in Table .

| Category | CPU Benchmarks | GPU Benchmarks |
Cache | bzip2, gcc, mcf, perlbench, dealll, matrix-multiplication, matrix-transpose,
sensitive | omnetpp, astar, soplex, povray, h264 gaussian, fast-walsh transform, floyd-warshal
Streaming: libquantum, bwaves, milc, Streaming: histogram, radix sort,
Cache | zeusmp, cactusadm, gemsfdtd, Ibm, leslie3alackscholes, reduction
insensitive| Computeintensive: gobmk, hmmer, Performance insensitive: sobel, dwthaar,
sgromacs, jeng, gamess, calculix, tonto, | scanarray, dct, box filter
namd Computeintensive: binomial option,
eigen, bitonic sort

Table Ill: Classification of CPU and GPU benchmarks.

ACM Transactions on Architecture and Code Optimization, UoNo. 0, Article 00, Publication date: 201X.

Performance-Energy Considerations for Shared Cache Management 00:13

We evaluate multiprogrammed workloads on [Core Configuration | Workloads |
heterogeneous processors with core configuration 1CPU + 4GPU (1C40) 100
as shown in Table IV. For the three processor 2CPU + 4GPU (2C40) 20
configurations, namely 1C4G, 2C4G, and 4C4G, 4CPU + 4GPU (4C4G) 30

we consider three workload combinations by the
same name. Each of the CPU core executes a CPU Table IV: Heterogeneous workloads evaluated.
benchmark while all the four GPU cores execute

the same GPU benchmark. Thus, 1C4G contains

one CPU and one GPU application, while 2C4G contains two GfjiliGations executing along with one
GPU application. Equal number of CPU and GPU benchmarksedeetsd from cache sensitive and insen-
sitive categories. Workloads in Table IV are formed by ranjoselecting benchmarks from each category.
A processor with one CPU core shares a 2MB LLC with the four @Btés, while processors with two and
four CPU cores share 4MB LLC and 8MB LLC, respectively, whie four GPU cores.

4.1.1. Workload Characteristics. A rethinking of

the optimal sharing of on-chip resources in a 2 002 2 400
heterogeneous multicore processor necessitates a | [- voss I ot
reevaluation of the characteristics of the target, | on T 9 1 = o
workload. We analyze the performance charac- " T e i 150 =
teristics of general purpose GPU applications * o0 R 5
for varying LLC sizes. Based on instructions o o oF T T 0
per cycle (IPC) and misses per kilo-instruction §§C§ff‘”’“ §§§cﬁhﬂsﬂ” :
(MPKI) characteristics, we broadly classify these) 150)

applications as either cache-sensitive or cache- |7 4w Lo] e
insensitive. Cache-insensitive applications can fur- | Soqoo o -
ther be classified into three types: compute- = e E 2] 2
intensive, performance-insensitive, or streaming. °° FA osp 1
The first type puts very little pressure on the shared o=+ 7 0 100

LLC. The last two types have high LLC access g8
rate, however, cache size has hardly any influence :
on their performance. This characteristic is eitherFig. 10: LLC sensitivity of GPU benchmarks. Four
due to their streaming access behavior or their TLRBifferent classes of GPU benchmarks are shown with
availability. their IPC and MPKI for different LLC sizes (in KB).
Figure 10 shows the IPC and MPKI characteris-
tics for these categories. This characterization can
be used to evaluate the effectiveness of LLC space on thécapph, and it shows that not all GPGPU
applications have a uniform streaming access behavioreTdre several cache-sensitive applications that
need special attention while managing the LLC. These cheniatics assume increased importance when
GPU applications share the LLC with CPU applications in s&efmeneous multicore processor. Bench-
marks belonging to each class are shown in Table Ill. Wezetiliis benchmark characterization to form the
workload mix we evaluate. Section 5.5 evaluates HeLM baseti@se application classes.

3

erformance Insensitive Streaming

4.2. Cache Management Policies

HelLM is decoupled from the underlying cache managementyolthich brings flexibility to the mecha-
nism as it can be adapted to work with any cache managemeay.dal this paper, we implement HeLM
over DRRIP policy, however, it could well be implemented ogther cache management policies such as
Utility-based Cache Partitioning (UCP) [Qureshi and Pa@&]. TAP was proposed with two variants: TAP-
UCP and TAP-RRIP, built on top of UCP and DRRIP respectiv@igce TAP-RRIP outperforms TAP-UCP
in all evaluations, we choose to compare HeLM against TARFRIR DRRIP policy, incoming cache blocks
are inserted at non-MRU position and are promoted later ohechits. Similar to TAP, we do not promote

ACM Transactions on Architecture and Code Optimization, 9oNo. 0, Article 00, Publication date: 201X.

00:14 Anup Holey et al.

GPU blocks on LLC hits. Also, when both CPU and GPU blocks aedl@ble for replacement, we replace
the GPU block first.

4.2.1. Reuse-Based Cache Management. Reuse-based mechanisms [Johnson et al. 1999; Lai et al, 2001
Liu et al. 2008; Kharbutli and Solihin 2008; Khan et al. 20h@je been studied extensively in CPU domain
to improve cache utilization. Also known as dead-block preedls, they predict whether a cache block is
dead or live and improve cache performance by replacing dieatts first, by bypassing dead blocks, or by
prefetching data into dead blocks. In this paper, we comparformance of HeLM with two reuse-based
bypass mechanisms, MAT [Johnson et al. 1999] and Samplirgl{Béock Predictor (SDBP) [Khan et al.
2010].

MAT is an address-based reuse mechanism in which cache Idoslk is determined usinghdemory
Address Table (MAT) at a macroblock granularity. MAT bypasses a cache block if the victim blodsh
higher reuse than the one being inserted. SDBP, on the adimel; i's a PC-based reuse mechanism in which
the reuse pattern is learned from accesses to the cacheshioekfew sampled sets in the LLC. SDBP
updates its prediction table using the PC of the last instrndhat accesses a cache block in the sampled
sets. On an access to the LLC, SDBP predicts the cache blatdaakor live by referring to the prediction
table, indexed by the PC of the instruction initiating theess. If the block being accessed is dead, it can be
bypassed from the LLC. Other reuse-based mechanisms atessési in Section 7.2.

5. EVALUATION

In this section, we evaluate the impact of HeLM on the perfamoe of shared LLC in a heterogeneous
multicore processor. We compare the performance of HeLNh WIRRIP, MAT, SDBP, and TAP-RRIP,
all normalized to LRU. MAT and SDBP were originally proposied bypassing CPU memory accesses.
However, to compare with HeLM, we employ these techniquéxypass only the GPU memory accesses.

5.1. Evaluation Metric
We use instructions per cycle (IPC) as the main performanegien Speedup of each application (i) is

calculated as shown in Eq. 1. Geometric mean (GM) of indi@idpeedup (Eq. 2) gives the overall speedup
for all theN applications in any configuration.

IPC;
Speedupi = W (1)
speedup = GM (speedup(won)) (2)

5.2. Performance

We start our evaluation with the impact of these policiestendache performance for CPU and GPU cores.
Figure 11(a) shows the reduction in CPU and GPU LLC misseshiese policies (normalized to LRU)
for 1C4G, 2C4G, and 4C4G workloads. In case of CPU, althouigbf ahem perform better than LRU,
the improvement for DRRIP and the reuse-based mechanisiA$ @1d SDBP) are lower than TAP and
HeLM. Additionally, HeLM outperforms TAP. Overall, HeLM deices CPU LLC misses by 29.5%, 39.1%,
and 33% over LRU for 1C4G, 2C4G, and 4C4G workloads, whilectireesponding reduction for TAP are
13.9%, 18.1%, and 18.8%. On the other hand, TAP and HeLM aser¢he GPU LLC misses as they give
lower priority to GPU over CPU. While DRRIP does better th&PTand HeLM, MAT and SDBP are the
most favorable towards GPU.

The performance impact of these policies on individual sdreeach configuration is shown in Fig-
ure 11(b). For the CPU, it can be seen that the cache perfaendirectly translates to speedup. Here,
HeLM outperforms all other policies convincingly. The lowgriority given to the GPU is evident in the
speedup of TAP and HeLM. However, the impact of increasetieacisses do not translate linearly into
performance degradation for the GPU. This is due to therdiffee in cache sensitivity among the CPU and

ACM Transactions on Architecture and Code Optimization, UoNo. 0, Article 00, Publication date: 201X.

Performance-Energy Considerations for Shared Cache Management 00:15

GPU cores. This shows that it is preferable to prioritize GRglications while managing the shared LLC
space. In our experiments, the GPU benchmarks in 2C4G wamtklshow slightly higher overall perfor-
mance degradation when compared to 1C4G and 4C4G workldhaigss due to the larger concentration of
cache-sensitive GPU benchmarks in the 2C4G configuratian,1C4G and 4C4G, on average. To avoid any
bias towards HeLM and to maintain fairness in evaluatioeschmarks in each configuration are selected
randomly. In our evaluations, 2C4G happens to have a larggeoption of cache-sensitive GPU benchmarks
such assAUSSIAN andFAST-WALSH TRANSFORM (Table III).

Combined speedup for CPU and GPU
for all workloads is shown in Figure 11(c).
Speedup is calculated as the geometric mean
of individual benchmark speedups as men-
tioned in Eqg. 2. The figure shows that HeLM
outperforms all other replacement policies
consistently in overall system performance.
HelLM is also able to achieve performance
improvement across configurations. Overall,
HeLM performs 9.6%, 10.4%, and 12.5%
better than LRU for 1C4G, 2C4G, and 4C4G

4s | WDRRIP DMAT MSDBP mTAP mHelM |

% Reduction in Misses
«

workloads, respectively. The corresponding (a) Cache performance of CPU and GPU benchmarks.
Zné)(;s)’vaer:geg?o/:: rl?;e;Y\/e;|yLRU are 34%’ = —1_ WDRRIP OMAT ESDBP ETAP mHelM |7

It can be noted that 2C4G and 4C4G con-
figurations achieve higher overall speedup
than 1C4G configuration, even when GPU
performance is worse in these two compared | * w0 —
to 1C4G (Figure 11(b)). This is expected as 1cas 20 acas
2CA4G and 4C4G workloads have more CPU (b) Speedup for CPU and GPU benchmarks.
applications that achieve higher performance
gain and hence, by definition (Eq. 2), the 14 | WDRRIP OMAT SSDBP ETAP mHelM |
overall performance is better in 2C4G and
4CA4G configurations.

To form truly multiprogrammed workloads
without any bias, we have randomly cho-
sen applications, listed in Table IllI, for each
workload. Although this method ensures fair-
ness in performance analysis, we believe that
it does not warrant comparison across differ- 1ca6 2¢46 acas
ent system configurations due to the differ- (c) Combined speedup for various workloads under diffepeities.
ences in applications across workloads. How- _) o
ever, performance of HeLM for each of these Fig. 11: Impact of various policies on cache performance and
configurations shows that HeLM is able to speedup of CPU and GPU benchmarks. Graphs show results for
achieve performance for varying number of workloads: 1C4G, 2C4G, and 4C4G. Results are relative to the

cores in a heterogeneous muiticore processor. LRU policy.

2 = —

L Nl

% Speedup over LRU
“

% Speedup over LRU

5.2.1. Detailed Performance Analysis.
Since each of the configurations consist of several worldpe combined speedup across a configuration,
as shown in Figure 11, presents limited information on th@dot of various policies on individual
workloads. In Figure 12, we present detailed informationaoper-workload basis using s-cur¢e3he
s-curves here present the performance of all the workloadsonfiguration, for a policy, sorted by HeLM.

“For all s-curve figures, results are sorted by the performan¢ieLM in ascending order.

ACM Transactions on Architecture and Code Optimization, ¥oNo. 0, Article 00, Publication date: 201X.

00:16 Anup Holey et al.

——HelM « DRRIP x MAT e SDBP a TAP ——HelLM + DRRIP x MAT e SDBP a TAP
155 1.30
145 2 12
g 135 - 120 3
§ 1.25 % 1.15 / " X x a
o 115 1.10 X 'y A e
< [=% A Ao
3 105 - S 105 1 A *)
§ 095 oy g 1.00 3 X X X X
L L 095
ors @ 0.90 : :
1 26 51 76 1 1 21
1C4G Workloads 4C4G Workloads
(a) S-curve for 1C4G speedup results. (b) S-curve for 4C4G speedup results.

Fig. 12: S-curve for the combined speedup for various pedicGraphs show results for workloads: 1C4G and 4C4G.
Results are relative to the LRU policy.

 MelM - DRRIP x MAT = SDBP s TAP ——HelM « DRRIP x MAT o SDBP & TAP
> 1.30 =) 1.90
T 125 a &€ 170
g TS 5 150 J
3 110 LIS - 3 130 A</ /
o 105 - R e P Ty T SIS L T 2 110 . x
2 T (T PR P LIV T I T L x = F YA L 2
2 100 Wd—ug*-ﬂ_;—.ﬁ 3 090 F Ax x The
[x Y S 3 X (7} L
& 09 AT x L 2 070
(% 0.90 % 0'50
0.85 T T T . T T T
1 11 21 31 1 11 21 31
2C4G Workloads 2C4G Workloads: CPU1
(a) S-curve for 2C4G combined speedup. (b) S-curve for 2C4G CPUL.
——HelM + DRRIP x MAT o SDBP a TAP ——HelM ¢ DRRIP x MAT e SDBP a TAP
1.20
1.90
2 170 A 03: 110
T 150 pa NN\ = 1.00 ,
5 L a Q [A* Y]
> 130 [\ A N4 e 3 0.90
PPN AR WAV, WA VAT Ol W I B-Syesl/ A T
R s QLMD QL Ul ETL T L LI ST 2 070 |/
5 0 » x ¥ S o V'
g 070 2 o060 ¥
A 050 . . ‘ o050 ‘ ‘
1 11 21 31 1 11 21 31
2C4G Workloads: CPU2 2C4G Workloads: GPU
(c) S-curve for 2C4G CPU2. (d) S-curve for 2C4G GPU.

Fig. 13: S-curve of the combined speedup and speedup ofichdivcores in 2C4G under various policies.
Results for individual cores in Figures 13(b), 13(c), and}are sorted by the combined speedup (13(a))
for direct comparison with overall performance. Resultsratative to the LRU policy.

For 1CA4G, there are several workloads, towards the leftcidiee s-curve (Figure 12(a)), where HeLM
is outperformed by other policies. These are workloads ehé&C bypassing in HeLM degrades the GPU
performance significantly, while the performance benefitenCPU-side is not substantial enough to im-
prove the overall performance. As we scale towards 4C4G ganaiion (Figure 12(b)), we can observe that
the number of workloads where HeLM is outperformed decreaBee larger number of CPU applications
in this configuration increases the combined speedup.

To study the impact of various policies on individual apations in a workload, we study 2C4G configu-
ration in detail (Figure 13). Here, separate graphs showén®rmance s-curve for individual applications,
sorted by the overall IPC (Figure 13(a)) in ascending oMlercan observe that the performance of HeLM
for both the CPU applications is better than other policidswever, HeLM suffers performance degra-
dation for certain GPU applications. A drop in overall penfi@ance in workloads on the left hand side of

ACM Transactions on Architecture and Code Optimization, UpNo. 0, Article 00, Publication date: 201X.

Performance-Energy Considerations for Shared Cache Management 00:17

s-curve, shown in Figure 13(a), can be directly correlabeal farge drop in GPU performance, as shown in
Figure 13(d).

5.3. Comparison with Other Policies
Here we discuss the reasons for the performance improveshéigLM over various cache management
policies we evaluate.

5.3.1. DRRIP. The effectiveness of DRRIP in multicore environment ishisin Figures 11(a) and 11(b)
as DRRIP outperforms LRU. However, DRRIP faces difficultyagtapting to the heterogeneous character-
istics of the cores. DRRIP policy, similar to LRU, does nohsider the diversity among the on-chip cores
and gives equal priority to both. Therefore, the higher Llo€ess rate from the GPU cores tends to skew the
cache management policy in their favor. Thus, the perfooeamprovement for the CPU core is limited,
while GPU cores do not benefit much from the additional LLCcgpélence, the overall speedup for DRRIP
in Figure 11(c) is low.

5.3.2. MAT/SDBP. The performance of reuse analysis based policies, MAT arBFSI3 very similar to
DRRIP, however for different reasons. These mechanisrigaih capable of LLC bypassing, are overly
conservative in their approach towards the GPU applicatidhey detect reuse pattern in GPU memory
access behavior and preserve the GPU blocks in LLC. Thisangsrthe cache performance of GPU as
shown in Figure 11(a). However, GPU performance does nafiiesignificantly from the increased LLC
space due to their TLP and the ability to tolerate higher mgraocess latency. This additional LLC space
would have been better utilized had it been provided to the @pplication. Hence, these mechanisms also
observe lower overall speedup than HeLM as shown in Figufe)11

M Reuse 0 Reuse 1l EReuse2 HReuse3 [OReuse>=4

SRS

N
o)
@s’ & &

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

3

Z |
I

7

% LLC Lines Distribution

X Q
S &
N N

Fig. 14: Reuse characteristics of GPU applications at LR&ise N indicates that a line in the LLC was acces$éd
times before it was evicted. In this study, GPU applicatiamsalone and have access to a 2MB LLC.

Figure 14 shows the reuse characteristic of GPU applicaiti¥e can observe that these policies identify a
significant amount of GPU cache lines, nearly 40% on avetadrs reused. Correlating this with the bypass
tolerance of GPU applications, as shown in Figure 5, it iarcleat MAT and SDBP are overly conservative
when it comes to bypassing GPU LLC accesses. For exampldiJtBDxvthaar, and Radix benchmarks are
observed to have high reuse by MAT and SDBP, while they cataisusigh levels of LLC bypassing. Reuse
analysis could potentially be useful in improving LLC simayin the presence of GPUs. However, our study
suggests that we cannot rely on traditional reuse analysimiiques that were developed with CPU as the
primary target. In SDBP, for example, PC-based mechanism&d for identifying reuse of the LLC lines.
This mechanism is effective on CPU, where the applicatian&Harge number of instructions accessing
the memory. However, SDBP tends to identify reuse in GPU monservatively because of fewer number
of memory instructions in the GPU kernels. This reduces ffeciveness of bypassing using SDBP in
heterogeneous configurations.

ACM Transactions on Architecture and Code Optimization, ¥oNo. 0, Article 00, Publication date: 201X.

00:18 Anup Holey et al.

5.3.3. TAP. TAP considers the diversity of on-chip cores in optimizihg tache management policy, and
improves performance over existing policies by prioritgziCPU over GPU. However, HeLM still outper-
forms TAP for two reasons:

(i) the core sampling technique used by TAP leaves a significant portion of theexhk C occupied by the
GPU cores. Majority of these blocks originate from the GPtkdbat inserts at the MRU position as part of
the core sampling technique. However, a significant pofdhese blocks end up being dead blocks. In our
experiments with 1C4G workloads, as shown in Figure 15, weepke that nearly 25% of the shared LLC
space is occupied by the GPU dead blocks that were insertbd BRU position. This leads to eviction of
useful CPU blocks, leaving significant room for improvem@ihce HeLM does not suffer from this side
effect, it performs better than TAP.

(ii) TAP takes a binary decision on whether the GPU applatats cache sensitive or not. This decision
is then used to override the underlying policy for all theesses in the sampling period. However, such a
binary decision is at a coarse granularity, while a more §ireened ability to control the LLC share between
CPU and GPU could potentially improve the performance ohlibé cores. HeLM is able to control the
cache occupancy of the GPU cores at a finer granularity, bpddkypass decision for each GPU access.
This also helps in outperforming TAP.

OCPU Lines [GPULive EGPUnon-MRU Dead B GPU MRU Dead

100%

P

i

N

4

% LLC Lines Distribution
8
X

TN
» NN
LN
CEEET

Fig. 15: Distribution of the shared LLC in TAP. A significantption of the LLC is occupied by GPU deadblocks. This
study is performed on a 1C4G configuration. The CPU core aweagcutes 401.bzip2 application.

5.4. Sensitivity to Cache Size
Figure 16 presents the sensitivity of HeLM to

varying LLC sizes. For this study, we chose
the 4C4G configuration as it taxes the LLC
the most. To configure different LLC sizes
we vary the LLC associativity. As shown in
the figure, HeLM outperforms other policies
for all cache configurations. Although the per-
formance benefits of HeLM is more evident

% Speedup over LRU

25

20

15

10

EDRRIP OTAP K HelM

]
i,

W

with smaller LLC size, it is able to preserve 0 -

its benefits with increasing LLC sizes. This

M

® Wz

2M

® Wz

4M

@

8M

® Yz

16MB

shows that HeLM can adapt well to variations Fig. 16
in cache configurations.

: Performance of 4C4G workloads with varying cache
sizes. Result are relative to the LRU policy.

5.5. Workload Types

Mixing of CPU and GPU applications in a heterogeneous nmukiprocessor creates workloads with unique
characteristics. To evaluate the potential opportunitidhese workloads, we broadly classify them based
on their cache sensitivity, resulting in four differentegories:

ACM Transactions on Architecture and Code Optimization, UoNo. 0, Article 00, Publication date: 201X.

Performance-Energy Considerations for Shared Cache Management 00:19

— CPU cache Sensitive, GPU cache Insensitive (CSGI): CSGI is perhaps the most common category in
which GPU occupies majority of the LLC space leading to pcenfgrmance of the CPU application in
existing cache policies.

— CPU cache Sensitive, GPU cache Sensitive (CSGS: Although GPU is cache sensitive in this combination,
it has the advantage of high TLP. Hence, any additional LL&cspgiven to CPU could bring a larger
overall performance improvement.

— CPU cache Insensitive, GPU cache Insensitive (CIGI):

— CPU cache Insensitive, GPU cache Sensitive (CIGS): These categories do not leave significant room for
performance improvement as the CPU applications are caskeasitive.

Figure 17 presents the speedup for the eval-

uated policies, over LRU, for the four cate- 120
gories. As expected, all the policies show per-
formance improvement over LRU in the first
two categories (CSGI, CSGS) where CPU is
cache sensitive. Also, we can observe that
HelLM outperforms all the other policies in
these categories, particularly by a significant
margin for CSGI which is the most common . \

category. In the last two categories (CIGl, csal CsGs cial cies

CIGS), there is hardly any performance im-giy 17 speedup for 1C4G workloads category-wise. Resalt a
provement over LRU for any of the policies. relative to the LRU policy.

l EMDRRIP OMAT RSDBP MTAP-RRIP @HelM

Speedup over LRU

5.6. Off-Chip Bandwidth Utilization

Allowing certain memory accesses to bypass the LLC can piatgrincrease the off-chip bandwidth utiliza-
tion which could, in turn, impact the performance of the sgstin our evaluations, we accurately measure
the impact of this overhead using cycle accurate networkzRAM simulators as mentioned in Section 4.
For 2C4G configuration, HeLM increases the off-chip bandhwidilization by only 7% over LRU policy.
This shows that HeLM is able to improve performance withagmi§icantly increasing the DRAM band-
width utilization. It should be noted that TAP also increas#-chip bandwidth utilization by 3.4%.

In systems which utilize significant amount of DRAM memonygk as data center systems, the increase
in off-chip memory bandwidth utilization due to bypassiraytd have a significant impact on performance.
In such situations, HeLM should consider off-chip bandWidtilization while making bypassing decisions.

| Policy | Hardware | Overhead |
4K-entry memory address table
MAT [Johnson et al. 1999] (each entry: 20-bit tag, 8-bit counter, 14.5 KB
1 valid bit)
SDBP [Khan et al. 2010] 4K-entry x 3 prediction tables (each entry: 13.7KB
2-bit counter), sampler sets
TAP [Lee and Kim 2012] Instruction counters (20-bit x 4 GPU cores) 120 bits

core IDs (10-bit x 4 LLC tiles)
MissHigh and MissLow counters (20-bit each),
HelLM TLP threshold register (6-bit), 166 bits
instruction counters, core IDs

Table V: Hardware Overhead.

ACM Transactions on Architecture and Code Optimization, ¥oNo. 0, Article 00, Publication date: 201X.

00:20 Anup Holey et al.

5.7. Hardware Overhead

Table V presents the hardware overhead for various cachagearent policies, including HeLM. While
MAT and SDBP require significant amount of storage to traekrfuse of LLC blocks, TAP and HeLM can
be implemented using simple hardware counters. HeLM aslizlissHigh, and MissLow counters to track
GPU and CPU LLC access behavior. Also, instruction courdgatscore IDs are required to identify the
cache sensitivity of the GPU application. The TLP threshelgister holds the TLP threshold selected by
TSA. In summary, hardware overhead for HeLM is comparabthabfor TAP, and both these mechanisms
use significantly less additional hardware than MAT or SDBP.

6. ENERGY CONSUMPTION

HelLM’s LLC bypassing technique could al-
ter the energy consumption profile of the sys-
tem, both on-chip as well as off-chip. On- 11
chip, there are two scenarios contributing to
LLC dynamic energy: (i) on an LLC hit, tag
array and cache block data are accessed; and
(ii) on an LLC miss, tag array is accessed, a
cache block is written back to memory if it is
dirty, and data for the missed access is writ-
ten to the cache block. When an LLC access
is bypassed on a miss, only the tag array is ac-
cessed, eliminating the energy consumption (a) On-chip dynamic energy consumption
of data block accesses. Additionally, dynamic ”
access energy of the memory controller could [WORRP OMAT ®SDBP GTAPRRIP @HelM |
also be altered by LLC bypassing because of s
the changes in off-chip access requests. Static
energy, on the other hand, is dependent on the
total execution time, and is hence related to
the performance of the policy.

Here, we discuss the energy consumption

[WORRP OMAT RSDEP ETAPRRIP EHelM |

1.05

Normalized Energy

CPU1 CPU2 GPU GM

Normalized Energy

7222222272222

of our baseline 2C4G configuration. The en- T ou cPU2 GPU M

ergy consumption shown in Figure 18 for
each of the policy and configuration is nor-
malized to the LRU policy. Figure 18(a) 11

(b) On-chip static energy consumption

shows the on-chip dynamic energy consump- | z 10s [morwe_owmar_ssose aTapie mrelm |
tion (cores, LLC, memory controller) for the g

various policies. HeLM improves the on- ”é 05 <

chip dynamic energy consumption by about | £ \\‘ - l§‘

2% compared to TAP. Figure 18(b), on the | £ °° | § |

other hand, shows the on-chip static en- | 2 08 . § .

ergy consumption (cores, LLC, memory con- 038 A \

troller). Here also, HeLM improves the over- cPuL CPU2 GPU GM
all on-chip static energy consumption due to (c) On-chip total energy consumption

the performance improvement. Overall, Fig-

ure 18(c) shows the combined (static + dy- Fig. 18: On-Chip energy consumption for the 2C4G

namic) on-chip energy for the 2C4G config- configuration. Figures show the energy consumption for two

uration. HeLM consumes about 2% less on- CPU applications, one GPU application, and for the system

chip energy than TAP. (geometric mean). Results are normalized to the LRU policy.
LLC bypassing, on the other hand, could

lead to an increase in off-chip main memory

ACM Transactions on Architecture and Code Optimizatior, UoNo. 0, Article 00, Publication date: 201X.

Performance-Energy Considerations for Shared Cache Management 00:21

1.05
[®WDRRIP DMAT NSDBP MTAPRRIP mHelM |
: & 1
DRAM Energy Consumption qh)
HelM | & 095
- el
TAP-RRIP]
SDBP 5 09
MAT 1S
1 5 085
DRRIP s =
0.75 0.8 0.85 0.9 0.95 1 0.8
Normalized Energy CcPU1 CPU2 GPU GM

(a) DRAM energy consumption for the different policies fbe{b) Total system (on-chip + DRAM) energy consumption for the
2C4G configuration. The results are normalized to the LRU different policies for the 2C4G configuration. The resutts @or-
icy. malized to the LRU policy.

Fig. 19: Off-chip (DRAM) and total system energy consumptfior the different policies for the 2C4G
configuration.

(DRAM) accesses, resulting in a potential increase in DRAMaimic energy consumption. Figure 19(a)
shows the DRAM energy consumption for 2C4G workloads. Hehbtéases the DRAM energy consump-
tion when compared to DRRIP, MAT and SDBP. However, its DRAMIgyY consumption is comparable
to that of TAP. TAP also increases DRAM energy consumptioa uthe increase in DRAM access rate
as a result of the low priority given to GPU memory access&RIP policy shows a significant reduction
in DRAM energy consumption as it prioritizes memory accessem the GPU cores that reduces DRAM
access.

Figure 19(b) shows the overall system (on-chip + DRAM) egargnsumption for the 2C4G configu-
ration. Here, we see that HeLM’s energy consumption is sintid DRRIP and MAT, and in fact lower
than TAP and SDBP. HeLM outperforms TAP in energy consunmgbipabout 3%. This shows that energy
consumption is not a concern for the bypassing-based HeLM.

6.1. Energy Delay-Squared Product

Energy efficiency has emerged as an important metric in &toiral evaluations. Several works [Ku-

mar et al. 2003; Brooks et al. 2000; Salapura et al. 2005] hawesd to energy delay-squared product
(ED?) [Pénzes and Martin 2002] as the metric of choice to studygnefficiency as it considers both en-

ergy consumption and performance in determining the efffigi@f a processor. In this section, we evaluate
HeLM on the basis of the energy delay-squared product métoica multiprogrammed workload such as
2C4G, however, calculating Eyets tricky. Below we describe how we calculate the? Bitric.

For our baseline 2C4G workload, Efor
each CPU application and the GPU appli- 2

cation is calculated separately as they ex- » [WORRIP CIMAT SSDBP ETAP-RRIP _@HelM |

perience different execution times and per-
formance improvements. Energy consump-
tion for each core is calculated separately as
they have different architectural characteris-
tics. Meanwhile, energy consumed by shared
resources, such as LLC and memory con- |
trollers, is pro-rated for each application on ' cPUL cPU2 GPU 6M

the basis of either execution time (for static_
energy) or access numbers (for dynamic erfri9. 20: Total system energy delay-squared tEmoduct for the

ergy). Geometric Mean (GM) is used to cal- different policies for_ the 2C4G configur_ation. Results are
culate the EB for a policy for the entire normalized to the LRU policy.

workload. The EBis normalized to the base-

line of LRU policy.

Normalized ED?

ACM Transactions on Architecture and Code Optimization, ¥oNo. 0, Article 00, Publication date: 201X.

00:22 Anup Holey et al.

Figure 20 shows the normalized Efor all the policies for the 2C4G configuration. We see that fo
the CPU applications, HeLM’s EDvalue improves significantly compared to other policiess dini the
performance improvement. For the GPU application? Ersens as we sacrifice GPU performance for
overall performance improvement. However, we can notelieatM’s ED? for GPU is only slightly worse
than that for TAP. Overall, HeLM performs better than otheligies in terms of EB. It does nearly 8%
better than TAP. These evaluations show that HeLM faresiian other policies from the energy efficiency
perspective.

7. RELATED WORK

The importance of the cache subsystem to application padoce has left a significantly large trove of
research work in cache management techniques. In thiosewte discuss only the works that are closely
related to ours.

7.1. Cache Management

Existing works on cache management for homogeneous mugpzocessors can be divided into two general
categories: (i) cache partitioning techniques; and (icheareplacement policies.

7.1.1. Partitioning Techniques. Stone et al. [Stone et al. 1992] conducted one of the firstestiah optimal
cache patrtitioning. However, they proposed static partitig based on miss rate information for various
applications with varying cache sizes. Dynamic cache f@nthg mechanisms, on the other hand, aim
to achieve their performance goal by dividing the cache waapsng the applications at runtime. Suh et
al. [Suh et al. 2004] introduce dynamic cache partitioningpag threads executing on the same chip by
utilizing hardware performance counters to maximize cdghamong threads. Moreto et al. [Moreto et al.
2008] propose a dynamic cache partitioning mechanism tivegiders the memory-level parallelism of an
application and the impact of cache misses on its performa@aality-of-service (QoS) considerations
were addressed for multicore cache partitioning by Charad §€hang and Sohi 2007], while fairness was
considered by Kim et al. [Kim et al. 2004]. Utility-based bamartitioning (UCP) [Qureshi and Patt 2006]
tries to find the optimal cache partitioning by prioritiziagplications on the basis of benefit from cache over
the demand for cache. Thrasher caging [Xie and Loh 2010ya&+ates cache partitioning mechanisms in
the presence of one or more thrashing applications. Rgc@niEM [Manikantan et al. 2012] has introduced
a probabilistic shared cache management framework thaidens various aspects such as cache hit ratio,
fairness, and QoS.

7.1.2. Replacement Policies. Cache replacement policies aim to identify the appropatgtion to in-
sert a new cache block and to identify the right victim forlaggment to achieve their performance goal.
Qureshi et al. propose the dynamic insertion policy (DIPY{€3hi et al. 2007] that overcomes the impact
of thrashing behavior of certain applications on other @pgibns in the workload. DIP achieves this by
inserting cache blocks from thrashing workloads at LRU fimsito minimize their cache lifetime. Jaleel et
al. [Jaleel et al. 2010] utilize re-reference interval pcedn (RRIP) to develop a replacement policy that is
both thrashing and scan resistant. PIPP [Xie and Loh 20G9¢t&che management technique that combines
insertion and promotion policies to utilize the benefits a€lte partitioning and adaptive insertion. Both
RRIP and PIPP show that inserting cache blocks at MRU posftiear-immediate re-reference) is not op-
timal, while insertion of cache blocks at non-MRU positiordgromoting them on cache hits improves the
cache utilization significantly. Pseudo-LIFO [Chaudh@2] proposes a new family of cache replacement
policies that is based on fill stack as opposed to the recaack followed by previous policies. Recently,
hierarchy awareness about other levels of cache has beeduned by CHAR [Chaudhuri et al. 2012] to
improve the replacement policy applied at the LLC.

However, these mechanisms face significant challenge iprémence of diverse cores sharing the LLC.
Hence, they cannot be directly adopted to heterogeneouiorelprocessors. A recent work, TAP [Lee and
Kim 2012], adapts UCP and RRIP for heterogeneous multicavegssors. However, HeLM outperforms
these policies as discussed in Section 5.3.

ACM Transactions on Architecture and Code Optimizatior, UoNo. 0, Article 00, Publication date: 201X.

Performance-Energy Considerations for Shared Cache Management 00:23

7.2. Dead Block Predictors

Reuse-based cache management, often referred to as ae&debédictors, have been proposed in prior
works [Johnson etal. 1999; Lai et al. 2001; Liu et al. 2008aKdutli and Solihin 2008; Khan et al. 2010]. Lai
et al. proposed a dead-block predictor to prefetch datalihtdata cache [Lai et al. 2001]. While Kharbutli
et al. proposed counting-based dead-block predictorsri{tithand Solihin 2008] that consider the number
of accesses to a cache block, Cache Bursts [Liu et al. 20G&jrebs references to a cache block at MRU
position to make dead block prediction. All prior works havey addressed the dead-block prediction issue
for CPU workloads. These mechanisms cannot be directlytaddpr heterogeneous workloads as they
prove to be overly conservative for the GPU as discusseddtid®es.3.2.

8. CONCLUSIONS

The growing importance of data-parallel accelerator gaesh as GPU, has lead to their integration with
CPU cores on the same die. Such architectures with hetezogsrmprocessing cores present a significant
challenge to optimal sharing of on-chip resources such@s . Our heterogeneous LLC management
mechanism, HeLM, monitors the TLP available in the GPU ajgpidon and uses this information to throttle
the GPU LLC access when the application has enough TLP taiadshger memory access latency. This in
turn provides an increased share of the LLC to the CPU agjaitghus improving its performance. HeLM
monitors the cache sensitivity of both CPU and GPU appbicatin heterogeneous workloads, and achieves
LLC sharing that improves overall system performance arggnefficiency.

We evaluate HelLM against: (i) existing shared LLC managédrtezniques (LRU, DRRIP); (ii) reuse-
based bypassing mechanisms (MAT, SDBP); and (iii) the cadjnique proposed for heterogeneous mul-
ticore (TAP). Evaluations are based on a heterogeneouscoragtprocessor modelled after AMD APU
processors currently available in market. HeLM outperfoaththese mechanisms in overall system perfor-
mance. HeLM improves over LRU policy by 10.4% and outperf®iiiAP by 5.9% for the baseline processor
configuration with two CPU and four GPU cores. Evaluatiorresg configurations show that HeLM is able
to maintain performance under varying processor core met.Mlalso outperforms competing policies in
energy efficiency. HeLM consumes nearly 3% less total eneogypared to TAP, while reducing By
8%, for the baseline configuration. To summarize, HeLM oxitgens other policies consistently in terms of
both performance and energy efficiency. Additionally, Hehbhieves these characteristics without signifi-
cant increase in off-chip bandwidth utilization. For theséline configuration, HeLM increases the off-chip
bandwidth utilization by only 7% over LRU policy.

Through this work, we demonstrate that judicious allocatibspace among diverse cores is key to effi-
cient sharing of on-chip LLC in a heterogeneous multicompssor. By effectively managing LLC distri-
bution, with cache sensitivity awareness, HeLM is able tpriowe both performance and energy efficiency
over currently proposed techniques.

Acknowledgment

This work is supported in part by National Science Founaegi@ants CCF-0916583 and CPS-0931931. We
would also like to thank Ragavendra Natarajan, Jieming &g Carl Sturtivant for their suggestions to
improve the paper.

REFERENCES

Advanced Micro Devices Incorporated. 2007. ATI Stream Cotimg Programming Guide. (2007). http://www.amd.com.

Advanced Micro Devices Incorporated. 2009. Evergreen amstruction Set Architecture . (2009). http://www.aroom.

Advanced Micro Devices Incorporated. 2011. AMD Acceleda®arallel Processing (APP) Software Development Kit (SBR)11).
http://developer.amd.com/sdks/amdappsdk/.

David M. Brooks, Pradip Bose, Stanley E. Schuster, Hanshdaey Prabhakar N. Kudva, Alper Buyuktosunoglu, John-©veliman,
Victor Zyuban, Manish Gupta, and Peter W. Cook. 2000. Potweare Microarchitecture: Design and Modeling Challengars f
Next-Generation Microprocessot&EE Micro 20, 6 (Nov. 2000), 26-440 : http://dx.doi.org/10.1109/40.888701

Nathan Brookwood. 2010. AMD Fusion Family of APUs: EnabliagSuperior, Immersive PC Experienckdvanced Micro De-
vices(AMD) White Paper (2010).

ACM Transactions on Architecture and Code Optimization, ¥oNo. 0, Article 00, Publication date: 201X.

00:24 Anup Holey et al.

Jichuan Chang and Gurindar S. Sohi. 2007. Cooperative cgetngtioning for chip multiprocessors. IfProceedings of
the 21st Annual International Conference on Supercomputing (ICS '07). ACM, New York, NY, USA, 242-252.
DA : http://dx.doi.org/10.1145/1274971.1275005

Mainak Chaudhuri. 2009. Pseudo-LIFO: the foundation ofva fagnily of replacement policies for last-level cachesPhaceedings of
the 42nd Annual |EEE/ACM International Symposium on Microarchitecture (MICRO 42). ACM, New York, NY, USA, 401-412.
DA : http://dx.doi.org/10.1145/1669112.1669164

Mainak Chaudhuri, Jayesh Gaur, Nithiyanandan Bashyamen$@s Subramoney, and Joseph Nuzman. 2012. Introducing
hierarchy-awareness in replacement and bypass algoriftomfast-level caches. IfProceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques (PACT '12). ACM, New York, NY, USA, 293-304.

DA : http://dx.doi.org/10.1145/2370816.2370860

Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Cald@s. Bmpoint 3.0: Faster and more flexible program analyrsidournal
of Instruction Level Parallelism.

Intel Corporation. 2009. Intel Sandy Bridge Microarchitee. (2009). http://www.intel.com.

Aamer Jaleel, William Hasenplaugh, Moinuddin QureshiieiuSebot, Simon Steely, Jr., and Joel Emer. 2008. Adaptseriion poli-
cies for managing shared cachesPhoceedings of the 17th International Conference on Parallel Architectures and Compilation
Techniques (PACT '08). ACM, New York, NY, USA, 208-219DQ : http://dx.doi.org/10.1145/1454115.1454145

Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., amdl Hmer. 2010. High performance cache replacement usingfeesnce
interval prediction (RRIP). IfProceedings of the 37th Annual International Symposium on Computer Architecture (ISCA ' 10).
ACM, New York, NY, USA, 60-71DQ : http://dx.doi.org/10.1145/1815961.1815971

T.L. Johnson, D.A. Connors, M.C. Merten, and W.-M.W. Hwu929Run-time cache bypassindgEE Trans. Comput. 48, 12 (dec
1999), 1338 —1354D0 : http://dx.doi.org/10.1109/12.817393

Samira Manabi Khan, Yingying Tian, and Daniel A. JimenezZl®@0Sampling Dead Block Prediction for Last-Level Cachadro-
ceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO '43). IEEE Computer
Society, Washington, DC, USA, 175-1880 : http://dx.doi.org/10.1109/MICR0O.2010.24

Mazen Kharbutli and Yan Solihin. 2008. Counter-Based Cd&bplacement and Bypassing Algorithmh&EE Trans. Comput. 57, 4
(April 2008), 433-447DQ : http://dx.doi.org/10.1109/TC.2007.70816

Khronos Group. 2009. OpenCL - The open standard for parglsbgramming of heterogeneous systems. (2009).
http://www.khronos.org/opencl/.

Seongbeom Kim, Dhruba Chandra, and Yan Solihin. 2004. R&th€ Sharing and Partitioning in a Chip Multiprocessor Aecture.
In Proceedings of the 13th International Conference on Parallel Architectures and Compilation Techniques (PACT '04). IEEE
Computer Society, Washington, DC, USA, 111-1R@I : http://dx.doi.org/10.1109/PACT.2004.15

R. Kumar, K.1. Farkas, N.P. Jouppi, P. Ranganathan, and Dullsen. 2003. Single-ISA heterogeneous multi-core &chires: the
potential for processor power reduction.Nhcroarchitecture, 2003. MICRO-36. Proceedings. 36th Annual |IEEE/ACM Interna-
tional Symposium on. 81-92.DA : http://dx.doi.org/10.1109/MICR0O.2003.1253185

An-Chow Lai, Cem Fide, and Babak Falsafi. 2001. Dead-blo@diption & dead-block correlating prefetchers. Pnoceedings
of the 28th Annual International Symposium on Computer Architecture (ISCA '01). ACM, New York, NY, USA, 144-154.
DA : http://dx.doi.org/10.1145/379240.379259

Jaekyu Lee and Hyesoon Kim. 2012. TAP: A TLP-aware cache gamnant policy for a CPU-GPU heterogeneous architecture. In
Proceedings of the 2012 IEEE 18th International Symposium on High-Performance Computer Architecture (HPCA '12). IEEE
Computer Society, Washington, DC, USA, 1-I2) : http://dx.doi.org/10.1109/HPCA.2012.6168947

Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syéddrs Nam Sung Kim, Tor M. Aamodt, and Vijay Janapa Reddil20
GPUWattch: Enabling Energy Optimizations in GPGPUsPtaceedings of the 40th Annual International Symposium on Com+
puter Architecture (ISCA*13). ACM, New York, NY, USA, 487-498D0 : http://dx.doi.org/10.1145/2485922.2485964

Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman,Dba Tullsen, and Norman P. Jouppi. 2009. McPAT: an
integrated power, area, and timing modeling framework farticore and manycore architectures. Rnoceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 42). ACM, New York, NY, USA, 469-480.
DA : http://dx.doi.org/10.1145/1669112.1669172

Haiming Liu, Michael Ferdman, Jaehyuk Huh, and Doug Burg@@8. Cache bursts: A new approach for eliminating deackblaad
increasing cache efficiency. Rroceedings of the 41st annual IEEE/ACM International Symposium on Microarchitecture (MICRO
41). IEEE Computer Society, Washington, DC, USA, 222—-233\. : http://dx.doi.org/10.1109/MICR0O.2008.4771793

R Manikantan, Kaushik Rajan, and R Govindarajan. 2012. &hitibtic shared cache management (PriSM)Ptoceedings of the
39th Annual International Symposium on Computer Architecture (ISCA '12). IEEE Computer Society, Washington, DC, USA,
428-439. http://dl.acm.org/citation.cfm?id=23371532208

Vineeth Mekkat, Anup Holey, Pen-Chung Yew, and Antonia ZB&iL3. Managing shared last-level cache in a heterogemaoltisore
processor. IiProceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques (PACT ' 13).
IEEE Press, Piscataway, NJ, USA, 225-234. http://dl.agftitation.cfm?id=2523721.2523753

ACM Transactions on Architecture and Code Optimizatior, UoNo. 0, Article 00, Publication date: 201X.

Performance-Energy Considerations for Shared Cache Management 00:25

Miquel Moreto, Francisco. J. Cazorla, Alex Ramirez, andéda¥alero. 2008. MLP-Aware Dynamic Cache PartitioningPhoceed-
ings of the International Conference on High Performance Embedded Architectures and Compilers. Lecture Notes in Computer
Science, Vol. 4917. 337-352.

NVIDIA Corporation. 2007. NVIDIA CUDA C Programming Guid€2007). http://www.nvidia.com.

Paul | Pénzes and Alain J. Martin. 2002. Energy-delay Efficy of VLSI Computations. |Rroceedings of the 12th ACM Great Lakes
Symposiumon VLS (GLSVLS '02). ACM, New York, NY, USA, 104-111DQ : http://dx.doi.org/10.1145/505306.505330

Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon @e8t, and Joel Emer. 2007. Adaptive insertion policies fghtperfor-
mance caching. liProceedings of the 34th Annual International Symposium on Computer Architecture (ISCA '07). ACM, New
York, NY, USA, 381-391DQ : http://dx.doi.org/10.1145/1250662.1250709

Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale Ratt. 2006. A Case for MLP-Aware Cache ReplacemenBrtn
ceedings of the 33rd Annual International Symposium on Computer Architecture (ISCA’06). IEEE Computer Society, Washington,
DC, USA, 167-178DA : http://dx.doi.org/10.1109/ISCA.2006.5

Moinuddin K. Qureshi and Yale N. Patt. 2006. Utility-BaseddBe Partitioning: A Low-Overhead, High-Performance, tiRae Mech-
anism to Partition Shared Caches.Aroceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 39). IEEE Computer Society, Washington, DC, USA, 423-432. : http://dx.doi.org/10.1109/MICRO.2006.49

P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. DRAMSKR2ycle Accurate Memory System Simulat@omputer Architecture
Letters 10, 1 (2011), 16—-19DA : http://dx.doi.org/10.1109/L-CA.2011.4

Valentina Salapura, Randy Bickford, Matthias BlumrichtbAr A. Bright, Dong Chen, Paul Coteus, Alan Gara, Mark Giapg
Michael Gschwind, Manish Gupta, Shawn Hall, Ruud A. Harifdjlip Heidelberger, Dirk Hoenicke, Gerard V. Kopcsay,
Martin Ohmacht, Rick A. Rand, Todd Takken, and Pavlos Vra2895. Power and Performance Optimization at the Sys-
tem Level. InProceedings of the 2nd Conference on Computing Frontiers (CF '05). ACM, New York, NY, USA, 125-132.
DA : http://dx.doi.org/10.1145/1062261.1062262

Valentina Salapura, Matthias Blumrich, and Alan Gara. 2@&sign and implementation of the Blue Gene/P snoop filteHigh
Performance Computer Architecture, 2008. HPCA 2008. |EEE 14th International Symposium on. IEEE, 5-14.

Cloyce D. Spradling. 2007. SPEC CPU2006 Benchmark T&GARCH Computer Architecture News 35 (March 2007). Issue 1.

Harold S. Stone, John Turek, and Joel L. Wolf. 1992. Optinaatifioning of cache memoryomputers, IEEE Transactions on 41, 9
(1992), 1054-1068DA : http://dx.doi.org/10.1109/12.165388

G.E. Suh, L. Rudolph, and S. Devadas. 2004. Dynamic Paitigpof Shared Cache Memoryhe Journal of Supercomputing 28
(2004), 7-26. Issue DA : http://dx.doi.org/10.1023/B:SUPE.0000014800.273B3.8

Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana SchabDawid Kaeli. 2012. Multi2Sim: A Simulation Framework folPO-
GPU Computing . IrProc. of the 21st International Conference on Parallel Architectures and Compilation Techniques.

Yuejian Xie and Gabriel H. Loh. 2009. PIPP: promotion/itiger pseudo-partitioning of multi-core shared cachesPinceed-
ings of the 36th annual international symposium on Computer architecture (ISCA '09). ACM, New York, NY, USA, 174-183.
DA : http://dx.doi.org/10.1145/1555754.1555778

Yuejian Xie and Gabriel H. Loh. 2010. Scalable shared-cacheagement by containing thrashing workload$rioceedings of the 5th
International Conference on High Performance Embedded Architectures and Compilers (HiIPEAC' 10). Springer-Verlag, Berlin,
Heidelberg, 262-27@0 : http://dx.doi.org/10.1007/978-3-642-1151528

ACM Transactions on Architecture and Code Optimization, ¥oNo. 0, Article 00, Publication date: 201X.

