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Introduction

Forecasting is an essential aspect of decision making within the
normally uncertain project environment. A need for forecasting
arises simply because there is uncertainty about the future and some
aspects of the future cannot be controlled (Armstrong 2002).
Forecasting in project management might well be a self-defeating
prophecy, but at the same time, that may be good for organizations.
Usually, large deviations attract management’s attention and result
in control actions whereas small deviations are rather left alone.
Earned value management (EVM) and similar techniques help
managers to focus on projects or work packages that need the most
attention, by measuring and highlighting possible future deviations.
Forecasting using these techniques provides a reasonable and
uniform approach for project tracking and control (Anbari 2003).

To predict the estimated duration at completion [EACðtÞ] and
the cost estimate at completion (EAC) of a project, several models
or equations have been suggested using earned value (EV), earned
schedule (ES), and earned duration (ED) data (Anbari 2003; Lipke
et al. 2009; Khamooshi and Golafshani 2014). However, a debate
continues over the introduction of the most rigorous and reliable
method for project-duration and cost forecasting that is applicable
at different stages of project completion. Many simple forecasting
models (e.g., moving average and exponential smoothing), and or
more-advanced and more-complex methods (such as fuzzy time
series) could be reasonably used to predict performance indexes
for the next periods of a project.

Project performance indexes like schedule performance index
(SPI) and cost performance index (CPI) normally are not constant.
The project manager may face a low performance at the beginning
of project or things may go wrong or vice versa. Thus, performance
of the project in the next reporting period(s) is not necessarily con-
stant and similar to the past, but rather it is flexible, dynamic, and
responsive to the past performance (Khamooshi and Golafshani
2014). Moreover, it is possible that current project performance
can be ameliorated in the future due to various causes such as pro-
ductivity improvements, learning, and risk-reduction strategies. For
this reason, exponential smoothing often performs better out-of-
sample than might otherwise be expected because it is used when
the trend aswell as themean is varying slowly over time (Holt 2004).

Taking into account these considerations, in this article, for the
first time, the earned duration performance measures in conjunction
with exponential smoothing are used to predict the project duration.
The principal objective of this study is to combine exponential
smoothing method with earned duration management (EDM) as a
new model to predict project duration and compare the results ob-
tained versus earned schedule (ES), which according to previous
studies (Vandevoorde andVanhoucke 2006; Lipke et al. 2009) yields
more-reliable forecasts than EVM-based techniques. Furthermore,
the accuracy of these three methods, EDM, ES, and EDM combined
with exponential smoothing is examined in multiple project
completion stages (cases/scenarios), using real-life projects data.

To this end, the article is organized as follows. After the introduc-
tion, an overview of forecasting equations andmodels used in EVM,
ES, and EDM techniques is presented. The previous related works
and literature are reviewed next and the following section explains
the researchmethodology inwhich the new forecasting approach and
case studies used in this work are introduced. In the next section, the
results of applying the model to 19 case study projects is presented
and discussed. Finally the conclusions are drawn and presented.

Overview of Techniques

The earned value management (EVM) technique has been widely
used to monitor and control the performance of a project up to a
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reporting date and forecasting the project’s final duration. EVM
was originally developed for cost management. However, recent
research trends show an increase of interest in using performance
indicators for monitoring project schedule performance as well.
Furthermore, using this technique, real data generated during
project execution period are used to predict trends for future project
performance and forecasting total project duration. A detailed
description and depiction of EVM concepts can be found in
McConell (1985), Anbari (2003), Fleming and Koppelman (2010),
and PMI (2013).

The earned schedule (ES) technique was introduced by Lipke
(2003), as an extension to EVM, to ameliorate EVM’s accuracy
in connection with schedule performance measurement and project
duration forecasting.

The earned duration management (EDM) technique, then, was
developed by Khamooshi and Golafshani (2014) to overcome
some of the issues associated with the use of the aforementioned
methods for schedule performance measurement.

In this section, three of the previously mentioned methods are
briefly explained, focusing on project duration forecasting.

EVM Forecasting Technique

The essence of EVM could be depicted using graphs. The primary
curves on the EVM diagram (Fig. 1) include planned value (PV),
actual cost (AC), and EV. The PV curve represents the budgeted
cost of planned work. The initially submitted and accepted
contractor bid contains the PV information. Meanwhile, the AC
curve represents the total actual cost incurred, and the EV curve
represents the actual payments received for completed work as
per planned values. The EV could be used to indicate how
efficiently the project team utilizes the project resources. One of
the simplest techniques for measuring the EV is the percent
complete (PC) technique: EV ¼ PV × PC. The AC and EV curves
are developed dynamically during a project’s execution phase.

In the EV analysis, cost-related information is used to measure
project cost and schedule performance. EV analysis uses the
following parameters to evaluate project performance and forecast
final cost and duration:
• CV = cost variance (CV ¼ EV − AC);
• SV = schedule variance (SV ¼ EV − PV);
• CPI = cost performance index (CPI ¼ EV=AC);
• SPI = schedule performance index (SPI ¼ EV=PV);
• EAC = estimated cost at completion (EAC ¼ BAC=CPI); and
• EACðtÞ = where BAC is budget at completion, estimated

duration at completion (SAC/SPI).
There are several formulas available to calculate duration esti-

mate at completion, EACðtÞ. A common formula, which assumes

that the future trend of the project performance remains intact, di-
vides the schedule at completion (SAC) [or baseline planned
duration (BPD)] by the schedule performance index (SPI). In other
words, this formula assumes that duration of remaining work would
follow the current SPI trend. There are some other formulas which
can be used to derive the EACðtÞ based on the EV data (for instance,
see Anbari 2003; Vandevoorde and Vanhoucke 2006; PMI 2013).

ES Forecasting Technique

SPI and SV are no longer applied as they are both broadly
recognized for failing to present status of the project when it
continues execution past the planned end-date. For late projects,
SPI and SV converge and conclude at the values of 1.00 and 0.00,
respectively.

To overcome this limitation, Lipke (2003) and Lipke et al.
(2009) proposed use of the concept of earned schedule (ES). ES
is the duration or date corresponding to the current earned value
on the planned value curve. To compute ES (Fig. 1) at time
now (AT), first, the earned value is calculated. This value is then
used on the PV curve (cost baseline) to compute the date when EV
equals PV. With ES determined, better indicators can be formed by
comparing where the project is (duration earned) in contrast with
the time actually passed. Actual time (AT) is the duration at which
the EV accrued is recorded. The time-based indicators are readily
formulated from the two measures, ES and AT:
• SVðtÞ = schedule variance (time) [SVðtÞ = ES-AT];
• SPIðtÞ = schedule performance index (time) [SPIðtÞ ¼ ES=

AT]; and
• EACðtÞ = estimated duration at completion [SAC=SPIðtÞ].

As discussed previously, the final cost might be predicted from
the formula EAC = BAC/CPI. In an analogous manner, final du-
ration may be forecasted from EACðtÞ ¼ SAC=SPIðtÞ, where SAC
is the schedule at completion (planned duration) for the project and
EACðtÞ is the estimated duration at completion (Lipke et al. 2009).

EDM Forecasting Technique

While it is generally agreed that the ES method and consequently
its schedule performance index, SPIðtÞ offer improvements over
EVM and SPI, Khamooshi and Golafshani (2014) argue that the
ES technique has some conceptual shortcomings and still there
are some issues associated with the use of this method for project
schedule/duration performance analysis. Similar to traditional SPI,
SPIðtÞ still uses monetary terms of earned value (EV) and planned
value (PV) to measure schedule performance. With regard to
Schedule is different, where the concept of ES was introduced
(Lipke 2003), EV could not necessarily be an accurate measure
of schedule/duration performance. More precisely, it is considered
the best measure of value earned monetarily. Using the same EV,
the earned schedule method gets to the corresponding duration.
Despite the fact that activity durations and cost items might be
correlated, duration and cost profiles are not generally the same.
Therefore, it is unjustifiable to say that performance indicators that
use cost profile are accurate measures for schedule performance.
In other words, similar to EVM’s cost-based indicators, ES is not
inherently adequate to handle duration performance measurement
and consequently project duration forecasting (Khamooshi and
Golafshani 2014).

Concerning this preceding argument against ES, the greater
the disparity between duration and cost profiles, the more deficient
the schedule performance measures/forecasts. In such cases, SPI
and SPIðtÞ will both show inaccurate results, and at times,
SPIðtÞ could even perform worse than SPI. As a confirmation ofFig. 1. Graphical representation of EVM and ES quantities
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this, Lipke et al. (2009) indicated that, although SPIðtÞ generally
performs better, SPI generates reasonably better predictions for
large projects (like those of the U.S. Department of Defense proj-
ects in which the duration of the project is long and the volume of
data used in the forecasting process is large).

Based on the preceding argument, Khamooshi and Golafshani
(2014) introduced a new technique called earned duration manage-
ment (EDM) to measure/forecast project duration by decoupling
schedule and cost dimensions. Their approach, as a minimum, does
not suffer the previously mentioned deficiency of EVM and ES.
However, EDM’s concept differs from earned duration (ED)
analysis proposed by Jacob (2003, 2006). The earned duration
method described by Jacob (2003, 2006) is the product of the
actual duration (AD) and the schedule performance index (SPI),
i.e., ED ¼ AD × SPI. Therefore, the duration forecasting formula
using Jacob’s ED and SPI (as the performance factor) is

EACðtÞ ¼ ADþ SAC − ED
SPI

¼ SAC
SPI

ð1Þ

which again, suffers from the same problem as ES’s shortcoming
described earlier.

The total ED proposed in EDM is defined as

TED ¼
Xn
i¼1

ðBPDi × APIiÞ ð2Þ

where BPDi = baseline planned duration or the authorized duration
assigned to the scheduled work to be accomplished for activity i.
BPDi = independent of the status date. Some may refer to it as
the baseline duration for activity i. APIi is an activity progress index
which, at any point in time, measures the progress of an activity. The
schedule progress of an activity could be defined in two ways.
In cases where the progress made on the activity has a linear
relationship with time, one can assume percentage complete to be
an accurate measure of progress. However, when this is not the case,
physical progress could be used as a medium (e.g., labor hours,
material quantities, lines of code, etc.) (PMI 2005). Irrespective
of the method used, it is agreed that normally there could be chal-
lenges in measuring progress. For EDM purposes, one can use
progress of an activity similar to EVM. However, an alternative
method of calculating schedule progress based on duration is
through estimating the remaining duration to complete activity i
(i.e., estimated duration to complete for in-progress activity i,
EDTCi) by subject matter experts, then using the APIi equation:

APIi ¼
ADi

ADi þ EDTCi
ð3Þ

whereADi = actual duration spending on activity i. This measure for
EDM method is the duration counterpart or equivalent to AC of an
activity in EVM.

Earned duration at time t (time now, data date), EDðtÞ, is the
date when the current total earned duration (TED) should have been
achieved. To compute EDðtÞ at time now (AD or AT), first TED is
calculated. Then, this value is used on representative S-curve of the
cumulative planned duration of all scheduled activities (TPD) to
compute the date when TED equals TPD (Fig. 2). TPD can be
mathematically represented as follows:

TPD ¼
Xn
i¼1

PDi ð4Þ

where n = number of in-progress and completed activities up to that
time; and TPD, for the project, at any particular point in time = sum
of PDi for all the planned activities at that time according to the
baseline plan. For activities crossing over the status date, only

the duration of the activity to the left of the vertical status date line
counts toward TPD. EDðtÞ can be mathematically described as

EDðtÞ ¼ tþ TED − TPDt

TPDtþ1ðcalendar unitÞ − TPDt
× 1ðcalendar unitÞ ð5Þ

where EDðtÞ = earned duration at status date or actual duration
(AD); TED = total earned duration at AD; TPDt = total planned
duration at time instant t, and the calendar unit = unit in which time
instant t is measured. At the end of the project, EDðtÞ is the same as
SAC (schedule at completion).

For EDM, a naïve forecasting equation can be formulated
similar to the classical forecasting approaches used for EVM
(assuming a constant performance for the remainder of the
project equal to average performance of the past). In the EDM,
the total duration variance (TDV) is defined and calculated as
TDV ¼ TED − TPD. Using the same parameters, a novel schedule
performance indicator, called earned duration index (EDI) is
defined as

EDI ¼ TED
TPD

ð6Þ

At any reporting date, a project might have achieved more, less,
or the same amount of work in comparison with the work planned
to be achieved by that time. Thus, EDI can have values of greater
than one, lower than one, or equal to one, respectively.

Accordingly, Khamooshi and Golafshani (2014) define
estimated duration at completion (EDAC) for EDM method, as
a counterpart of EACðtÞ in the ES method. EDAC is calculated as

EDAC ¼ ADþ SAC − ED
EDI

¼ SAC
EDI

ð7Þ

Review of the Literature

In recent years, many different methods have been proposed to
monitor schedule performance and forecast final project duration.
In this section, previous studies in the field of project duration fore-
casting and comparison between related techniques are reviewed.

Previous Research in EVM Duration Forecasting

To improve the capacity of EVM duration forecasting, several
modified forecasting formulas have been suggested. Lipke
(1999) proposed cost ratios and schedule ratios to manage the cost
and schedule reserves in projects. Zwikael et al. (2000) evaluated
five EVM forecasting methods using three performance measures:

Fig. 2. Graphical representation of EDM quantities
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mean square error, mean absolute deviation, and mean absolute per-
centage error. Looking at design operations, Chang (2001) defined
cost/schedule performance indexes (C/SPIs) to measure project
performance. Kim et al. (2003) studied the implementation of
the EV in different types of organizations and projects. Lipke
(2004) developed forecasting models using project cost and time
performance probabilities. Jacob and Kane (2004) argued that
the well-known performance measures of EVM are true indicators
for project performance as long as they are used at the activity level,
and not on the control account level or higher work breakdown
structure (WBS) levels. Using a network-based simulation, Barraza
et al. (2004) proposed a probabilistic model to forecast project
duration and cost. They have simplified the correlation between
past and future performance by adjusting the parameters of
probability distributions of future activities with the performance
indices of finished works (i.e., CPI in EVM model). However,
no empirical or statistical evidence has been presented to support
this study. Cioffi (2006) proposed a new notation for the EV
analysis to make its mathematics more transparent and flexible.

A formal method was proposed by Warburton (2011) to include
time dependence into EVM. The model requires three parameters:
(1) reject rate of activities, (2) cost overrun parameter, and (3) time
to repair the rejected activities, which map directly to the
fundamental triple constraint of scope, cost, and schedule. Time
dependent expressions for the PV, EV, and AC are derived along
with the CPI and SPI. He claimed that the model accurately predicts
the required revised labor profile and the new schedule. By linear
modeling approach and data from 131 real projects, Chen (2014)
modeled PV quantity and calculated the correlations between PV
and EVas well as PVand AC, and claimed that this linear modeling
approach considerably improved the forecasting accuracy of EVM
metrics. Kim (2015b) developed a probabilistic CPI for earned
value analysis of a real-world project and measured the uncertainty
of its stability using a simulation technique.

Previous Research in ES Duration Forecasting

Relating to earned schedule forecasting method, Vandevoorde and
Vanhoucke (2006) and Vanhoucke and Vandevoorde (2007)
summarized some of the cost and schedule forecasting methods
and studied their accuracy in real and simulated projects. They
compared different EVM-based approaches with the ES method
for the estimated duration at completion. The authors reported that
the ES method is the best and most-reliable method to forecast
project final duration. Lipke et al. (2009) validated the reliability
of ES in forecasting the final duration using the statistical
prediction and testing methods. In that work, they studied statistical
confidence limits to improve estimated duration at completion.
Vanhoucke (2010) introduced a dynamic corrective action
decision-making model and measured the ability of four basic sen-
sitivity metrics to dynamically improve the schedule performance
during project execution, using a large number of simulation runs,
which were performed on a large set of fictitious project networks
generated under a controlled design. In Vanhoucke (2011), two al-
ternate project tracking methods are presented to detect project
problems and their efficiency on the quality of control actions to
bring the project back on track is measured. Both a bottom-up
and a top-down project tracking approach within a corrective action
framework are used on a large and diverse set of fictitious projects
that are subject to Monte-Carlo simulations to simulate fictitious
project progress under uncertainty. The top-down tracking ap-
proach relies on state-of-the-art EVM performance metrics and
the bottom-up tracking method makes use of the well-known
schedule risk analysis.

Elshaer (2012) investigated the effect of sensitivity of activity
information on the forecasting accuracy of the ES method.
Additionally, he tested the claim that the SPIðtÞ index provided
by ES is reliable at higher levels of WBS in normal conditions.
In order to achieve this objective, activity-based sensitivity mea-
sures were used as weighing parameters of the activities to enhance
the schedule performance by elimination or mitigation of the neg-
ative effects that wrong warning can have in noncritical activities.
Running a simulation on a large set of benchmark projects showed
that the forecasting accuracy of the ES model can be improved by
use of sensitivity information. More recently, Colin and Vanhoucke
(2015) using EVM/ES measures and tolerance limits, proposed a
new project control approach to improve the discriminative power
between progress reports. The tolerance limits were determined
from subjective estimates for the project activity durations. This
new statistical project control method gives project managers the
ability to take corrective actions to return the system to its desired
state (or predefined thresholds). Kim and Reinscmidt (2010) and
Abdel Azeem et al. (2014) developed a probabilistic model based
on the Kalman filter algorithm and earned schedule management to
estimate project duration at completion, called the Kalman Filter
Forecasting Model (KFFM). They claimed that the KFFM model,
which is equipped with probabilistic prediction bounds of project
duration at completion, can be employed in different project com-
pletion stages and can offer improved accuracy compared with EV
and ES forecasting models. Moslemi Naeni et al. (2014) developed
new fuzzy-based EVM and ES model with the advantage of
developing and analyzing the earned value indexes and estimated
duration and cost at completion under uncertainty. Colin and
Vanhoucke (2015) integrated the EVM and ES methods with multi-
ple control points inspired by critical chain/buffer management
(CC/BM). They showed how the EVM/ES control approach is
complementary with the concept of buffers and how they can im-
prove the project control process when cleverly combined. These
combined top-down approaches overcome some of the drawbacks
of traditional EVM/ES mentioned in the literature.

Other Statistical Approaches

Some researchers have employed other forecasting techniques to
provide final performance prediction. Lee (2005) introduced
stochastic project scheduling simulation (SPSS) software devel-
oped to calculate the probability of project completion in a desired
duration determined by the user. Lee and Arditi (2006) described a
scheduling system (S3) based on stochastic simulation which inte-
grates the deterministic critical path method (CPM), probabilistic
PERT, and stochastic discrete event simulation (DES) approaches
into a single system. This system is based upon an earlier version of
the system called stochastic project scheduling simulation and ap-
plies all the capabilities of this system. Using Bayesian inference
and the beta distribution, Kim and Reinschmidt (2009) introduced a
new probabilistic forecasting method for schedule performance
control of on-going projects that provides confidence bounds on
predictions and determines the range of potential outcomes.

By use of statistical regression and sample tests, Abu Hammad
et al. (2010) developed a probabilistic model to predict project cost
and duration, and applied it to data from 113 public building
projects. They reported that the forecasting accuracy of the model
improved, reaching an error margin of �0.035% of the actual cost
and time. Narbaev and De Marco (2014) proposed a new forecast-
ing methodology to calculate estimated duration and cost at com-
pletion concerning a modified index-based formula predicting
expected duration and cost for the remaining work using nonlinear
regression curve fitting and an earned schedule approach. The au-
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thors claimed that the proposed model is more accurate in different
project completion stages (early, middle, and late) than those of
traditional EVM index-based methods.

Kim (2014) calculated dynamic control thresholds (DCTs) by
developing a quantitative method. The DCTs could be modified
based upon the project time and cost performance. Gunduz et al.
(2014) presented a fuzzy model in conjunction with the relative
importance index (RII) to be used by contractors to calculate
the probability of delay in construction projects. Mortaji et al.
(2014) proposed an analytical model approach to project cost
and duration prediction. Kim (2015a) presented a Bayesian project
cost forecasting model that adaptively integrates preproject
cost risk assessment and actual performance data into a range of
possible project costs at a chosen confidence level.

Published literature shows that, to date, considerable effort has
been put into the field of project duration forecasting. The review
makes it evident that the earned schedule approach generally
outperforms other EVM-based duration forecasting methods. How-
ever, the search continues over the introduction of a general method
for project duration forecasting which is applicable in different
stages of project completion. On the other hand, the accuracy of
the EDM technique in predicting final duration (EDAC) has not
been examined so far. Furthermore, there are several powerful
and less-complex forecasting models that could be utilized in this
regard, such as the exponential smoothing method. Therefore, in
this research, EDM and ES are compared first, then exponential
smoothing method is integrated with EDM, and the results are ex-
amined and compared with other existing approaches for accuracy
and reliability.

Formulation and Development of the Model

This section explains the formulation of the approach used to con-
duct this research. To begin with, a brief introduction to exponential
smoothing method is presented. Then, forecasting formulae and
equations used to integrate exponential smoothing method and
ES/EDM techniques are described. Lastly, the comparative analysis
method is briefly explained.

Exponential Smoothing

In business, exponential smoothing models are fully automatic
forecasting methods that have become very popular because of
their relative simplicity and good overall performance as well as
taking into account trends, seasonality, and other features of the
data without need for human intervention (Hyndman et al. 2002).

In general, exponential smoothing is a weighted average of past
values from an observed process that places more weight on recent
observations than on earlier ones. The weights for observations de-
crease exponentially as one moves further into the past. As a result,
the older data have less influence on these projections. The rate at
which the weights of older observations decrease is determined by
the smoothing constant selected. A number of generalizations have
found numerous industrial applications for exponential smoothing
(Maia and de Carvalho 2011; Gardner 2006). In this paper, both
simple (single) and linear (double) exponential smoothing models
used are explained next.

Simple (Single) Exponential Smoothing

Simple exponential smoothing (SES) is used when the historical
data basically have a stable pattern (mostly horizontal). According
to the SES, predicted value at the next period (Ftþ1) is calculated as
follows:

Ftþ1 ¼ αxt þ αð1 − αÞxt−1 þ αð1 − αÞ2xt−2þ · · · ð8Þ
where xt and Ft = real and predicted values, respectively, at
time period t before the prediction; and α = smoothing con-
stant (0 < α < 1).

This equation illustrates that the prediction is a weighted
average based on exponentially decreasing weights. For a high
smoothing constant, weights for earlier observations decrease rap-
idly. For a low smoothing constant, decreases are more moderate.

Linear (Double) Exponential Smoothing

Linear exponential smoothing (LES) is used when the time series is
expected to change linearly with time. The algebraic form of the
LES model, like that of the SES model, can be expressed in a
number of different but equivalent forms (Appendix I). Formally,
the SES equation takes the form of (Brown and Meyer 1961)

Ft ¼ αxt−1 þ ð1 − αÞFt−1 ð9Þ

The standard form of LES model is usually expressed as
follows. Let F̄ denote the doubly-smoothed series obtained by
applying simple exponential smoothing. Then, LES model is
defined as

Ft ¼ αFt þ ð1 − αÞF̄t−1

After Ft and Ft are calculated, quantities at and bt will be
calculated as follows:

at ¼ 2Ft − F̄t bt ¼
�

α
1 − α

�
ðFt − F̄tÞ

Finally, prediction value for the next M periods could be ob-
tained using Eq. (10):

FtþM ¼ at þ btM ð10Þ
The exponential smoothing analysis tool uses the smoothing

constant α, the magnitude of which determines how strongly the
forecasts respond to errors in the prior forecast. Values between
0.2 and 0.3 of α indicate that the current forecast should be adjusted
20–30% for error in the prior forecast. Larger constants yield a
faster response but can produce erratic projections. Smaller con-
stants can result in long lags for forecast values.

Comparative Analysis Procedure

In order to generate the forecasts and assess the accuracy for each of
the methods, data from 19 projects are used. A brief description of
the type or the industry and number of the projects used are rep-
resented in Table 1. Also, some supplemental information on the
case studies is presented in Table of the Appendix II. The models
are used, forecasts are developed, and the forecasts are then ana-
lyzed, evaluated, and compared. The projects used in the study have
not undergone any replanning or rebaselining. Also as the earned
schedule’s SPIðtÞ is shown to outperform the other EVM-based
prediction indexes for project duration, the authors compare the
performance of suggested models with that of SPIðtÞ as well.

Let SPIðtÞ denotes the schedule performance indicator obtained
based on the ES data and SPI 0ðtÞ the schedule performance
indicator calculated applying SES method using SPIðtÞ data,
whereas EDI 0ðtÞ presents the schedule performance indicator
calculated applying SES method using EDI data. According to
the SES model, SPI 0ðtÞ and EDI 0ðtÞ are calculated as follows:

SPI 0ðtÞ ¼ αSPIðtÞ þ ð1 − αÞSPI 0ðt − 1Þ ð11Þ
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EDI 0ðtÞ ¼ αEDIðtÞ þ ð1 − αÞEDI 0ðt − 1Þ ð12Þ
Similar to EACðtÞ and EDAC, estimated duration using SES in

conjunction with ES and EDM methods is calculated as

EAC 0ðtÞ ¼ ATþ ðSAC − ESÞ
SPI 0ðtÞ ð13Þ

EDAC 0 ¼ ADþ ðSAC − EDðtÞÞ
EDI 0ðtÞ ð14Þ

In order to build the LES model similar to EAC 0ðtÞ and EDAC 0,
define EAC 0 0ðtÞ and EDAC 0 0 as estimated durations using LES
model for ES and EDM base data, respectively. Formulas for
EAC 0 0ðtÞ and EDAC 0 0 are presented in Appendix III.

To understand the impact of selecting a particular value of α in
predicting EAC 0ðtÞ, EDAC 0, EAC 0 0ðtÞ, and EDAC 0 0, the projects’
forecasts are developed and results are analyzed for a spectrum of
values of α. Furthermore, the project data were analyzed and tested
for multiple stages of project performance, i.e., early, middle, late,
or overall performance. In order to isolate possible forecasting
characteristics or tendencies among the methods, according to
Lipke et al. (2009), four groupings are formed using the observa-
tions within different percent complete ranges to make the
determinations, namely: early (10–40%), middle (40–70%), late
(70–100%), and overall (10–100%).

Evaluation of the Forecasting Accuracy

In order to evaluate and compare the forecasting accuracy of each
method, the root-mean squared error (RMSE), a widely accepted

criterion, was used. Clearly, the lower the RMSE, the more accurate
the prediction and the method used. RMSE is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
k¼1

ðYk − PkÞ2
s

ð15Þ

where Yk = forecast of the real value Pk; and n = number of pre-
dicted periods or events (Faria et al. 2009).

Analysis of the Results

Before presenting the overall forecasting results, it is instructive to
show the forecasting performance of methods EACðtÞ, EDAC,
EAC 0ðtÞ, EAC 0 0ðtÞ, EDAC 0, and EDAC 0 0 for a single project
(Project 1). This project’s scope upgrades the capacity and capabil-
ity of an old boat maintenance facility to that of a modernly
equipped boat handling and maintenance facility in the United
States Coast Guard (USCG). As an example project, the results
and predictions obtained by ES and EDM techniques [i.e., EACðtÞ
and EDAC] are portrayed in Fig. 3. The figure makes it evident that
in USCG project, forecasting performance of EDM technique is
much better than ES technique, especially at the early stages of
the project completion. It can be observed that after Period 12,
EDAC underestimates the project duration and at the last four peri-
ods (i.e., 22–25), EACðtÞ tends to be closer to the actual duration
than EDAC. However, separate calculation of RMSEs for periods
after 12 showed that RMSE of EACðtÞ and EDAC are 10.78 and
4.90, respectively. That is to say despite underestimating for those
periods, EDAC represented a better overall accuracy.

Applying exponential smoothing models (with α ¼ 0.2), pre-
dictions for USCG project can be observed in Fig. 4. The graphs
show that the fluctuation of EDAC, EDAC 0, and EDAC 0 0 values is
much less than those of EACðtÞ, EAC 0ðtÞ, and EAC 0 0ðtÞ, mainly at
the early stages of project completion. Moreover, RMSE values
reveal that the predictions obtained by applying SES/LES are seen
to be much better than solely ES and EDM techniques. To be more
precise, predictions using exponential smoothing technique
outperform other predictions provided by EACðtÞ and EDAC for-
mulas. Likewise, RMSEs were separately calculated for periods
after 12. RMSEs for EAC 0ðtÞ, EAC 0 0ðtÞ, EDAC 0, and EDAC 0 0
were 9.84, 9.44, 3.66, and 4.70, respectively. This means that again,

Table 1. Type and Related Number of Case Studies

Project type Number

U.S. Armed Forces 1
Telecommunication 4
Information technology 3
Research and development (R&D) 7
Construction 4
Total 19

Fig. 3. Comparison of the duration forecasting methods EACðtÞ and EDAC for USCG project
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SES/LES methods made some improvements in the prediction.
However as mentioned earlier, the prediction improvements in
the early stages of the project progress are more considerable than
those in the middle and late stages.

Now that the process of assessment is established, using the
sample cases, the method was implemented to the data from all
the 19 projects and forecasts were made adopting a range of values
for α. Results of testing yielded a value of RMSE ¼ 8.35 for EDAC
and a value of RMSE ¼ 14.69 for EACðtÞ. The RMSE for the rest
of the methods for the overall region of completion (10–100%) on
these projects are given in Table 2. Using minimum RMSE as the
criteria, it is obvious that EDAC (with RMSE ¼ 8.35) yields
more-accurate predictions than the other methods, particularly in
comparison with EACðtÞ with RMSE ¼ 14.69. When combining
with exponential smoothing, EACðtÞ improved, especially in the
case of conjunction with SES model [EAC 0ðtÞ] and for α ≤ 0.3.
Among the set of combined formula, however, it is EDAC′ that
represents the least RMSEs, with a minimum at α ¼ 0.3.

Looking more closely at RMSE values for the combined
formulas, it can be observed that the accuracy of both EAC 0ðtÞ
and EAC 0 0ðtÞ has declined gradually, by increase of the value of
α constant, with the best duration forecasts at α ¼ 0.1. The RMSEs
of EDAC 0 and EDAC 0 0 shows that the accuracy of EDM model
combined with the SES and LES did not improve. The results
also reveal that when the constant α increases from 0.1 to 0.3,
the prediction performance of EDAC′ improves, reaching a mini-
mum RMSE in α ¼ 0.3. However, for the EDAC″ formula, α ¼ 0.1
would represent the best predictions and higher constants would
not improve the predictions.

Using minimum RMSE as the criteria, the performance of
each method was ranked, a summary of which is provided in
Table 3. Without devoting attention to project completion stage,

therefore, the main conclusions derived from Tables 2 and 3 are
as follows:
• The EDM model (or EDAC) outperforms the ES model [or

EACðtÞ] in duration forecasting;
• The ES model performs much better when combining with

exponential smoothing models, mainly SES (or EAC 0ðtÞ
formula); and

• EDAC outperforms the other models for the set of projects
under this study. It could fairly be concluded that overall when
forecasting duration of a project, the exponential smoothing
method could not improve the predictions power of EDM based
model consistently.
Fig. 5 represents the RMSE values of EACðtÞ 0, EACðtÞ 0 0,

EDAC 0, and EDAC 0 0, for α ¼ 0.1; 0.2; : : : ; 0.9. The purpose of
this analysis is to see what range of previous periods should be
more appreciated in forecasting the future performance of an
on-going project. As shown in Fig. 5, constants near 0.1 account

Fig. 4. Comparison of the duration forecasting of methods EACðtÞ=EDAC, and EAC 0ðtÞ, EAC 0 0ðtÞ, EDAC 0, and EDAC 0 0 (with α ¼ 0.2), for USCG
project

Table 2. Measuring the Accuracy of the Forecasting Methods Using RMSE Indicator

Forecasting method

RMSE (average for 19 projects) (α)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

EACðtÞ 0 10.78 10.95 11.62 12.46 13.37 14.46 16.07 19.29 29.29
EACðtÞ 0 0 11.22 14.19 18.35 25.58 27.17 36.90 32.26 29.30 29.03
EDAC 0 9.72 8.57 8.53 8.70 8.91 9.18 9.58 10.35 12.62
EDAC 0 0 9.08 10.79 11.48 12.44 13.08 13.19 11.91 11.47 11.33

Table 3. Ranking of Forecasting Methods for Overall Region of
Completion (10–100%)

Rank Forecasting formula Approaches

1 EDAC EDM
2 EDAC 0 (α ¼ 0.3) EDM and SES
3 EDAC 0 (α ¼ 0.2) EDM and SES
4 EDAC 0 (α ¼ 0.4) EDM and SES
5 EDAC 0 (α ¼ 0.5) EDM and SES
6 EDAC 0 0 (α ¼ 0.1) EDM and LES
7 EDAC 0 (α ¼ 0.6) EDM and SES
8 EDAC 0 (α ¼ 0.7) EDM and SES
9 EDAC 0 (α ¼ 0.1) EDM and SES
10 EDAC 0 (α ¼ 0.8) EDM and SES
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for the most-accurate predictions, which mean recently elapsed
periods better reflect project performance at completion. It reveals
that as the value of α rises, the accuracy of prediction methods
generally declines, proving the point that more-recent periods
are relevant and not the average of the past. Regarding the rankings,
the SES model merged with EDAC performs better than LES
model in 19 under-study projects.

In addition to the overall forecasting performance of each
method, the methods’ performance at different stages of project
progress was analyzed and assessed. The ranked results indicated
that in the early stages of project completion, EDAC is still the
best method to forecast final duration of a project. In the middle
stages of project completion, as the projects progress, exponential
smoothing techniques, mainly the SES model, could improve the
EDM forecasting method marginally. The SES model with α ¼ 0.2
merged with EDM (EDAC 0) could develop and deliver the best
forecasts when the project is in its middle phases of completion.
Likewise, the EDAC 0 (α ¼ 0.2) provided the most-accurate
predictions for the late stages of completion of the projects. It is
not unexpected that exponential smoothing has improved the
predictions in middle and late stages of projects, as the model
possesses the ability to track volatility and variations relating to
previous performances, appreciating recent periods. Indeed, it
has shown the ability to mirror the effect of management actions
and/or project nature on the course of the project.

Regarding the optimum value for α (i.e., 0.2), although it should
not rely on an arbitrary preset smoothing parameter, published lit-
erature has recommended a choice in the range 0.1 < α < 0.3 to
allow the SES model to change relatively slowly, and such values
often work well for series such as sales figures. However, optimal
coefficients should be selected by minimizing the RMSE over some
initial sample (Gardner 1985, 2006).

Conclusion

In this paper, the performance of EDI from EDM as a parameter
or tool for forecasting the duration of a project at completion
was assessed. The results strongly support the argument that a
duration-based performance measure is a better indicator for use
in predicting the duration of a project. In addition, knowing that
the naïve forecasting model of using SPI or SPIðtÞ could almost
always generate highly erroneous forecasts, the authors merged
the models with SES and LES to improve the performance of these
prediction models. The amalgamation of exponential smoothing
and these simple models improved the accuracy of the forecasts
and reduced the errors. Based on current study, one could predict
that the combination of EDI and SES could deliver improved

results most of the time, indicating that the use of EDI from
EDM approach is less erroneous than SPIðtÞ. While there are other
advanced or sophisticated forecasting models, the authors recom-
mend SES due to its ease of use and formulation.

The projects used for this study were cases to which authors had
access. A more extensive study with a much larger database could
be conducted as the extension of this paper and further research.
An extension of the proposed method can also concentrate on
the constant α and how it can be determined for individual on-
going projects.

Appendix I. Brown’s Linear (i.e., Double)
Exponential Smoothing

If the trend as well as the mean is varying slowly over time, a
higher-order smoothing model is needed to track the varying trend.
The simplest time-varying trend model is Brown’s linear exponen-
tial smoothing (LES) model, which uses two different smoothed
series that are centered at different points in time. The forecasting
formula is based on an extrapolation of a line through the two
centers.

The algebraic form of the linear exponential smoothing model,
like that of the simple exponential smoothing model, can be ex-
pressed in a number of different but equivalent forms. The standard
form of this model is usually expressed as follows: Let S 0 denote
the singly-smoothed series obtained by applying simple exponen-
tial smoothing to series Y. That is, the value of S 0 at period t is
given by

S 0ðtÞ ¼ αYðtÞ þ ð1 − αÞS 0ðt − 1Þ
[Recall that, under simple exponential smoothing, it is assumed

that Ýðtþ 1Þ ¼ S 0ðtÞ at this point.] Then, let S 0 0 denote the
doubly-smoothed series obtained by applying simple exponential
smoothing (using the same α) to series S 0:

S 0 0ðtÞ ¼ αS 0ðtÞ þ ð1 − αÞS 0 0ðt − 1Þ
Finally, the forecast Ýðtþ 1Þ is given by

Ýðtþ 1Þ ¼ at þ bt

where at = estimated level at period t

at ¼ 2S 0ðtÞ − S 0 0ðtÞ
and bt = estimated trend at period t

bt ¼ ½α=ð1 − αÞ�½S 0ðtÞ − S 0 0ðtÞ�

Fig. 5. Effect of the smoothing constant α on RMSE indicator of the combined formulae EAC 0ðtÞ, EAC 0 0ðtÞ, EDAC 0, and EDAC 0 0
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Forecasts with longer lead times made at period t are obtained
by adding multiples of the trend term. For example, the k-period-
ahead forecast [i.e., the forecast for Yðtþ kÞ made at period t]
would be equal to at þ kbt. For purposes of model-fitting
(i.e., calculating forecasts, residuals, and residual statistics over
the estimation period), the model can be started by setting
S 0ð1Þ ¼ S 0 0ð1Þ ¼ Yð1Þ, i.e., set both smoothed series equal to
the observed value at t ¼ 1.

A mathematically equivalent form of Brown’s linear exponential
smoothing model, which emphasizes its nonstationary character
and is easier to implement on a spreadsheet, is as follows:

ÝðtÞ ¼ 2Yðt − 1Þ − Yðt − 2Þ − 2ð1 − αÞeðt − 1Þ
þ ½ð1 − αÞ2�eðt − 2Þ

where eðtÞ ¼ Y 0ðtÞ − YðtÞ (as the previous errors).
Equivalently

ÝðtÞ − Yðt − 1Þ ¼ Yðt − 1Þ − Yðt − 2Þ − 2ð1 − αÞeðt − 1Þ
þ ½ð1 − αÞ2�eðt − 2Þ

In other words, the predicted difference at period t [namely
ÝðtÞ − Yðt − 1Þ] is equal to the previous observed difference
[namely Yðt − 1Þ − Yðt − 2Þ] minus a weighted difference of the
two previous forecast errors.

This form of the model is rather tricky to start at the beginning of
the estimation period. The following convention is recommended:
first set Ýð1Þ ¼ Yð1Þ, which yields eð1Þ ¼ 0 (i.e., cheat a bit and let
the first forecast equal the actual first observation), then also set
Ýð2Þ ¼ Yð1Þ, which yields eð2Þ ¼ Yð2Þ − Yð1Þ, then continue
from this point using the preceding equation. This would yield
the same fitted values as the formula based on S 0 and S 0 0 if the
latter were started using S 0ð1Þ ¼ S 0 0ð1Þ ¼ Yð1Þ.

Appendix II. Supplemental Information on the
Case Studies

The following table provides some detail about the cases used for
the comparative analysis of the models. For five categories of proj-
ects, details such as the country in which the project was imple-
mented, number of activities, original scheduled duration (SAC),
and final duration of the project are given.

Number Category Country
Number

of activities
SAC
(days)

Final
duration
(days)

1 USCG project
Telecommunication

U.S. — 322 399
2 U.S. 130 183 242
3 U.S. 120 175 203
4 U.S. 150 150 172
5 U.S. 148 110 145
6 Information technology U.S. 115 450 700
7 U.S. 146 420 690
8 U.S. 98 185 223
9 Research and

development (R&D)
U.S. 122 430 510

10 U.S. 43 300 391
11 U.S. 56 112 133
12 U.S. 74 120 187
13 U.S. 110 310 364
14 U.S. 55 140 158
15 U.S. 79 165 182
16 Construction Iran 225 515 627
17 Iran 510 540 576
18 Iran 84 290 319
19 Iran 150 350 381

Appendix III. Calculation of EAC 0 0�t� and EDAC 0 0

Let SPI 0 0ðtÞ denote the schedule performance indicator calculated
applying LES method using SPIðtÞ data, whereas EDI 0 0ðtÞ presents
the schedule performance indicator calculated applying LES
method using EDI data. According to the LES model, SPI 0 0ðtÞ
and EDI 0 0ðtÞ are calculated as follows:

SPI 0 0ðtÞ ¼ 2SPI 0ðtÞ − ¯SPI 0ðtÞ þ
�

α
1 − α

�
SPI 0ðtÞ − ¯SPI 0ðtÞ

where SPI 0ðtÞ and ¯SPI 0ðtÞ = singly-smoothed series and
doubly-smoothed series obtained by applying simple exponential
smoothing to SPIðtÞ (using the same α), respectively

EDI 0 0ðtÞ ¼ 2EDI 0ðtÞ − ¯EDI 0ðtÞ þ
�

α
1 − α

�
EDI 0ðtÞ − ¯EDI 0ðtÞ

where EDI 0ðtÞ and EDI 0ðtÞ = singly-smoothed series and
doubly-smoothed series obtained by applying simple exponential
smoothing to EDI (using the same α), respectively.

Similar to EACðtÞ and EDAC, estimated duration using LES in
conjunction with ES and EDM methods is calculated as

EAC 0 0ðtÞ ¼ ATþ ðSAC − ESÞ
SPI 0 0ðtÞ

EDAC 0 0 ¼ ATþ ½SAC − EDðtÞ�
EDI 0 0ðtÞ
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