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Heterogeneous multicore processors that integrate CPU cores and data-parallel accelerators such as GPU cores onto thesame die
raise several new issues for sharing various on-chip resources. The shared last-level cache (LLC) is one of the most important shared
resources due to its impact on performance. Accesses to the shared LLC in heterogeneous multicore processors can be dominated by
the GPU due to the significantly higher number of concurrent threads supported by the architecture. Under current cache management
policies, the CPU applications’ share of the LLC can be significantly reduced in the presence of competing GPU applications. For many
CPU applications, a reduced share of the LLC could lead to significant performance degradation. On the contrary, GPU applications can
tolerate increase in memory access latency when there is sufficient thread-level parallelism. In addition to the performance challenge,
introduction of diverse cores on to the same die changes the energy consumption profile and, in turn, affects the energy efficiency of
the processor.

In this work, we propose Heterogeneous LLC Management (HeLM), a novel shared LLC management policy thattakes advantage
of the GPU’s tolerance for memory access latency. HeLM is able to throttle GPU LLC accesses and yield LLC space to cache sensitive
CPU applications. This throttling is achieved by allowing GPU accesses to bypass the LLC when an increase in memory access latency
can be tolerated. The latency tolerance of a GPU applicationis determined by the availability of thread-level parallelism, which is
measured at runtime as the average number of threads that areavailable for issuing. For a baseline configuration with twoCPU cores
and four GPU cores, modelled after existing heterogeneous processor designs, HeLM outperforms LRU policy by 10.4%. Additionally,
HeLM also outperforms competing policies. Our evaluationsshow that HeLM is able to sustain performance with varying core mix.

In addition to the performance benefit, bypassing also reduces total accesses to the LLC leading to a reduction in the energy
consumption of the LLC module. However, LLC bypassing has the potential to increase off-chip bandwidth utilization andDRAM
energy consumption. Our experiments show that HeLM exhibits better energy efficiency by reducing ED2 value by 18% over LRU,
while impacting only a 7% increase in off-chip bandwidth utilization.
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(a) Cache occupancy of the CPU and the GPU cores. Occupancy
refers to the distribution of the LLC space between applications.

(b) Normalized IPC for cache sensitive CPU application
(401.bzip2) when GPU is introduced. IPC is normalized to the
IPC of 401.bzip2 executing on the heterogeneous processor with-
out interference from the GPU cores.

Fig. 1:The performance impact on a cache sensitive CPU applicationsharing the LLC with GPU application under
various cache replacement policies. Cache sensitive SPEC [Spradling 2007] application 401.bzip2 executes on the CPU
core. The performance impact is measured across the set of GPU benchmarks shown in Table III. Three configurations

with varying GPU core counts are evaluated. TAP-RRIP [Lee and Kim 2012] results are shown only for 4 GPU
configuration as TAP-RRIP needs more than two GPU cores for full functioning.

1. INTRODUCTION

Advances in semiconductor technology and the urgent need for energy efficient computation have facilitated
the integration of computational cores that are heterogeneous in nature onto the same die. Data-parallel ac-
celerators such as Graphic Processing Units (GPU) are amongthe most popular accelerator cores used in
such designs. With easy to adopt programming models, such asNvidia CUDA [NVIDIA Corporation 2007]
and OpenCL [Khronos Group 2009], these data-parallel coresare now being employed to accelerate diverse
workloads. Availability of heterogeneous multicore systems such as AMD Fusion [Brookwood 2010] and
Intel Sandy Bridge [Intel Corporation 2009] suggests that multicore designs with heterogeneous process-
ing elements are becoming part of mainstream computing. Diversity in the performance characteristics of
these computational cores presents a unique set of challenges in designing these heterogeneous multicore
processors.

In heterogeneous multicore systems, the efficient sharing of on-chip resources such as the last-level cache
(LLC) is key to performance. However, the integration of CPUand GPU cores onto the same die leads to
competition in the LLC that does not exist in homogeneous systems. First, the difference in cache sensitivity
among diverse cores imply difference in performance benefits obtained from owning the same amount of
cache space. Second, GPU cores with a large number of threadscan potentially dominate accesses to the
LLC, and consequently, skew existing cache sharing policies in favor of the GPU cores. As a result, GPU
cores occupy an unfair share of the LLC with existing policies.

Figure 1 shows the performance of various cache replacementpolicies in a heterogeneous execution en-
vironment where 401.bzip2 (from the SPEC CPU2006 benchmarksuite [Spradling 2007]) executing on a
single CPU core shares a 2MB LLC with a GPU benchmark (from theAMD APP benchmark suite [Ad-
vanced Micro Devices Incorporated 2011]) executing on the GPU. The applications are listed in Table III
and the details of the experiment and processor configurations are provided in Section 4. Figure 1(a) shows
the average LLC occupancy and Figure 1(b) shows the normalized IPC of the CPU application across all
the GPU benchmarks. Occupancy refers to the distribution ofthe LLC space between applications. Since
401.bzip2 is cache sensitive, while most of the GPU applications are not, it is desirable to allocate a larger
share of the LLC to the CPU application. However, for the basic Least Recently Used (LRU) policy, we
observe that a major portion of the LLC is occupied by the GPU application. This leads to significant per-
formance degradation for the CPU application under the LRU policy as shown in Figure 1(b).

Prior works have shown that judicious sharing of the LLC can improve the overall performance when
diverse workloads share homogeneous multicore systems [Suh et al. 2004; Moreto et al. 2008; Kim et al.
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2004; Qureshi and Patt 2006; Xie and Loh 2010; Qureshi et al. 2007; Jaleel et al. 2010; Xie and Loh 2009].
To evaluate whether these techniques can be adopted by heterogeneous multicore processors, we study sev-
eral recently proposed policies. Dynamic Re-Reference Interval Prediction (DRRIP) [Jaleel et al. 2010] is
a cache management policy developed primarily for homogeneous multicore processors. DRRIP predicts
whether the re-reference (reuse) interval of cache lines are intermediate or distant, and inserts lines at non-
MRU (Most Recently Used) position based on the prediction. If a line is re-used after insertion into the
LLC, it is promoted by increasing its age to improve its lifetime in the cache. Non-MRU insertion of cache
lines performs better than MRU insertion because most of thelines do not exhibit immediate re-reference.
Figure 1(a) indicates that DRRIP provides little improvement in LLC occupancy in a heterogeneous envi-
ronment as the policy is overwhelmed by an order of magnitudedifference between the memory access rates
of the CPU and the GPU cores. The performance impact of the unbalanced LLC occupancy is shown in
Figure 1(b).

We are aware of only one existing work, TLP-Aware Cache Management Policy (TAP) [Lee and Kim
2012], that addresses the diversity of on-chip cores while designing the LLC sharing policy. TAP identifies
the cache sensitivity of the GPU application, and the difference in LLC access rates between the CPU and
GPU cores. This information is used to influence the decisions made by the underlying cache management
policy. When these metrics indicate a cache sensitive GPU application, both CPU and GPU cores are given
equal priority. On the other hand, if GPU application is cache insensitive, the GPU core is given a lower
priority by the underlying policy.

TAP, although designed for heterogeneous multicore processors, still allocates a large portion of the cache
to the cache-insensitive GPU application. Consequently, the performance degradation due to LLC sharing
is still significant for the cache sensitive CPU applicationas shown in Figure 1. Several reasons prohibit
TAP from achieving the desired performance. First, thecore sampling technique used in TAP to measure
the cache sensitivity of the GPU application leaves a significant amount of GPU dead-blocks in the LLC.
Second, TAP takes the same decision for all GPU memory accesses in a sampling period, and is slow to
adapt to the runtime variations in the application’s behavior. A more fine-grained control over the GPU LLC
share could potentially improve the utilization of the shared LLC. We discuss TAP in detail in Section 5.3.3.

In addition to the performance aspect, the presence of diverse cores could change the energy consumption
profile, both on-chip as well as off-chip, for the heterogeneous multicore processor under existing policies.
This could result in a significant increase in energy consumption at the LLC module if the order of mag-
nitude higher access rate of GPU is not efficiently handled bythe cache replacement policy. Also, since
this increase in energy consumption does not imply performance improvement in a typical cache insensi-
tive GPU application, the energy efficiency of the processoris impacted. Bandwidth utilization is another
characteristic that would also be significantly impacted bythe high memory access rate of GPU cores. Since
energy consumption and bandwidth utilization have alreadyturned into first-order constraints in processor
design, these aspects could be significant challenge to the viability of cache management policies in future
processor designs.

To handle these challenges, performance as well as energy efficiency, we study the characteristics of the
GPU architecture. The GPU core can support thousands of active threads simultaneously. Thus, the thread-
level parallelism (TLP) available with the GPU core is orders of magnitude higher than that with the CPU
core. This higher level of TLP aids the GPU core in toleratinglonger memory access latency by scheduling
threads that are ready to execute. Our experiments show thatmajority of the GPU applications we study
have a high level of memory access latency tolerance. Takinginto consideration the latency tolerance of the
GPU, we propose Heterogeneous LLC Management (HeLM), a mechanism for managing shared LLC in
heterogeneous multicore processors [Mekkat et al. 2013].

HeLM is a cache replacement policy that improves the effectiveness of the shared LLC in a heteroge-
neous environment by utilizing the available TLP in GPU applications. Under the HeLM policy, GPU LLC
accesses are throttled by allowing memory accesses to selectively bypass the LLC; and consequently, the
cache sensitive CPU application is able to utilize a larger portion of the cache. Our evaluations show that
HeLM is able to improve the overall performance of heterogeneous workloads significantly. We also conduct
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a detailed study on the energy consumption and the energy efficiency of HeLM to evaluate the feasibility
of using HeLM on real systems. Our evaluations show that HeLMoutperforms other policies in energy
efficiency.

Overall, the contributions in this work are as follows:

— We analyze GPU application characteristics and identify available TLP as an efficient runtime metric to
measure the memory access latency tolerance of the GPU application. We also find that LLC bypassing
provides sufficient aggressiveness in managing shared LLC in heterogeneous multicore processors.

— We propose HeLM, a runtime mechanism, that dynamically determines the cache sensitivity of both CPU
and GPU applications, and adapts the cache management policy based on this information.

— We design, implement, and evaluate HeLM, and demonstrate that HeLM is able to improve the perfor-
mance as well as energy efficiency of shared cache managementin a heterogeneous multicore processor.

The rest of this paper is organized as follows. Section 2 explores the challenges in LLC sharing in a
heterogeneous environment, based on which, Section 3 describes the architecture of HeLM. Our evaluation
methodology is described in Section 4. HeLM’s performance is evaluated in Section 5 and energy efficiency
in Section 6. We discuss related works in Section 7 and conclude in Section 8.

2. CHALLENGES & OPPORTUNITIES

The heterogeneous multicore architecture we address in this work is depicted in Figure 2. This design is
modelled after AMD Fusion APU [Brookwood 2010]. The processor consists of several CPU and GPU
cores each with its own private cache. These cores share the LLC and DRAM controllers, and the modules
communicate through an on-chip interconnection network. Efficient sharing of on-chip resources is critical
to the performance of a multicore processor. The last-levelcache is one of the most important among these
resources.

Fig. 2: A heterogeneous multicore processor with CPU and GPUcores sharing the LLC.

Existing cache management policies, developed for homogeneous multicore processors, face difficulty
in adapting to heterogeneous architectures. These mechanisms [Suh et al. 2004; Moreto et al. 2008; Kim
et al. 2004; Qureshi and Patt 2006; Xie and Loh 2010; Qureshi et al. 2007; Jaleel et al. 2010; Xie and
Loh 2009], that were proposed for homogeneous multicore processors, do not consider the diversity of core
characteristics in their design. While many mechanisms [Qureshi and Patt 2006; Xie and Loh 2010; Qureshi
et al. 2007; Jaleel et al. 2010; Xie and Loh 2009] consider thecache sensitivity of the application, they do
not consider the difference in LLC access rate between the diverse cores in a heterogeneous multicore. An
order of magnitude higher access rate from the GPU cores, compared to the CPU cores, tends to skew their
judgement in favor of the GPU.
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2.1. Challenges in LLC sharing

Sharing of the LLC among cores in a heterogeneous multicore processor introduces several challenges.
This section presents the challenges in determining the cache sensitivity of various applications executing
on individual cores; and devising cache management mechanisms that can cope with cores having widely
divergent memory access patterns.

Cache sensitivity indicates how much the performance of an application can benefit from an increase in
cache capacity. Cache management policies can utilize cache sensitivity as a metric to determine how to
best share cache capacity between cores. In CPU-based homogeneous multicore systems, this issue has been
studied extensively. Techniques, such asset dueling [Qureshi et al. 2007], have been demonstrated effective
in improving cache utilization. It is worth pointing out that, in such CPU-based systems [Qureshi and Patt
2006; Xie and Loh 2010; Qureshi et al. 2007; Jaleel et al. 2010; Xie and Loh 2009], cache sensitivity is
often measured in terms of variations in cache miss rates across different cores as cache capacity allocation
varies [Qureshi and Patt 2006; Xie and Loh 2010] or as cache replacement policy changes [Qureshi et al.
2007; Jaleel et al. 2010; Xie and Loh 2009].

While for CPU cores, change in cache miss rate is a direct indicator of cache sensitivity, in GPU cores,
increase in cache miss rate does not necessarily lead to performance degradation. Figure 3 shows the cache
sensitivity of a GPU application, BoxFilter [Advanced Micro Devices Incorporated 2011], where cache miss
rate does not translate directly into performance. This is because GPU cores can tolerate memory access
latency by context switching between a large number of concurrently active threads. Thus, cache miss rate
is not a good indicator of the cache sensitivity of the GPU. GPU-specific techniques must be developed to
determine the cache sensitivity of GPU workloads.
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Fig. 3: Cache sensitivity of GPU application
BoxFilter [Advanced Micro Devices Incorporated 2011].

BoxFilter exhibits a memory access behavior that is divergent
from the traditional understanding of the cache sensitivity of

streaming GPU applications.

There are two classes of techniques for
managing the shared caches: i) partitioning
the cache ways among applications; and ii)
prioritizing the insertion/eviction of blocks
from different applications. When workloads
with differing cache sensitivities share a
cache, one of these techniques could be em-
ployed to enhance cache utilization and maxi-
mize the overall performance. However, when
GPU workload is sharing the cache with
CPU, previously proposed mechanisms are
often unable to make judicious decisions be-
cause GPU workloads often have memory
access rates that are an order of magnitude
higher than those of CPU workloads. In par-
ticular, when both CPU and GPU workloads
are identified as cache sensitive, the memory
accesses from the GPU will pollute the shared
cache, and wipe out cache blocks needed by
the CPU. In such cases, it is desirable to give cache sensitive CPU workloads higher priority over cache
sensitive GPU workloads to improve the overall performance.

2.2. Improving LLC sharing

In this work, we aim to address the challenges faced by existing cache management techniques in a hetero-
geneous multicore environment. First, we propose to use thread-level parallelism (TLP) as a runtime metric
to correctly identify the cache sensitivity of GPU applications. Second, we propose to use LLC bypassing to
improve cache management in the heterogeneous environment.

2.2.1. Available TLP as a Runtime Metric. The general cache insensitivity of GPU applications stems from
two main reasons: i) streaming memory access behavior; and/or ii) high levels of available TLP. Even when
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the memory access behavior is not streaming, GPU applications are able to tolerate higher memory access
latency by utilizing the available TLP. Figure 4 shows the cache sensitivity and performance characteristics
of the GPU application Floyd [Advanced Micro Devices Incorporated 2011]. Even when the application ex-
periences increase in the cache miss rate, it is able to sustain performance to some extent due to the presence
of enough threads that can prevent the GPU core from stallingfor lack of data. Here, the average TLP at
runtime is measured as the number ofwavefronts1 ready to be scheduled at any given time. Higher number of
ready wavefronts indicate higher TLP, which in turn indicates that GPU can tolerate higher memory access
latency.

Fig. 4: TLP availability and cache sensitivity characteristics of
GPU application Floyd [Advanced Micro Devices Incorporated
2011]. Figure shows that available TLP helps Floyd sustain its
performance to some extent in the face of increasing MPKI.

These characteristics point to the fact that
the TLP available in a GPU application is
a good indicator to its cache sensitivity, and
hence could aid in promoting an effective
sharing of LLC among cores. Moreover, TLP
is a true runtime metric that adapts to dynamic
behaviors of the GPU application. To the best
of our knowledge, no other work has directly
utilized TLP as a metric to manage shared
LLC in heterogeneous multicore processors.
We observe that while mechanisms such as
set dueling are not able to identify the true
cache sensitivity of GPU applications, TLP
forms an accurate metric for the same.

2.2.2. LLC Bypassing. To improve the flex-
ibility of cache management mechanisms in
a heterogeneous multicore processor, we ex-
plore LLC bypassing techniques. Figure 5 shows the impact ofbypassing2 the shared LLC for 100%, 75%,
50%, and 25% of GPU memory access requests. The impact of LLC bypassing is related to the cache sen-
sitivity of the application and the amount of TLP available at runtime. While applications such as Floyd,
Gaussian, Mattran, which have low TLP, suffer from random bypassing, Bitsort and Hist remain unaffected
due to their cache insensitivity. Applications like Dwthaar and Sobel, on the other hand, sustain their per-
formance due to high TLP availability. On average, GPU applications can sustain up to 50% of LLC access
bypassing without significant performance degradation. The GPU is able to do so by utilizing its high degree
of available TLP.

LLC bypassing allows potentially different decisions for each incoming GPU access. When both CPU
and GPU applications are identified as cache sensitive, the mechanism can consider various application
characteristics while making the bypass decisions. Such characteristics include the difference in cache sen-
sitivities of CPU and GPU applications, difference in memory access rate, and the amount of TLP available
in the GPU application. Such fine-grained throttling of eachLLC access can bring significant performance
improvement as a result of better LLC utilization.

3. HETEROGENEOUS LLC MANAGEMENT

In this section, we describe our heterogeneous LLC management mechanism that mitigates the performance
impact of LLC sharing by throttling LLC accesses initiated by the GPU cores. HeLM exploits the memory
access latency tolerance capability of the GPU cores and allows the GPU cores to yield LLC space to the
cache sensitive CPU cores without significantly degrading their own performance. In HeLM, we manage the

1Work is allocated to the GPU cores askernels that contain a large number of threads. A kernel is further partitioned and mapped
to different GPU cores asthread-blocks or workgroups. Scalar threads within each GPU core are scheduled simultaneously as
warps [NVIDIA Corporation 2007] orwavefronts [Advanced Micro Devices Incorporated 2007] onto the SIMD computing engine.
2For 75%, 50%, and 25% bypassing, we randomly choose the GPU accesses for bypassing. The values shown are average for GPU
benchmarks in Table III, executing on 4 GPU cores with specifications as mentioned in Table II.
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Fig. 5: Performance impact of bypassing LLC for memory accesses of GPU applications in Table III. Performance is
relative to the performance of the application, without LLCbypassing, under LRU policy.

LLC occupancy of the GPU cores by allowing its memory traffic to selectively bypass the LLC, as shown in
Figure 6, when: i) the GPU cores exhibit sufficient TLP to tolerate memory access latency; or ii) when the
GPU application is not sensitive to LLC performance.

Fig. 6: LLC bypassing technique employed by
GPU cores in HeLM.

For each GPU memory access, the decisions for bypassing
the LLC is made at the shared LLC. On an L1 cache miss,
the TLP information of the GPU core is attached to the LLC
access request. If the access misses at the LLC, the current
TLP is compared to a selected threshold. If the current TLP
is greater than the threshold, response to the cache miss by-
passes LLC. The available TLP at runtime is measured using
hardware performance monitors that measure the number of
wavefronts ready to be scheduled at any given time. A higher
number of ready wavefronts indicates higher TLP, which in
turn suggests that the GPU can tolerate higher memory access
latency.

Figure 7 shows the high level view of HeLM. GPU LLC by-
passing decisions are made on the basis of the cache sensitivi-
ties of both CPU and GPU applications. The CPU application
is given higher priority in our algorithm as it is, in general,
more cache sensitive. If the CPU application is found cache
sensitive, GPU memory accesses are subject to aggressive
LLC bypassing. If not, GPU LLC sensitivity is considered and
a bypass aggressiveness is selected accordingly. When neither
of the applications are cache sensitive, the bypassing aggres-
siveness selected does not impact the performance. However,
it could have significant impact on the energy consumption
and bandwidth utilization, both on-chip as well as off-chip.

The cache sensitivity of the CPU and GPU applications plays acritical role in making bypass decisions.
A cache-insensitive CPU application does not benefit from increased LLC space made available by GPU
LLC bypassing. Bypassing LLC for a cache-sensitive GPU application executing along with such cache-
insensitive CPU applications could degrade GPU performance without improving the overall performance.

In the following subsections, we discuss in detail the techniques employed to identify: i) the cache sensi-
tivities of the CPU and GPU applications; and ii) an effective TLP threshold to measure the memory access
latency tolerance of the GPU application. We combine these metrics into aThreshold Selection Algorithm
(TSA) that makes GPU LLC bypass decisions.
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Fig. 7: Flowchart for bypass algorithm in HeLM.

3.1. Measuring Cache Sensitivity

We employ a mechanism based on theset dueling [Qureshi et al. 2007] technique to measure the cache
sensitivity of the CPU and GPU applications. Set dueling applies two opposing techniques to two distinct
sets, and identifies the characteristic of the application from the performance difference among the sets.
Dynamic Set Sampling (DSS) [Qureshi et al. 2006] has shown that sampling a small number of sets in the
LLC can indicate the cache access behavior with high accuracy. We use this technique by sampling 32 sets
(out of 4096) to measure the cache sensitivity.

 

 SELECTOR 

 

+ 

 

- 

Policy 1 

Policy 2 

Follower Sets 

0 128 256 4095 

Fig. 8: Overview of the set-dueling [Qureshi et al. 2007]
technique.

Figure 8 shows a high-level view of the workings
of the set-dueling technique. Here, for a 4096 set
cache structure, every 128th set starting from Set0
follows POLICY1, while every 128th set starting
from Set1 follows POLICY2. Events such as cache
misses are monitored, and these events increment a
saturation counter when it occurs inPOLICY1 sets
and decrement the saturation counter when it oc-
curs in POLICY2 sets. The value of the saturation
counter is used to determine which policy is per-
forming better. This policy is then applied on the
follower sets.

For HeLM, the two opposing policies used in set-dueling are:bypassing withhigh aggressiveness and
bypassing withlow aggressiveness. In HeLM, the bypassing aggressiveness is adapted by choosing an ap-
propriate threshold for bypassing. The threshold relates to the available TLP in the GPU application. When
the available TLP is higher than a selected threshold, the GPU application has enough parallelism to sustain
increased memory access latency and is suitable for LLC bypassing.

For a GPU that supports up to 64 simultaneous wavefronts (warps), the threshold range is 0 to 63. In
this range, we select two arbitrary thresholds: HighThr (say 47) and LowThr (say 15). HighThr corresponds
to less aggressive bypassing as current TLP has to be higher than HighThr to enable bypassing. Similarly,
LowThr corresponds to more aggressive bypassing.

3.1.1. CPU LLC Sensitivity. We evaluate the cache sensitivity of the CPU application by monitoring the
impact of GPU LLC bypassing on the performance of the CPU application. Since CPU applications are more
cache sensitive than GPU applications, change in cache missrate typically directly affects the performance
of CPU applications. We measure two CPU LLC missesMissLow andMissHigh corresponding to GPU
bypassing at LowThr and HighThr respectively. Twoset dueling monitors (SDM) are used at the LLC to
obtain the MissLow and MissHigh numbers, each bypassing GPUaccesses at LowThr and HighThr respec-
tively. Since the GPU takes more LLC space with HighThr than with LowThr, MissHigh is always greater
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than MissLow. If the difference between MissHigh and MissLow (∆MISSCPU ) is greater thanmThresh-
old3, GPU bypassing is affecting the CPU LLC behavior, and hence its performance. This criterion can also
identify compute intensive as well as streaming CPU workloads4.

3.1.2. GPU LLC Sensitivity. Figure 3 shows that cache miss rate is not a direct indicator of performance
for GPU applications. Hence, we adapt the set-dueling technique to enable measuring GPU LLC sensitivity
by directly measuring the performance of the GPU core. For this purpose, we utilize two GPUsampling
cores and the two TLP thresholds:LowThr andHighThr. In every sampling period, one of the GPU cores
(LowGPU) performs LLC bypassing at LowThr, while the other core (HighGPU) uses HighThr. LowThr is
always smaller than HighThr and indicates a higher rate of bypassing. Hence, LowGPU bypasses more mem-
ory accesses than HighGPU. A significant performance difference (∆IPCGPU ), greater thanpThreshold5,
between these two cores indicates that LLC bypassing is having an adverse impact on the GPU performance
and hence the GPU application is cache sensitive. If the performance difference is within the limit, the GPU
application is considered cache insensitive. This is similar to theCore Sampling technique used by TAP [Lee
and Kim 2012], where sampling cores insert at MRU/LRU positions in the LLC. However, in the case of
TAP, this leads to an unwanted side-effect as discussed in Section 5.3.3.

3.2. Determining Effective TLP Threshold

Determining the effective TLP threshold to initiate GPU LLCbypass is critical. To adapt to the diversity
among GPU applications and the runtime variations within anapplication itself, we propose an algorithm
to dynamically adapt LowThr and HighThr. Our heuristic is inspired by thebinary-chop algorithm that is
commonly used for searching an element in a sorted list boundby limits MaxLimit andMinLimit. Binary-
chop algorithm starts with two parameters U and L such that U≥ L, and calculates a decision element E as
the average of U and L (AVG(U, L)). At the beginning of the algorithm, U and L are initialized to MaxLimit
and MinLimit, respectively, and a prediction is made. If thedecision element is lower than expected, the
search window is moved up (GO UP) by updating U and L as shown inTable I. If the prediction is higher
than expected, the search window is moved down (GO DOWN). At each step, E is recalculated, and the
process is continued until E matches with the searched element.

Action U L

INIT MaxLimit MinLimit
GO UP AVG(MaxLimit, U) E

GO DOWN E AVG(L, MinLimit)

Table I: Binary-chop algorithm for adapting sampling thresholds at runtime.

Our adaptation of the binary-chop algorithm recomputes thehigher and lower bypass thresholds at runtime
depending upon the application behavior. We start by initializing HighThr (U) = 3

4
×MAX wavefronts, and

LowThr (L) = 1

4
×MAX wavefronts. Here, MaxLimit = MAXwavefronts, MinLimit = MIN wavefronts. After

every sampling period, HighThr and LowThr values are updated with new values of U and L, respectively.
Figure 9 demonstrates the working of this algorithm with an example. Here, we start with HighThr and

LowThr as shown in PHASE 0. In each phase, the selected threshold is highlighted. If HighThr is selected
and the program behavior indicates the need to reduce bypassing aggressiveness, binary-chop algorithm will
perform the GO UP step, increasing the thresholds as shown inPHASE 1. If LowThr is selected and the
program behavior indicates the need to increase bypassing aggressiveness, GO DOWN step will be taken.
However, if there is a switch in direction from GO UP to GO DOWN, as shown in PHASE 2, we detect

3Based on empirical analysis, we set mThreshold to 10%.
4For compute intensive workloads, MissHigh≈ MissLow≈ 0, while for streaming workloads, MissHigh≈ MissLow≈ K (positive
number) as shown in Figure 10.
5Based on empirical analysis, we set pThreshold to 5%.
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a toggle and retain the previously selected threshold. A toggle indicates reaching of a stable phase and, as
observed in PHASE 3, the thresholds are maintained for a specified number of sampling periods. After this,
the algorithm restarts as shown in PHASE 4.

Phase 1 Phase 2

63 63 63

Phase 3

63

Phase 4

63

Phase 0 Phase 5

63

HighThr(47)

HighThr(55) HighThr(55)HighThr(59)

LowThr(43)

HighThr(55)

LowThr(31) LowThr(31) LowThr(31)

LowThr(15) LowThr(15)

HighThr(43)

0 0 0

GO UP GO UP TOGGLE! RESTARTSTART STABLE

000

Fig. 9: Binary-chop algorithm for varying bypassing threshold.

3.3. Putting It All Together

We combine the cache sensitivity information and TLP thresholds into aThreshold Selection Algorithm
(TSA). TSA monitors the workload characteristics continuously and re-evaluates the TLP threshold at the
end of every sampling period (1M execution cycles in our study). Once the threshold is chosen, it is enforced
on all thefollower GPU cores. The pseudocode for TSA is shown in Algorithm 1. If the CPU application is
cache sensitive, LowThr is selected for aggressively bypassing LLC for GPU memory accesses. Otherwise,
the choice of threshold depends on the characteristics of the GPU application. If GPU application is cache
sensitive, HighThr is selected for bypassing LLC for GPU memory accesses.

Based on the threshold selected by TSA, HighThr and LowThr are re-calculated using the binary-chop
heuristic discussed in Section 3.2. For cache sensitive GPUapplications, LLC bypassing aggressiveness is
reduced by action GO UP; otherwise, the aggressiveness is increased by action GO DOWN. If the ac-
tions toggle between GO UP and GO DOWN for consecutive sampling periods, we maintain the existing
HighThr and LowThr values for next five sampling periods.

CPU cache management policies have employed thread awareness to avoid the domination of one appli-
cation on the sharing policy. Mechanisms such as thread-aware DIP [Jaleel et al. 2008] and thread-aware
DRRIP [Jaleel et al. 2010] (referred to as DRRIP here) utilize separate set of SDMs to isolate the influence
of applications on each other. Similarly, HeLM is made thread aware by assigning individual MissLow and
MissHigh counters to calculate∆MISSCPU for each thread. For thread awareness, TSA selects LowThr as
the TLP threshold if any of the∆MISSCPU is≥ mThreshold.

3.4. Other Design Considerations

3.4.1. Impact on On-Chip Energy and Off-Chip Access. Allowing memory accesses that are unlikely to
be reused in the cache to bypass the LLC can reduce the dynamicenergy consumption of LLC accesses.
However, LLC bypassing could also increase the off-chip DRAM accesses. Due to the streaming nature of
GPU applications, the blocks in the LLC are mostly dead, and the accesses go off-chip to fetch data blocks
from DRAM. Thus we observe that LLC bypassing does not increase off-chip DRAM accesses significantly.
We evaluate the impact of bypassing on LLC energy consumption and off-chip accesses in Section 6.
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ALGORITHM 1: Pseudocode for the Threshold Selection Algorithm (TSA).

Data: ∆IPCGPU ,∆MISSCPU

Result: Bypass TLP Threshold
if ∆MISSCPU ≥ mThreshold then

Set LowThr as TLP threshold;
end
else if ∆IPCGPU > pThreshold then

Set HighThr as TLP threshold;
end
else

if delta(∆IPCGPU ,pThreshold) ≥ delta(∆MISSCPU ,mThreshold) then
Set LowThr as TLP threshold;

end
else

Energy considerations decide TLP threshold;
end

end

3.4.2. Handling Coherence. The contemporary GPU does not support coherent memory hierarchy. How-
ever, if coherence is supported in future GPUs, bypassing can also be easily supported. The additional
support for maintaining coherence with GPU bypassing may ormay not be required depending upon the
inclusion property of GPU cache hierarchy. Inclusion ensures that cache blocks present in high level caches
are also present in the LLC, while non-inclusion or exclusion relaxes such a constraint. Bypassing essen-
tially turns the inclusive LLC into a non-inclusive cache. Therefore, the support necessary for maintaining
coherence in non-inclusive LLC can also be used to support bypassing in inclusive LLC. Coherence in non-
inclusive caches is maintained by employing mechanisms such as snoop filter [Salapura et al. 2008], which is
essentially a replica of higher level cache tags at the LLC. Therefore, bypassing for non-inclusive LLC will
not require any modifications for handling coherence, whilesupport similar to snoop filter will be necessary
for inclusive LLC.

While this work evaluates workloads where the CPU and GPU applications have disjoint address spaces,
we expect the proposed technique to be equally effective when these applications share the same address
space. When data is shared between the CPU and the GPU, the underlying cache coherence mechanism will
ensure correctness of data accesses, and the proposed bypass mechanism can be deployed with a snoop filter
as discussed above. In this work, we model a GPU cache hierarchy that is write-through; however, it will
work equally well with a write-back cache.

4. EXPERIMENTAL METHODOLOGY

We evaluate HeLM on a cycle accurate simulator, Multi2Sim [Ubal et al. 2012], that simulates both CPU
and GPU cores as depicted in Figure 2. The CPU cores are modelled on a 4-wide out-of-order x86 processor,
while the GPU cores are based on AMD Evergreen [Advanced Micro Devices Incorporated 2009] architec-
ture. We extend the memory subsystem in Multi2Sim to supportshared LLC between CPU and GPU cores.
Table II shows the parameters of the cores we simulate.

We evaluate 500 million instructions for each CPU benchmarkand 150 million instructions6 for each GPU
benchmark. The 500 million representative interval for each CPU benchmark, withref input, is obtained
through SimPoint [Hamerly et al. 2005] analysis. As followed in previous works [Qureshi and Patt 2006;
Jaleel et al. 2010; Lee and Kim 2012], early finishing benchmarks continue to execute until all the bench-
marks execute the specified number of instructions. We utilize McPAT [Li et al. 2009] and GPUWattch [Leng
et al. 2013] for studying on-chip energy consumption, and DRAMSim2 [Rosenfeld et al. 2011] to calculate
off-chip DRAM energy consumption.

6An instruction executed by all threads in a wavefront is counted as one instruction.
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CPU
Core 1-4 cores, 2.6GHz, 4-wide out-of-order, 64-entry RoB

L1 Cache 4-way, 32KB, 64B line, private I/D (2 cycles)
L2 Cache 8-way, 256KB, 64B line, unified (8 cycles)

GPU

Core 4 cores, 1.3GHz, 8-wide SIMD, 16K register file,
64 wavefronts, round-robin scheduling

L1 Cache 4-way, 8KB, 64B line, private I/D (2 cycles)
Shared Memory 32KB, 256B block (2 cycles)

Shared Components
LLC 32-way, 2-8MB, 64B line, 4-tiles (20 cycles)

DRAM 4GB, 4 controllers (200 cycles)
NoC Mesh topology, 32B flit-size

Table II: Configuration parameters for the heterogeneous evaluation infrastructure.

Selecting an appropriate baseline processor model is necessary so as not to skew the evaluations in favor
of any policy. We model our baseline design on AMD Fusion APU [Brookwood 2010] (A4-5300) which
contains two x86 CPU cores and 128 AMD Radeon GPU stream processors (grouped into 4 compute units).
We term this, the 2C4G configuration where ‘C’ stands for CPU core and ‘G’ stands for GPU core (compute
unit). The die area taken by four GPU cores matches the die area taken by one CPU core. This allows fair
comparison between performances of an application executing on a CPU core and an application executing
on the GPU cores.

An inappropriately chosen configuration could bias the study of the impact of GPU cores on the perfor-
mance of the CPU application shown in Figures 1(a) and 1(b). This bias could occur when the GPU cores
are significantly larger than the CPU core, and as a result, overwhelm the LLC occupancy and performance.
To avoid any such bias that could result from the 2C4G configuration, we consider two more configurations
on the either side of it: 1C4G and 4C4G. In 1C4G, one CPU core shares the on-chip resources with four
GPU cores, and in 4C4G, four CPU cores share the on-chip resources with four GPU cores.

4.1. Benchmarks

The CPU benchmarks evaluated belong to the SPEC CPU2006 benchmark suite [Spradling 2007]. The GPU
benchmarks evaluated are OpenCL programs from AMD APP (Application Parallel Programming) v2.5
software development kit [Advanced Micro Devices Incorporated 2011]. We classify these benchmarks into
different categories, depending on their cache performance, as shown in Table III.

Category CPU Benchmarks GPU Benchmarks
Cache bzip2, gcc, mcf, perlbench, dealII, matrix-multiplication, matrix-transpose,

sensitive omnetpp, astar, soplex, povray, h264 gaussian, fast-walsh transform, floyd-warshal

insensitive

Streaming: libquantum, bwaves, milc, Streaming: histogram, radix sort,
Cache zeusmp, cactusadm, gemsfdtd, lbm, leslie3dblackscholes, reduction

Compute intensive: gobmk, hmmer, Performance insensitive: sobel, dwthaar,
sgromacs, jeng, gamess, calculix, tonto, scanarray, dct, box filter
namd Compute intensive: binomial option,

eigen, bitonic sort

Table III: Classification of CPU and GPU benchmarks.
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Core Configuration Workloads

1CPU + 4GPU (1C4G) 100
2CPU + 4GPU (2C4G) 40
4CPU + 4GPU (4C4G) 30

Table IV: Heterogeneous workloads evaluated.

We evaluate multiprogrammed workloads on
heterogeneous processors with core configuration
as shown in Table IV. For the three processor
configurations, namely 1C4G, 2C4G, and 4C4G,
we consider three workload combinations by the
same name. Each of the CPU core executes a CPU
benchmark while all the four GPU cores execute
the same GPU benchmark. Thus, 1C4G contains
one CPU and one GPU application, while 2C4G contains two CPU applications executing along with one
GPU application. Equal number of CPU and GPU benchmarks are selected from cache sensitive and insen-
sitive categories. Workloads in Table IV are formed by randomly selecting benchmarks from each category.
A processor with one CPU core shares a 2MB LLC with the four GPUcores, while processors with two and
four CPU cores share 4MB LLC and 8MB LLC, respectively, with the four GPU cores.
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Fig. 10: LLC sensitivity of GPU benchmarks. Four
different classes of GPU benchmarks are shown with
their IPC and MPKI for different LLC sizes (in KB).

4.1.1. Workload Characteristics. A rethinking of
the optimal sharing of on-chip resources in a
heterogeneous multicore processor necessitates a
reevaluation of the characteristics of the target
workload. We analyze the performance charac-
teristics of general purpose GPU applications
for varying LLC sizes. Based on instructions
per cycle (IPC) and misses per kilo-instruction
(MPKI) characteristics, we broadly classify these
applications as either cache-sensitive or cache-
insensitive. Cache-insensitive applications can fur-
ther be classified into three types: compute-
intensive, performance-insensitive, or streaming.
The first type puts very little pressure on the shared
LLC. The last two types have high LLC access
rate, however, cache size has hardly any influence
on their performance. This characteristic is either
due to their streaming access behavior or their TLP
availability.

Figure 10 shows the IPC and MPKI characteris-
tics for these categories. This characterization can
be used to evaluate the effectiveness of LLC space on the application, and it shows that not all GPGPU
applications have a uniform streaming access behavior. There are several cache-sensitive applications that
need special attention while managing the LLC. These characteristics assume increased importance when
GPU applications share the LLC with CPU applications in a heterogeneous multicore processor. Bench-
marks belonging to each class are shown in Table III. We utilize this benchmark characterization to form the
workload mix we evaluate. Section 5.5 evaluates HeLM based on these application classes.

4.2. Cache Management Policies

HeLM is decoupled from the underlying cache management policy, which brings flexibility to the mecha-
nism as it can be adapted to work with any cache management policy. In this paper, we implement HeLM
over DRRIP policy, however, it could well be implemented over other cache management policies such as
Utility-based Cache Partitioning (UCP) [Qureshi and Patt 2006]. TAP was proposed with two variants: TAP-
UCP and TAP-RRIP, built on top of UCP and DRRIP respectively.Since TAP-RRIP outperforms TAP-UCP
in all evaluations, we choose to compare HeLM against TAP-RRIP. In DRRIP policy, incoming cache blocks
are inserted at non-MRU position and are promoted later on cache hits. Similar to TAP, we do not promote
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GPU blocks on LLC hits. Also, when both CPU and GPU blocks are available for replacement, we replace
the GPU block first.

4.2.1. Reuse-Based Cache Management. Reuse-based mechanisms [Johnson et al. 1999; Lai et al. 2001;
Liu et al. 2008; Kharbutli and Solihin 2008; Khan et al. 2010]have been studied extensively in CPU domain
to improve cache utilization. Also known as dead-block predictors, they predict whether a cache block is
dead or live and improve cache performance by replacing deadblocks first, by bypassing dead blocks, or by
prefetching data into dead blocks. In this paper, we compareperformance of HeLM with two reuse-based
bypass mechanisms, MAT [Johnson et al. 1999] and Sampling Dead-Block Predictor (SDBP) [Khan et al.
2010].

MAT is an address-based reuse mechanism in which cache blockreuse is determined using aMemory
Address Table (MAT) at a macroblock granularity. MAT bypasses a cache block if the victim block has
higher reuse than the one being inserted. SDBP, on the other hand, is a PC-based reuse mechanism in which
the reuse pattern is learned from accesses to the cache blocks in a few sampled sets in the LLC. SDBP
updates its prediction table using the PC of the last instruction that accesses a cache block in the sampled
sets. On an access to the LLC, SDBP predicts the cache block asdead or live by referring to the prediction
table, indexed by the PC of the instruction initiating the access. If the block being accessed is dead, it can be
bypassed from the LLC. Other reuse-based mechanisms are discussed in Section 7.2.

5. EVALUATION

In this section, we evaluate the impact of HeLM on the performance of shared LLC in a heterogeneous
multicore processor. We compare the performance of HeLM with DRRIP, MAT, SDBP, and TAP-RRIP,
all normalized to LRU. MAT and SDBP were originally proposedfor bypassing CPU memory accesses.
However, to compare with HeLM, we employ these techniques tobypass only the GPU memory accesses.

5.1. Evaluation Metric

We use instructions per cycle (IPC) as the main performance metric. Speedup of each application (i) is
calculated as shown in Eq. 1. Geometric mean (GM) of individual speedup (Eq. 2) gives the overall speedup
for all theN applications in any configuration.

speedupi =
IPCi

IPCbaseline
i

(1)

speedup = GM(speedup(1 to N)) (2)

5.2. Performance

We start our evaluation with the impact of these policies on the cache performance for CPU and GPU cores.
Figure 11(a) shows the reduction in CPU and GPU LLC misses forthese policies (normalized to LRU)
for 1C4G, 2C4G, and 4C4G workloads. In case of CPU, although all of them perform better than LRU,
the improvement for DRRIP and the reuse-based mechanisms (MAT and SDBP) are lower than TAP and
HeLM. Additionally, HeLM outperforms TAP. Overall, HeLM reduces CPU LLC misses by 29.5%, 39.1%,
and 33% over LRU for 1C4G, 2C4G, and 4C4G workloads, while thecorresponding reduction for TAP are
13.9%, 18.1%, and 18.8%. On the other hand, TAP and HeLM increase the GPU LLC misses as they give
lower priority to GPU over CPU. While DRRIP does better than TAP and HeLM, MAT and SDBP are the
most favorable towards GPU.

The performance impact of these policies on individual cores in each configuration is shown in Fig-
ure 11(b). For the CPU, it can be seen that the cache performance directly translates to speedup. Here,
HeLM outperforms all other policies convincingly. The lower priority given to the GPU is evident in the
speedup of TAP and HeLM. However, the impact of increased cache misses do not translate linearly into
performance degradation for the GPU. This is due to the difference in cache sensitivity among the CPU and
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GPU cores. This shows that it is preferable to prioritize CPUapplications while managing the shared LLC
space. In our experiments, the GPU benchmarks in 2C4G workloads show slightly higher overall perfor-
mance degradation when compared to 1C4G and 4C4G workloads.This is due to the larger concentration of
cache-sensitive GPU benchmarks in the 2C4G configuration, than 1C4G and 4C4G, on average. To avoid any
bias towards HeLM and to maintain fairness in evaluations, benchmarks in each configuration are selected
randomly. In our evaluations, 2C4G happens to have a larger proportion of cache-sensitive GPU benchmarks
such asGAUSSIAN andFAST-WALSH TRANSFORM(Table III).

(a) Cache performance of CPU and GPU benchmarks.

(b) Speedup for CPU and GPU benchmarks.

(c) Combined speedup for various workloads under differentpolicies.

Fig. 11: Impact of various policies on cache performance and
speedup of CPU and GPU benchmarks. Graphs show results for
workloads: 1C4G, 2C4G, and 4C4G. Results are relative to the

LRU policy.

Combined speedup for CPU and GPU
for all workloads is shown in Figure 11(c).
Speedup is calculated as the geometric mean
of individual benchmark speedups as men-
tioned in Eq. 2. The figure shows that HeLM
outperforms all other replacement policies
consistently in overall system performance.
HeLM is also able to achieve performance
improvement across configurations. Overall,
HeLM performs 9.6%, 10.4%, and 12.5%
better than LRU for 1C4G, 2C4G, and 4C4G
workloads, respectively. The corresponding
improvements in TAP over LRU are 3.4%,
4.5%, and 6.5%, respectively.

It can be noted that 2C4G and 4C4G con-
figurations achieve higher overall speedup
than 1C4G configuration, even when GPU
performance is worse in these two compared
to 1C4G (Figure 11(b)). This is expected as
2C4G and 4C4G workloads have more CPU
applications that achieve higher performance
gain and hence, by definition (Eq. 2), the
overall performance is better in 2C4G and
4C4G configurations.

To form truly multiprogrammed workloads
without any bias, we have randomly cho-
sen applications, listed in Table III, for each
workload. Although this method ensures fair-
ness in performance analysis, we believe that
it does not warrant comparison across differ-
ent system configurations due to the differ-
ences in applications across workloads. How-
ever, performance of HeLM for each of these
configurations shows that HeLM is able to
achieve performance for varying number of
cores in a heterogeneous multicore processor.

5.2.1. Detailed Performance Analysis.
Since each of the configurations consist of several workloads, the combined speedup across a configuration,
as shown in Figure 11, presents limited information on the impact of various policies on individual
workloads. In Figure 12, we present detailed information ona per-workload basis using s-curves7. The
s-curves here present the performance of all the workloads in a configuration, for a policy, sorted by HeLM.

7For all s-curve figures, results are sorted by the performance of HeLM in ascending order.
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Fig. 12: S-curve for the combined speedup for various policies. Graphs show results for workloads: 1C4G and 4C4G.
Results are relative to the LRU policy.
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Fig. 13: S-curve of the combined speedup and speedup of individual cores in 2C4G under various policies.
Results for individual cores in Figures 13(b), 13(c), and 13(d) are sorted by the combined speedup (13(a))

for direct comparison with overall performance. Results are relative to the LRU policy.

For 1C4G, there are several workloads, towards the left sideof the s-curve (Figure 12(a)), where HeLM
is outperformed by other policies. These are workloads where LLC bypassing in HeLM degrades the GPU
performance significantly, while the performance benefit onthe CPU-side is not substantial enough to im-
prove the overall performance. As we scale towards 4C4G configuration (Figure 12(b)), we can observe that
the number of workloads where HeLM is outperformed decreases. The larger number of CPU applications
in this configuration increases the combined speedup.

To study the impact of various policies on individual applications in a workload, we study 2C4G configu-
ration in detail (Figure 13). Here, separate graphs show theperformance s-curve for individual applications,
sorted by the overall IPC (Figure 13(a)) in ascending order.We can observe that the performance of HeLM
for both the CPU applications is better than other policies.However, HeLM suffers performance degra-
dation for certain GPU applications. A drop in overall performance in workloads on the left hand side of
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s-curve, shown in Figure 13(a), can be directly correlated to a large drop in GPU performance, as shown in
Figure 13(d).

5.3. Comparison with Other Policies

Here we discuss the reasons for the performance improvementof HeLM over various cache management
policies we evaluate.

5.3.1. DRRIP. The effectiveness of DRRIP in multicore environment is visible in Figures 11(a) and 11(b)
as DRRIP outperforms LRU. However, DRRIP faces difficulty inadapting to the heterogeneous character-
istics of the cores. DRRIP policy, similar to LRU, does not consider the diversity among the on-chip cores
and gives equal priority to both. Therefore, the higher LLC access rate from the GPU cores tends to skew the
cache management policy in their favor. Thus, the performance improvement for the CPU core is limited,
while GPU cores do not benefit much from the additional LLC space. Hence, the overall speedup for DRRIP
in Figure 11(c) is low.

5.3.2. MAT/SDBP. The performance of reuse analysis based policies, MAT and SDBP, is very similar to
DRRIP, however for different reasons. These mechanisms, although capable of LLC bypassing, are overly
conservative in their approach towards the GPU applications. They detect reuse pattern in GPU memory
access behavior and preserve the GPU blocks in LLC. This improves the cache performance of GPU as
shown in Figure 11(a). However, GPU performance does not benefit significantly from the increased LLC
space due to their TLP and the ability to tolerate higher memory access latency. This additional LLC space
would have been better utilized had it been provided to the CPU application. Hence, these mechanisms also
observe lower overall speedup than HeLM as shown in Figure 11(c).

Fig. 14: Reuse characteristics of GPU applications at LLC.Reuse N indicates that a line in the LLC was accessedN
times before it was evicted. In this study, GPU applicationsrun alone and have access to a 2MB LLC.

Figure 14 shows the reuse characteristic of GPU applications. We can observe that these policies identify a
significant amount of GPU cache lines, nearly 40% on average,to be reused. Correlating this with the bypass
tolerance of GPU applications, as shown in Figure 5, it is clear that MAT and SDBP are overly conservative
when it comes to bypassing GPU LLC accesses. For example, Boxfilt, Dwthaar, and Radix benchmarks are
observed to have high reuse by MAT and SDBP, while they can sustain high levels of LLC bypassing. Reuse
analysis could potentially be useful in improving LLC sharing in the presence of GPUs. However, our study
suggests that we cannot rely on traditional reuse analysis techniques that were developed with CPU as the
primary target. In SDBP, for example, PC-based mechanism isused for identifying reuse of the LLC lines.
This mechanism is effective on CPU, where the applications have large number of instructions accessing
the memory. However, SDBP tends to identify reuse in GPU moreconservatively because of fewer number
of memory instructions in the GPU kernels. This reduces the effectiveness of bypassing using SDBP in
heterogeneous configurations.
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5.3.3. TAP. TAP considers the diversity of on-chip cores in optimizing the cache management policy, and
improves performance over existing policies by prioritizing CPU over GPU. However, HeLM still outper-
forms TAP for two reasons:
(i) thecore sampling technique used by TAP leaves a significant portion of the shared LLC occupied by the
GPU cores. Majority of these blocks originate from the GPU core that inserts at the MRU position as part of
the core sampling technique. However, a significant portionof these blocks end up being dead blocks. In our
experiments with 1C4G workloads, as shown in Figure 15, we observe that nearly 25% of the shared LLC
space is occupied by the GPU dead blocks that were inserted atthe MRU position. This leads to eviction of
useful CPU blocks, leaving significant room for improvement. Since HeLM does not suffer from this side
effect, it performs better than TAP.
(ii) TAP takes a binary decision on whether the GPU application is cache sensitive or not. This decision
is then used to override the underlying policy for all the accesses in the sampling period. However, such a
binary decision is at a coarse granularity, while a more fine-grained ability to control the LLC share between
CPU and GPU could potentially improve the performance of both the cores. HeLM is able to control the
cache occupancy of the GPU cores at a finer granularity, by taking bypass decision for each GPU access.
This also helps in outperforming TAP.

Fig. 15: Distribution of the shared LLC in TAP. A significant portion of the LLC is occupied by GPU deadblocks. This
study is performed on a 1C4G configuration. The CPU core always executes 401.bzip2 application.

5.4. Sensitivity to Cache Size

Fig. 16: Performance of 4C4G workloads with varying cache
sizes. Result are relative to the LRU policy.

Figure 16 presents the sensitivity of HeLM to
varying LLC sizes. For this study, we chose
the 4C4G configuration as it taxes the LLC
the most. To configure different LLC sizes
we vary the LLC associativity. As shown in
the figure, HeLM outperforms other policies
for all cache configurations. Although the per-
formance benefits of HeLM is more evident
with smaller LLC size, it is able to preserve
its benefits with increasing LLC sizes. This
shows that HeLM can adapt well to variations
in cache configurations.

5.5. Workload Types

Mixing of CPU and GPU applications in a heterogeneous multicore processor creates workloads with unique
characteristics. To evaluate the potential opportunitiesin these workloads, we broadly classify them based
on their cache sensitivity, resulting in four different categories:
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— CPU cache Sensitive, GPU cache Insensitive (CSGI): CSGI is perhaps the most common category in
which GPU occupies majority of the LLC space leading to poor performance of the CPU application in
existing cache policies.

— CPU cache Sensitive, GPU cache Sensitive (CSGS): Although GPU is cache sensitive in this combination,
it has the advantage of high TLP. Hence, any additional LLC space given to CPU could bring a larger
overall performance improvement.

— CPU cache Insensitive, GPU cache Insensitive (CIGI):
— CPU cache Insensitive, GPU cache Sensitive (CIGS): These categories do not leave significant room for

performance improvement as the CPU applications are cache insensitive.

Fig. 17: Speedup for 1C4G workloads category-wise. Result are
relative to the LRU policy.

Figure 17 presents the speedup for the eval-
uated policies, over LRU, for the four cate-
gories. As expected, all the policies show per-
formance improvement over LRU in the first
two categories (CSGI, CSGS) where CPU is
cache sensitive. Also, we can observe that
HeLM outperforms all the other policies in
these categories, particularly by a significant
margin for CSGI which is the most common
category. In the last two categories (CIGI,
CIGS), there is hardly any performance im-
provement over LRU for any of the policies.

5.6. Off-Chip Bandwidth Utilization

Allowing certain memory accesses to bypass the LLC can potentially increase the off-chip bandwidth utiliza-
tion which could, in turn, impact the performance of the system. In our evaluations, we accurately measure
the impact of this overhead using cycle accurate network andDRAM simulators as mentioned in Section 4.
For 2C4G configuration, HeLM increases the off-chip bandwidth utilization by only 7% over LRU policy.
This shows that HeLM is able to improve performance without significantly increasing the DRAM band-
width utilization. It should be noted that TAP also increases off-chip bandwidth utilization by 3.4%.

In systems which utilize significant amount of DRAM memory, such as data center systems, the increase
in off-chip memory bandwidth utilization due to bypassing could have a significant impact on performance.
In such situations, HeLM should consider off-chip bandwidth utilization while making bypassing decisions.

Policy Hardware Overhead

MAT [Johnson et al. 1999]
4K-entry memory address table

14.5 KB(each entry: 20-bit tag, 8-bit counter,
1 valid bit)

SDBP [Khan et al. 2010] 4K-entry x 3 prediction tables (each entry: 13.7 KB2-bit counter), sampler sets

TAP [Lee and Kim 2012] Instruction counters (20-bit x 4 GPU cores), 120 bitscore IDs (10-bit x 4 LLC tiles)

HeLM
MissHigh and MissLow counters (20-bit each),

166 bitsTLP threshold register (6-bit),
instruction counters, core IDs

Table V: Hardware Overhead.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 00, Publication date: 201X.



00:20 Anup Holey et al.

5.7. Hardware Overhead

Table V presents the hardware overhead for various cache management policies, including HeLM. While
MAT and SDBP require significant amount of storage to track the reuse of LLC blocks, TAP and HeLM can
be implemented using simple hardware counters. HeLM utilizes MissHigh, and MissLow counters to track
GPU and CPU LLC access behavior. Also, instruction countersand core IDs are required to identify the
cache sensitivity of the GPU application. The TLP thresholdregister holds the TLP threshold selected by
TSA. In summary, hardware overhead for HeLM is comparable tothat for TAP, and both these mechanisms
use significantly less additional hardware than MAT or SDBP.

6. ENERGY CONSUMPTION

(a) On-chip dynamic energy consumption

(b) On-chip static energy consumption

(c) On-chip total energy consumption

Fig. 18: On-Chip energy consumption for the 2C4G
configuration. Figures show the energy consumption for two
CPU applications, one GPU application, and for the system

(geometric mean). Results are normalized to the LRU policy.

HeLM’s LLC bypassing technique could al-
ter the energy consumption profile of the sys-
tem, both on-chip as well as off-chip. On-
chip, there are two scenarios contributing to
LLC dynamic energy: (i) on an LLC hit, tag
array and cache block data are accessed; and
(ii) on an LLC miss, tag array is accessed, a
cache block is written back to memory if it is
dirty, and data for the missed access is writ-
ten to the cache block. When an LLC access
is bypassed on a miss, only the tag array is ac-
cessed, eliminating the energy consumption
of data block accesses. Additionally, dynamic
access energy of the memory controller could
also be altered by LLC bypassing because of
the changes in off-chip access requests. Static
energy, on the other hand, is dependent on the
total execution time, and is hence related to
the performance of the policy.

Here, we discuss the energy consumption
of our baseline 2C4G configuration. The en-
ergy consumption shown in Figure 18 for
each of the policy and configuration is nor-
malized to the LRU policy. Figure 18(a)
shows the on-chip dynamic energy consump-
tion (cores, LLC, memory controller) for the
various policies. HeLM improves the on-
chip dynamic energy consumption by about
2% compared to TAP. Figure 18(b), on the
other hand, shows the on-chip static en-
ergy consumption (cores, LLC, memory con-
troller). Here also, HeLM improves the over-
all on-chip static energy consumption due to
the performance improvement. Overall, Fig-
ure 18(c) shows the combined (static + dy-
namic) on-chip energy for the 2C4G config-
uration. HeLM consumes about 2% less on-
chip energy than TAP.

LLC bypassing, on the other hand, could
lead to an increase in off-chip main memory
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(a) DRAM energy consumption for the different policies for the
2C4G configuration. The results are normalized to the LRU pol-
icy.

(b) Total system (on-chip + DRAM) energy consumption for the
different policies for the 2C4G configuration. The results are nor-
malized to the LRU policy.

Fig. 19: Off-chip (DRAM) and total system energy consumption for the different policies for the 2C4G
configuration.

(DRAM) accesses, resulting in a potential increase in DRAM dynamic energy consumption. Figure 19(a)
shows the DRAM energy consumption for 2C4G workloads. HeLM increases the DRAM energy consump-
tion when compared to DRRIP, MAT and SDBP. However, its DRAM energy consumption is comparable
to that of TAP. TAP also increases DRAM energy consumption due to the increase in DRAM access rate
as a result of the low priority given to GPU memory accesses. DRRIP policy shows a significant reduction
in DRAM energy consumption as it prioritizes memory accesses from the GPU cores that reduces DRAM
access.

Figure 19(b) shows the overall system (on-chip + DRAM) energy consumption for the 2C4G configu-
ration. Here, we see that HeLM’s energy consumption is similar to DRRIP and MAT, and in fact lower
than TAP and SDBP. HeLM outperforms TAP in energy consumption by about 3%. This shows that energy
consumption is not a concern for the bypassing-based HeLM.

6.1. Energy Delay-Squared Product

Energy efficiency has emerged as an important metric in architectural evaluations. Several works [Ku-
mar et al. 2003; Brooks et al. 2000; Salapura et al. 2005] haveturned to energy delay-squared product
(ED2) [Pénzes and Martin 2002] as the metric of choice to study energy efficiency as it considers both en-
ergy consumption and performance in determining the efficiency of a processor. In this section, we evaluate
HeLM on the basis of the energy delay-squared product metric. For a multiprogrammed workload such as
2C4G, however, calculating ED2 gets tricky. Below we describe how we calculate the ED2 metric.

Fig. 20: Total system energy delay-squared (ED2) product for the
different policies for the 2C4G configuration. Results are

normalized to the LRU policy.

For our baseline 2C4G workload, ED2 for
each CPU application and the GPU appli-
cation is calculated separately as they ex-
perience different execution times and per-
formance improvements. Energy consump-
tion for each core is calculated separately as
they have different architectural characteris-
tics. Meanwhile, energy consumed by shared
resources, such as LLC and memory con-
trollers, is pro-rated for each application on
the basis of either execution time (for static
energy) or access numbers (for dynamic en-
ergy). Geometric Mean (GM) is used to cal-
culate the ED2 for a policy for the entire
workload. The ED2 is normalized to the base-
line of LRU policy.
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Figure 20 shows the normalized ED2 for all the policies for the 2C4G configuration. We see that for
the CPU applications, HeLM’s ED2 value improves significantly compared to other policies, due to the
performance improvement. For the GPU application, ED2 worsens as we sacrifice GPU performance for
overall performance improvement. However, we can note thatHeLM’s ED2 for GPU is only slightly worse
than that for TAP. Overall, HeLM performs better than other policies in terms of ED2. It does nearly 8%
better than TAP. These evaluations show that HeLM fares better than other policies from the energy efficiency
perspective.

7. RELATED WORK

The importance of the cache subsystem to application performance has left a significantly large trove of
research work in cache management techniques. In this section, we discuss only the works that are closely
related to ours.

7.1. Cache Management

Existing works on cache management for homogeneous multicore processors can be divided into two general
categories: (i) cache partitioning techniques; and (ii) cache replacement policies.

7.1.1. Partitioning Techniques. Stone et al. [Stone et al. 1992] conducted one of the first studies on optimal
cache partitioning. However, they proposed static partitioning based on miss rate information for various
applications with varying cache sizes. Dynamic cache partitioning mechanisms, on the other hand, aim
to achieve their performance goal by dividing the cache waysamong the applications at runtime. Suh et
al. [Suh et al. 2004] introduce dynamic cache partitioning among threads executing on the same chip by
utilizing hardware performance counters to maximize cachehit among threads. Moreto et al. [Moreto et al.
2008] propose a dynamic cache partitioning mechanism that considers the memory-level parallelism of an
application and the impact of cache misses on its performance. Quality-of-service (QoS) considerations
were addressed for multicore cache partitioning by Chang etal. [Chang and Sohi 2007], while fairness was
considered by Kim et al. [Kim et al. 2004]. Utility-based cache partitioning (UCP) [Qureshi and Patt 2006]
tries to find the optimal cache partitioning by prioritizingapplications on the basis of benefit from cache over
the demand for cache. Thrasher caging [Xie and Loh 2010] re-evaluates cache partitioning mechanisms in
the presence of one or more thrashing applications. Recently, PriSM [Manikantan et al. 2012] has introduced
a probabilistic shared cache management framework that considers various aspects such as cache hit ratio,
fairness, and QoS.

7.1.2. Replacement Policies. Cache replacement policies aim to identify the appropriateposition to in-
sert a new cache block and to identify the right victim for replacement to achieve their performance goal.
Qureshi et al. propose the dynamic insertion policy (DIP) [Qureshi et al. 2007] that overcomes the impact
of thrashing behavior of certain applications on other applications in the workload. DIP achieves this by
inserting cache blocks from thrashing workloads at LRU position to minimize their cache lifetime. Jaleel et
al. [Jaleel et al. 2010] utilize re-reference interval prediction (RRIP) to develop a replacement policy that is
both thrashing and scan resistant. PIPP [Xie and Loh 2009] isa cache management technique that combines
insertion and promotion policies to utilize the benefits of cache partitioning and adaptive insertion. Both
RRIP and PIPP show that inserting cache blocks at MRU position (near-immediate re-reference) is not op-
timal, while insertion of cache blocks at non-MRU position and promoting them on cache hits improves the
cache utilization significantly. Pseudo-LIFO [Chaudhuri 2009] proposes a new family of cache replacement
policies that is based on fill stack as opposed to the recency stack followed by previous policies. Recently,
hierarchy awareness about other levels of cache has been introduced by CHAR [Chaudhuri et al. 2012] to
improve the replacement policy applied at the LLC.

However, these mechanisms face significant challenge in thepresence of diverse cores sharing the LLC.
Hence, they cannot be directly adopted to heterogeneous multicore processors. A recent work, TAP [Lee and
Kim 2012], adapts UCP and RRIP for heterogeneous multicore processors. However, HeLM outperforms
these policies as discussed in Section 5.3.
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7.2. Dead Block Predictors

Reuse-based cache management, often referred to as dead-block predictors, have been proposed in prior
works [Johnson et al. 1999; Lai et al. 2001; Liu et al. 2008; Kharbutli and Solihin 2008; Khan et al. 2010]. Lai
et al. proposed a dead-block predictor to prefetch data intoL1 data cache [Lai et al. 2001]. While Kharbutli
et al. proposed counting-based dead-block predictors [Kharbutli and Solihin 2008] that consider the number
of accesses to a cache block, Cache Bursts [Liu et al. 2008] observes references to a cache block at MRU
position to make dead block prediction. All prior works haveonly addressed the dead-block prediction issue
for CPU workloads. These mechanisms cannot be directly adopted for heterogeneous workloads as they
prove to be overly conservative for the GPU as discussed in Section 5.3.2.

8. CONCLUSIONS

The growing importance of data-parallel accelerator cores, such as GPU, has lead to their integration with
CPU cores on the same die. Such architectures with heterogeneous processing cores present a significant
challenge to optimal sharing of on-chip resources such as the LLC. Our heterogeneous LLC management
mechanism, HeLM, monitors the TLP available in the GPU application and uses this information to throttle
the GPU LLC access when the application has enough TLP to sustain longer memory access latency. This in
turn provides an increased share of the LLC to the CPU application, thus improving its performance. HeLM
monitors the cache sensitivity of both CPU and GPU applications in heterogeneous workloads, and achieves
LLC sharing that improves overall system performance and energy efficiency.

We evaluate HeLM against: (i) existing shared LLC management techniques (LRU, DRRIP); (ii) reuse-
based bypassing mechanisms (MAT, SDBP); and (iii) the only technique proposed for heterogeneous mul-
ticore (TAP). Evaluations are based on a heterogeneous multicore processor modelled after AMD APU
processors currently available in market. HeLM outperforms all these mechanisms in overall system perfor-
mance. HeLM improves over LRU policy by 10.4% and outperforms TAP by 5.9% for the baseline processor
configuration with two CPU and four GPU cores. Evaluations across configurations show that HeLM is able
to maintain performance under varying processor core mix. HeLM also outperforms competing policies in
energy efficiency. HeLM consumes nearly 3% less total energycompared to TAP, while reducing ED2 by
8%, for the baseline configuration. To summarize, HeLM outperforms other policies consistently in terms of
both performance and energy efficiency. Additionally, HeLMachieves these characteristics without signifi-
cant increase in off-chip bandwidth utilization. For the baseline configuration, HeLM increases the off-chip
bandwidth utilization by only 7% over LRU policy.

Through this work, we demonstrate that judicious allocation of space among diverse cores is key to effi-
cient sharing of on-chip LLC in a heterogeneous multicore processor. By effectively managing LLC distri-
bution, with cache sensitivity awareness, HeLM is able to improve both performance and energy efficiency
over currently proposed techniques.
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